• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On modular representations of finite-dimensional Lie superalgebras

    2017-05-25 00:37:21YANGHengyunYAOYufeng
    關(guān)鍵詞:特征理論

    YANG Heng-yun,YAO Yu-feng

    (Department of Mathematics,Shanghai Maritime University,Shanghai201306,China)

    On modular representations of finite-dimensional Lie superalgebras

    YANG Heng-yun,YAO Yu-feng

    (Department of Mathematics,Shanghai Maritime University,Shanghai201306,China)

    In this paper,we studied representations of finite-dimensional Lie superalgebras over an algebraically closed field F of characteristic p>2.It was shown that simple modules of a finite-dimensional Lie superalgebra over F are finite-dimensional,and there exists an upper bound on the dimensions of simple modules.Moreover,a finite-dimensional Lie superalgebra can be embedded into a finite-dimensional restricted Lie superalgebra.We gave a criterion on simplicity of modules over a finite-dimensional restricted Lie superalgebra g,and def i ned a restricted Lie super subalgebra,then obtained a bijection between the isomorphism classes of simple modules of g and those of this restricted subalgebra.These results are generalization of the corresponding ones in Lie algebras of prime characteristic.

    Lie superalgebra;representation;p-envelope;p-character

    0 Introduction

    Recall that the finite-dimensional simple Lie superalgebras over the field of complex numbers were classified by Kac in the 1970s(cf.[1]).Furthermore,their representation theory was developed extensively.

    In recent years,there has been an increasing interest in modular representation theory of restricted Lie superalgebras.A systematical research on modular representation theory was initiated and developed in[2-6]for Lie superalgebras of classical type,and in[7-15]for Lie superalgebras of Cartan type,respectively.W.Wang and L.Zhao[3]proved a super version of the celebrated Kac-Weisfeiler Property for the classical Lie superalgebras,which by def i nition admit an even non-degenerate supersymmetric bilinear form and whose even subalgebras are reductive.In[7-15],all simple restricted and some simple non-restricted modules of Lie superalgebras of Cartan type were classified.Moreover,character formulas for these simple modules were given.

    In this paper,we study the modular representations of finite-dimensional Lie superalgebras.This research is largely motivated by[3,16,17].We brief l y introduce the structure of this paper.We collect the general notations and elementary preliminaries on Lie(associative) superalgebras in Section 1.Then Section 2 is devoted to developing general representation theory for a finite-dimensional Lie superalgebraover an algebraically closed field F of characteristicp>2.We show that each simple g-module is of finite-dimensional,and there exists an upper bound on the dimensions of simple modules.Moreover,g has a finitedimensionalp-envelope which is a restricted Lie superalgebra.In some sense,this helps us to reduce representations of finite-dimensional Lie superalgebras to those of restricted ones.We then study irreducible representations of finite-dimensional restricted Lie superalgebras in Section 3.We give a criterion for simplicity of an induced module of a finite-dimensional restricted Lie superalgebra g,and obtain a bijection between the isomorphism classes of simple modules of g and those of some restricted subalgebra(cf.Theorem 3.12).This reduces simple g-modules to those simple modules of a certain restricted subalgebra.

    1 Notations and preliminaries

    In this paper,we always assume that the ground field F is algebraically closed and of prime characteristicp>2.We exclude the casep=2,since in this case,Lie superalgebras coincide with Z2-graded Lie algebras.

    1.1 Basic def i nitions

    A superspace is a Z2-graded vector spaceV=Vˉ0⊕Vˉ1,in which we call elements ineven and odd,respectively.We usually write|v|∈Z2for the parity(or degree)ofv∈V,which is implicitely assumed to be Z2-homogeneous.A superalgebra is a Z2-graded vector spaceendowed with an algebra structure“·”such thatA superalgebrawith an algebra structure[-,-]is called a Lie superalgebra if for any homogeneous elementsx,y,zin g,the following conditions hold.

    Homomorphisms of superalgebras(Lie superalgebras)are those linear mappings which reserve the Z2-grading and the superalgebra(Lie superalgebra)structure.

    Example 1.1be a Z2-graded vector space over F with dimand dimVˉ1=n.Then the algebra EndF(V)consisting of F-linear transformation ofVis an associative superalgebra with

    Moreover,for any homogeneous elementsA,B∈EndF(V),we def i ne a new multiplication[-,-] by

    Then(EndF(V),[-,-])is the so-called general linear Lie superalgebra,denoted by gl(V)=More precisely,

    where Mati×jdenotes the set of alli×jmatrices fori,j∈N{0}.

    Def inition 1.2be a Lie superalgebra.A Z2-graded vector spaceV=Vˉ0⊕Vˉ1is called a g-module if there exists a Lie superalgebra homomorphism from g to gl(V).

    In this paper,all Lie superalgebras are assumed to be finite-dimensional.By vector spaces, subalgebras,ideals,submodules etc.,we mean in the super sense unless otherwise stated.

    1.2 Key lemmas

    In this subsection,we present several lemmas for later use.superalgebra.For elementsy,z1,···,znin A and

    and

    with the convention that{y,z;0}=y.Let

    Lemma 1.3Assumeis an associative superalgebra.form+1≤i≤n.Then

    ProofIt is trivial fors=0.In the following,we assumes/=0.Lx,Rxdenote the left and right multiplications byxin A,respectively.andLxcommutes with adx.We divide the proof into three cases.

    Case 1sm+1=sm+2=···=sn=0.

    In this case,we proceed by induction onm.The casem=1 follows from the following computation.

    Assume thatm>1.The induction hypothesisyields

    Hence,(1.1)holds in this case.

    Case 2s1=s2=···=sm=0.

    In this case,we proceed by induction onn-m.Ifn-m=1,then

    Hence,(1.1)holds in this case.Assume thatn-m>1.

    The induction hypothesis yields

    Hence,(1.1)holds in this case.

    Case 3(s1,···,sm)/=0and(sm+1,···,sn)/=0.

    Lets′=(s1,···,sm,0,···,0),s′′=(0,···,0,sm+1,···,sn).It follows from Case 1 and

    Case 2 that

    Hence,(1.1)holds in this case.

    In conclusion,we f i nish the proof by the three cases above.

    We have the following super version of Engel’s Theorem in Lie algebras.

    Lemma 1.4LetV=be a fi nite-dimensional Z2-graded vector space and g?gl(V)be a Lie super subalgebra.Moreover,assume that g consists of nilpotent transformations. Then there exists a nonzero elementv∈such thatxv=0 for anyx∈g.

    ProofWe proceed by induction onm.For the casem=0,the assertion follows from Engel’s Theorem(see[18]).Assume thatm=1 andnilpotent,-graded subspace.Moreover,it is easy to check that-submodule.By Engel’s Theorem again,subspace.Consequently,any nonzero homogeneous vectorvinsatisf i es the desired requirement.

    Assume thatn>1 and the assertion holds for anym<n.We will show that it also holds form=n.For that,regard-module via adjoint action.Since

    Let{x1,···,xl}be a homogeneous basis of g.Sincex1is nilpotent,andW3is invariant under the action ofx1,it follows thatis a nonzero Z2-graded subspace.For 2≤i≤l,de fi neinductively.These are nonzero Z2-graded subspaces by a similar argument.Then any nonzero homogeneous vectorvsatis fi es the requirement of the assertion.

    As a consequence of Lemma 1.4,we get the following preliminary result on representations of Lie superalgebras.

    Lemma 1.5vector space and g?L?gl(V)be Lie super subalgebras.Then the following statements hold.

    (1)If[g,g]consists of nilpotent transformations and F contains all eigenvalues of elements in g,then there exists nonzerovsuch thatxv=λ(x)v,?x∈g.

    (2)Letλ∶g-→F be an eigenvalue function,i.e.,x-λ(x)idVis nilpotent for anyx∈g. Suppose thatλ(x)=0 for anyx∈[g,g].Thenλis linear.

    (3)Keep assumptions as in(1).Moreover,assume that g is an ideal ofLandVis an irreducibleL-module.Then[g,g]=0,and anyx∈g has a unique eigenvalueλ(x)onV,andλ∶g-→F is linear.

    Proof(1)According to Lemma 1.4,

    Take anyxthen

    Hence,W1is invariant under the actionMoreover,since

    it follows that

    (2)By(1),there existsvsuch thatxv=λ(x)v.Since the left hand side is linear inx,so is the right hand side.

    (3)By(1),there existsv∈such thatxv=0,?x∈[g,g].SinceVis an irreducibleL-module,V=U(L)v.Consequently,[g,g]acts trivially onV,since g is an ideal ofL.This means that[g,g]=0.is a nonzeroL-submodule.The irreducibility ofVas anL-module implies thatVcoincides withV,i.e.,x-λ(x)idVis nilpotent.Hence,λ(x)is the unique eigenvalue ofx.On the other hand,for anyx

    This implies that any elementis nilpotent,and 0 is the unique eigenvalue.The assertion thatλis linear follows from(2).

    1.3 Restricted Lie superalgebras

    The following def inition is a generalization of the notion of restricted Lie algebras[17,19]to the case of Lie superalgebras.

    Def i nition 1.6[20]A Lie superalgebraa restricted Lie algebra and gˉ1is a restricted gˉ0-module under the adjoint action.This isequivalent to saying that there exists a so-calledp-mapping[p]on gˉ0such that the following properties hold∶

    Heretis an indeterminate.

    Remark 1.7Let(g,[p])be a restricted Lie superalgebra.Setξ(x)∶=xp-x[p]∈U(g)forAccording to Def i nition 1.6(i),ξ(x)∈Z(g)for anyMoreover,ξ∶isp-semilinear,i.e.,ξ(ax+by)=apξ(x)+bpξ(y),?x,y∈

    Example 1.8 Letg=gl(m|n)be the general linear Lie superalgebra.Let[p]∶

    Proposition 1.9Let g be a restricted subalgebra of a restricted Lie superalgebra(G,[p]). Let[p]′∶gˉ0-→gˉ0be a mapping.Then the following statements are equivalent.

    (1)[p]′is ap-mapping on g.

    (2)There exists ap-semilinear mappingf

    Proof(1)=?(2).Set

    Since

    factually mapsanda,b∈F,we have

    Consequently,fisp-semilinear.

    (2)=?(1).We need to show that the three conditions in Def i nition 1.6 hold for[p]′.

    The proof is completed.

    Let(g,[p])be a finite-dimensional restricted Lie superalgebra over F.LetZ0(g)be theF-algebra generated byxp-x[p]forx∈be the ideal inU(g)generated byxp-x[p]which is usually called the restricted enveloping superalgebra.

    Suppose that{x1,···,xn}is a basisIt follows from the semilinearity ofξthatZ0(g)is generated byξ(x1),···,ξ(xn).Moreover,by PBW Theorem, we have

    Proposition 1.10Keep notations as above,then the following statements hold.

    (1)The elementsξ(x1),···,ξ(xn)are algebraically independent generators forZ0(g),i.e.,Z0(g)=F[ξ(x1),···,ξ(xn)]is a polynomial algebra ofnindeterminates.

    (2)The universal enveloping superalgebraU(g)is free overZ0(g)with basis

    (3)The restricted enveloping superalgebrau(g)is finite-dimensional,and has a basis

    2 General representation theory

    In this section,we always assume thata fi nite-dimensional Lie superalgebra over an algebraically closed field of characteristicp>2.We will show that each simple gmodule is finite-dimensional,and the dimensions of simple g-modules have an upper bound. Moreover,each finite-dimensional Lie superalgebra can be embedded into a finite-dimensional restricted Lie superalgebra.

    Proposition 2.1be a finite-dimensional Lie superalgebra over an algebraically closed field F of characteristicp>2.Then the universal enveloping superalgebraU(g)is a finitely generatedZ(g)-module,andZ(g)is a finitely generated F-algebra.

    Proof(1)Let{x1,···,xn}be a basis ofand{y1,···,ym}be a basis ofConsider

    as elements in EndF(g).Since g is finite-dimensional,there existsdi∈N(1≤i≤n)such that

    In particular,as aZ(g)-module,U(g)is spanned by those elements in(2.1).

    (2)By(1),U(g)is a NoetherianO-module.Hence,as a submodule,Z(g)is also a NoetherianO-module.Consequently,Z(g)is a finitely generatedO-module.SinceOis finitely generated,it follows thatZ(g)is also finitely generated.

    Theorem 2.2Let g=be a finite-dimensional Lie superalgebra over an algebraically closed field F of characteristicp>2.Then the following statements hold.

    (1)Each irreducible representation of g is finite-dimensional.

    (2)There exists a positive integerM(g)such that every irreducible representation of g has dimension less thanM(g).

    ProofBy Proposition 2.1,we can assume thatLetVbe a simple g-module.Take a nonzero homogeneous elementvinV,then

    Hence,the moduleVis finitely generated overZ(g).SinceZ(g)is Noetherian,there exists a maximalZ(g)-submoduleV′?V.Consequently,Z(g)/m asZ(g)-modules for some maximal ideal m ofZ(g).Hence,mVSince mVis aU(g)-submodule ofVandVis irreducible,it follows that mV=0.Therefore,Z(g)acts onVasZ(g)/mproved.Moreover,by the discussion above,r+1 is an upper boundM(g).

    Remark 2.3When g is a restricted Lie superalgebra,the results in Theorem 2.2 were asserted in[3].

    Example 2.4be a subalgebra of gl(2|1)with{y},where

    Hence,xpandhp-hare contained inZ(g).Consequently,

    It is easy to check that

    LetMbe an irreducible g-module.By Theorem 2.2,Mis finite-dimensional andxpacts as a scalar onM,sayingap.Hence,(x-a)p·M=(xp-ap)·M=0.

    Case 1a=0.

    Let g′=spanF{x,y}.Then g′is a subalgebra of g.According to Lemma 1.4,M′∶={m∈M|z·m=0,?z∈g′}is a nonzero Z2-graded subspace.Moreover,M′is a g-submodule ofM,so thatM=M′by the irreducibility ofMas a g-module.Hence,Mis a simple module for the commutative Lie algebra g/g′Fh.Therefore,dimFM=1 andhacts as a scalar onM,whilex,yact trivially.Conversely,given any scalarb∈F,we get a one-dimensional simple g-module,denoted byMb,in whichhacts as multiplication byb,and g′acts trivially.

    Case 2a/=0.

    Setvi∶=hiBy(2.2),for 1≤i≤p-1,we have

    It follows thatM′′∶=spanF{v0,v1,···,vp-1}is stable underxandh.We claim thatv0,···,vp-1are linearly independent.Suppose the contrary,then there exists somej<p-1 such thatM′′=spanF{v0,v1,···,vj}.It follows from(2.3)that tr(x|M′′)=(j+1)a.On the other hand,since[h,x]=x,we have tr(x|M′′)=0.This implies that(j+1)a=0,i.e.,j+1≡0(modp),a contradiction.Therefore,v0,v1,···,vp-1are linearly independent.Moreover,M′′is an irreducible gˉ0-submodule,since up to scalars,v0is the unique eigenvector ofxWe have the following natural epimorphism of g-modules∶

    which is surjective by the simplicity ofMas a g-module.It is easyhas a unique maximal submoduley?M′′.dimFM=p.Conversely,givena,b∈F witha/=0,we have a simple g-moduleMof dimensionpwith basisv0,···,vp-1such thatyacts trivially,and the actions ofhandxare given as above.We denote this simple g-module byM(a,b).

    In conclusion,{Mb,M(a,b)|a∈F×,b∈F}exhausts all non-isomorphic irreducible gmodules.

    In the following,we study the connection of restricted and ordinary Lie superalgebras.

    Def inition 2.5Let g=be a Lie superalgebra.

    (1)A triple(G,[p],ι)consisting of a restricted Lie superalgebra(G,[p])and a Lie superalgebra homomorphismι∶g-→Gis called ap-envelope of g ifιis injective andG=ι(g)p, whereι(g)pdenotes the restricted subalgebra generated byι(g).

    (2)Ap-envelope(G,[p],ι)of g is called universal,if it satisf i es the following universal property∶For any restricted Lie superalgebra(H,[p]′)and any homomorphismf∶g-→H, there exists a unique restricted homomorphismg∶(G,[p])-→(H,[p]′)such thatg?ι=f.

    The following result asserts that the universalp-envelope of a Lie superalgebra always exists and is unique.

    Proposition 2.6Every Lie superalgebrahas a unique universalp-envelope

    ProofLetbe the restricted subalgebra ofU(g)generated by g.LetHbe a restricted Lie superalgebra andf∶g-→Hbe a homomorphism.Recall thatHcanonically embedded intou(H).The universal property ofU(g)gives rise to an associative homomorphismTherefore,generated by g and thep-th powers,this extension is unique.The uniqueness offollows from the def i nition of the universalp-envelope.

    Proposition 2.7Let g=be a Lie superalgebra.Then the following statements hold.

    (1)If g is finite-dimensional,andis ap-envelope of g,thenis finitedimensional.

    (2)If g is finite-dimensional,then g possesses a finite-dimensionalp-envelope.

    (3)Each homomorphism of Lie superalgebrasf∶g-→h can be extended to a restricted homomorphism

    Proof(1)Recall thatthe restricted subalgebra generated byι(g).Hence,

    It is easy to check that Kerφ=Consequently,

    Then the restricted subalgebra generated by g inis the desiredp-envelope of g.

    Iffis onto,thenIffis injective,it extends to an injective homomorphism

    The following result is a superversion of Iwasawa’s Theorem in the case of Lie algebras.

    Theorem 2.8be a finite-dimensional Lie superalgebra.Then g admits a finite-dimensional faithful representationρ.Moreover,assumethenρ(x)is nilpotent if and only if adxis nilpotent.

    ProofWe first assume that g is restricted with thep-mapping[p].Without loss of generality,according to Proposition 1.9,we can assume that[p]|zgˉ0(g)=0.This implies that adxis nilpotent if and only ifxis[p]-nilpotent forx∈Letρ∶g-→gl(u(g))be the left multiplication in the restricted enveloping superalgebrau(g).Thenρis a faithful representation of g,andxis[p]-nilpotent if and only ifρ(x)is nilpotnet.Consequently,adxis nilpotent if and only ifρ(x)is nilpotent.

    In general,according to Proposition 2.7,there exists a finite-dimensionalp-envelope of g, denoted byG.By the discussion above,Gadmits a finite-dimensional faithful representation?∶G-→gl(V)with the desired property.Since adg(x)is nilpotent if and only if adG(x)is nilpotent forx∈Thus,ρ∶=?|gsatisf i es the required property.

    We have the following close connection between representations of a Lie superalgebra and itsp-envelope.

    Theorem 2.9LetGbe ap-envelope of a finite-dimensional Lie superalgebra g andρ∶g-→gl(V)be a representation of g.Then there exists a representationextendingρ,and each g-submodule ofVis aG-submodule.

    ProofThe statement obviously holds forG=the universalp-envelope of g.In general,by Def i nition 2.5,there exists an embeddingι∶g→Gand a restricted homomorphism

    i.e.,fis surjective.We can fi nd a subspaceWofcontaining g such thatf|W∶W-→Gis an isomorphism(Wis indeed a subalgebra).is the desired representation ofG,whereis the restriction of the representation

    According to Proposition 2.7,any fi nite-dimensional Lie superalgebra can be embedded into a fi nite-dimensional restricted Lie superalgebra.In the next section,we will study representations of restricted Lie superalgebras over a fi eld of prime characteristic.

    3 Representations of restricted Lie superalgebras

    In this section,we always assume that the base field F is algebraically closed of characteristicp>2,and g=is a finite-dimensional restricted Lie superalgebra over F with thep-mapping[p].

    LetMbe a simple g-module.ThenMis finite-dimensional by Theorem 2.2.According to Schur Lemma,ξ(x)=xp-x[p]acts onMby a scalar for anyWe write this scalar asχM(x)pfor someχM(x)∈F.The semilinearity ofξimplies that

    Theorem 3.1The functionχMis called thep-character ofM.More generally,ifVis a g-module andVhas ap-characterχif

    In the following,when we writeχ∈g?,we always make convention thatalso referχ∈as a linear function on g with

    Proposition 3.3IfMhas ap-characterχandM′has ap-characterχ′,thenM?has ap-character-χandM?M′has ap-characterχ+χ′.

    The g-modules withp-character 0 are called restricted modules.They correspond to Lie superalgebra homomorphismsρ

    Proposition 3.3Letχ∈and{y1,···,ym}is a basis of gˉ1,then the superalgebraUχ(g)has the following basis

    In particular,dimFUχ(g)=2dimFgˉ1pdimFgˉ0.

    The following result asserts that the composition factors of a finite-dimensional indecomposable g-module have the samep-character.

    Proposition 3.4Let g=be a finite-dimensional restricted Lie superalgebra over an algebraically closed field F,andMa finite-dimensional indecomposable g-module.Then there exists a uniquesuch that each simple composition factor ofMhas thep-characterχ.

    ProofLetd=dimFM.Take a basis{x1,···,xn}of gˉ0.Consideras a linear transformation onM.We can decomposeMas a direct sum of Z2-graded vector subspaces∶

    Consequently,each simple composition factor ofMadmits thep-characterχ.

    As a direct consequence,we have

    Corollary 3.5Let g=be a finite-dimensional restricted Lie superalgebra over an algebraically closed field,andVa finite-dimensional g-module.ThenVcan be decomposed into direct sum of submodules∶where the composition factors of eachhave the samep-characterχifor 1≤i≤t.Thoseχi(1≤i≤t)are called the generalizedp-characters ofV.

    In the following,we always assume thatIis an ideal of a finite-dimensional restricted Lie superalgebrawithλ([I,I])=0.Let

    which is a restricted subalgebra of g.Moreover,Iis also an ideal of gλ.

    Let{z1,···,zl,zl+1,···,zr}be a cobasis of gλin g,wherel<j≤r.For a givenχ∈g?(recall the convention that)and a finite-dimensional gλ-moduleMwith thep-characterχ|gλand

    be the inducedUχ(g)-module.As a vector space,we have

    We then have a f i ltration

    We need the following lemma for later use.

    Lemma 3.6Keep notations as above.

    (2)For anyv∈M,s∈Nrwiths?τ,we have

    Proofforz∈g andy∈I.We then get a linear map

    Thenφis injective.Consequently,φ(z1),···,φ(zr)are linearly independent.Hence,there existsy1,···,yr∈Isuch that

    Sinceλ(gˉ1)=0,we can choosey1,···,yl∈Iˉ0andyl+1,···,yr∈Iˉ1.

    (2)According to Lemma 1.3,

    Fort/=0,we have{yi-λ(yi),z;t}={yi,z;t}∈I,and{yi,z;t}?v∈1?M=V(0).Consequently,

    With aid of Lemma 3.6,we get the following result describing the submodule structure of the induced module

    Proposition 3.7LetWbe a g-submodule of(M,χ).Then there exists a gλsubmoduleM′ofMsuch thatW∩(1?M)=1?M′and

    ProofLetM′∶={v∈M|1?v∈W}.ThenM′is a gλ-submodule ofM.Moreover,W∩(1?M)=1?M′.Forj∈N,set

    ThenW(0)=W∩V(0).We will show thatW∩V(j)?W(j)by induction onj.Letj≥1 and suppose thatW∩V(j-1)?W(j-1).Letv∈W∩V(j).Choose a cobasis{v1,···,vt}ofM′inM.Without loss of generality,we can assume that

    whereas,k∈F fors?τ,|s|≤jand 1≤k≤t.According to Lemma 3.6,we have

    Hence,(yi-λ(yi))·v∈W∩V(j-1)?W(j-1).It follows from the def i nition ofW(j-1)thatsias,k=0 for|s|=jand 1≤i≤r,1≤k≤t.Consequently,v=0.This implies thatW∩V(j)?W(j).On the other hand,it is obvious thatW(j)?W∩V(j),so thatW∩V(j)=W(j),?j≥0.Hence,W=W∩V=W∩V(p-2)l+r=W(p-2)l+r=Indggλ(M′,χ).

    As a direct consequence,we have the following criterion on irreducibility of the induced

    Theorem 3.8The inducedUχ(g)-moduleis irreducible if and only ifMis irreducible.

    ProofThe sufficient implication is obvious.It suffices to show the necessary implication. Suppose thatMis irreducible.LetWbe a g-submodule ofBy Proposition 3.7, there exists a gλ-submoduleM′ofMsuch thatW=Consequently,W=0 or

    For a g-moduleV,setVλ∶={v∈V|y·v=λ(y)v,?y∈I},which is a gλ-submodule ofVby a straightforward computation.

    Theorem 3.9Let g=be a finite-dimensional restricted Lie superalgebra over an algebraically closed field.LetVbe an irreducible g-module,andIbe an ideal of g.Then the following statements hold.

    (1)IfVhas ap-characterχ∈g?and there isλ∈I?withλ([I,I])=0 andVλ/=0,thenandVλis an irreducible gλ-module.

    (2)If[I,I]operates nilpotently onV,then there existsχ∈g?,λ∈I?withλ([I,I])=0

    Proof(1)SinceVis irreducible,there existsχ∈g?such thatVis a finite-dimensionalUχ(g)-module,and we have the following surjective homomorphism

    Note that KerΨ is a g-submodule of(Vλ,χ)which intersects 1?Vλtrivially.This implies that KerΨ=0 by Proposition 3.7.Hence,Ψ is an isomorphism andVλis irreducible by Theorem 3.8.

    (2)follows from Lemma 1.5 and the statement(1).

    Remark 3.10IfI?g is an abelian ideal,then Theorem 3.9(2)applies.

    Def i nition 3.11LetVbe a g-module andI?g be an ideal.We sayλ∈I?a good eigenvalue function forVifλ([I,I])=0 andVλ/=0.

    Letχ∈g?andI?g.Letλ∈I?withλ([I,I])=0.We denote by Cχ,λ(resp.Dχ,λ)the set of isomorphism classes of irreducible g(resp.gλ)modules withp-characterχ(resp.χ|gλ) and a good eigenvalue functionλ.

    Theorem 3.12Let g=gˉ0⊕gˉ1be a finite-dimensional restricted Lie superalgebra over an algebraically closed field.Letχ∈g?.LetI?g be an ideal andλ∈I?withλ([I,I])=0. Then the following map

    is bijective.

    ProofBy Theorem 3.9,Υ is well-def i ned.Let

    which is well-def i ned by Theorem 3.8.

    LetMbe an irreducible gλ-module withp-characterχ|gλand a good eigenvalue functionThenVis irreducible by Theorem 3.8.Moreover,1?MLemma 1.5(3).Thanks to Theorem 3.9,Consequently,Vλ=1?Mby comparing their dimensions,i.e.,Υ?Γ(M)

    Conversely,letVbe an irreducible g-module withp-characterχand a good eigenvalue functionλ.ThenVby Theorem 3.9,i.e.,Γ?Υ(V)~=V.Therefore,Υ is bijective,and Γ is its inverse map.

    Example 3.13Let g=be the so-called Heisenberg Lie superalgebra withspanF{c},gˉ1=spanF{xi,yj|1≤i,j≤n},and thep-mapping[p]and the Lie bracket subject to the following rules∶

    [1]KAC V G.Lie superalgebras[J].Advances in Mathematics,1977,26(1):8-96.

    [2]SHU B,WANG W Q.Modular representations of the ortho-symplectic supergroups[J].Proceedings of the London Mathematical Society,2008,96(1):251-271.

    [3]WANG W Q,ZHAO L.Representations of Lie superalgebras in prime characteristic I[J].Proceedings of the London Mathematical Society,2009,99(1):145-167.

    [4]WANG W Q,ZHAO L.Representations of Lie superalgebras in prime characteristic II:The queer series[J]. Journal of Pure and Applied Algebra,2011,215:2515-2532.

    [5]ZHANG C W.On the simple modules for the restricted Lie superalgebra sl(n|1)[J].Journal of Pure and Applied Algebra,2009,213:756-765.

    [6]ZHENG L S.Classical Lie superalgebras in prime characteristic and their representations[D].Shanghai:East China Normal University,2009.

    [7]SHU B,ZHANG C W.Restricted representations of the Witt superalgebras[J].Journal of Algebra,2010,324: 652-672.

    [8]SHU B,ZHANG C W.Representations of the restricted Cartan type Lie superalgebra W(m,n,1)[J].Algebras and Representation Theory,2011,14:463-481.

    [9]SHU B,YAO Y F.Character formulas for restricted simple modules of the special superalgebras[J].Mathematische Nachrichten,2012,285:1107-1116.

    [10]YAO Y F.On restricted representations of the extended special type Lie superalgebra[J].Monatshefte für Mathematik,2013,170:239-255.

    [11]YAO Y F.Non-restricted representations of simple Lie superalgebras of special type and Hamiltonian type[J]. Science China Mathematics,2013,56:239-252.

    [12]YAO Y F,SHU B.Restricted representations of Lie superalgebras of Hamiltonian type[J].Algebras and Representation Theory,2013,16:615-632.

    [13]YAO Y F,SHU B.A note on restricted representations of the Witt superalgebras[J].Chinese Annals of Mathematics,Series B,2013,34:921-926.

    [14]YUAN J X,LIU W D.Restricted Kac modules of Hamiltonian Lie superalgebras of odd type[J].Monatshefte für Mathematik,2015,178:473-488.

    [15]WANG S J,LIU W D.On restricted representations of restricted contact Lie superalgebras of odd type[J]. Journal of Algebra and Its Applications,2016,15(4):1650075,14pages.

    [16]JANTZEN J C.Representations of Lie algebras in prime characteristic[C]//Proceedings of the NATO ASI Representation Theories and Algebraic Geometry.Montreal,1997,514:185-235.

    [17]STRADE H,FARNSTEINER R.Modular Lie Algebras and Their Representations[M].New York:Marcel Dekker,1988.

    [18]HUMPHREYS J E.Introduction to Lie Algebras and Representation Theory[M].New York:Springer,1972.

    [19]JACOBSON N.Lie Algebras[M].New York:Interscience,1962.

    [20]PETROGRADSKI V.Identities in the enveloping algebras for modular Lie superalgebras[J].Journal of Algebra, 1992,145:1-21.

    (責(zé)任編輯:林磊)

    有限維李超代數(shù)的模表示

    楊恒云,姚裕豐
    (上海海事大學(xué)數(shù)學(xué)系,上海201306)

    研究了特征大于2的代數(shù)閉域上有限維李超代數(shù)的表示.證明了有限維李超代數(shù)的單模都是有限維的,并且所有單模的維數(shù)有上界.進(jìn)一步,一個(gè)有限維李超代數(shù)可以嵌入到一個(gè)有限維限制李超代數(shù).給出了有限維限制李超代數(shù)g上單模的判定準(zhǔn)則,定義了g的一個(gè)限制李超子代數(shù),得到了該子代數(shù)的單模同構(gòu)類(lèi)和g的單模同構(gòu)類(lèi)之間的一個(gè)雙射.這些結(jié)果是素特征域上李代數(shù)相關(guān)理論的推廣.

    李超代數(shù);表示;p-包絡(luò);p-特征

    2017-03-01

    國(guó)家自然科學(xué)基金(11571008,11671138);上海市自然科學(xué)基金(16ZR1415000)

    楊恒云,女,副教授,研究方向?yàn)槔罾碚摷氨硎纠碚?E-mail:hyyang@shmtu.edu.cn.

    姚裕豐,男,副教授,研究方向?yàn)槔罾碚摷氨硎纠碚?E-mail:yfyao@shmtu.edu.cn.

    O152.5Documentcode:A

    10.3969/j.issn.1000-5641.2017.03.001

    1000-5641(2017)03-0001-19

    猜你喜歡
    特征理論
    抓住特征巧觀察
    堅(jiān)持理論創(chuàng)新
    神秘的混沌理論
    理論創(chuàng)新 引領(lǐng)百年
    相關(guān)于撓理論的Baer模
    新型冠狀病毒及其流行病學(xué)特征認(rèn)識(shí)
    如何表達(dá)“特征”
    不忠誠(chéng)的四個(gè)特征
    抓住特征巧觀察
    理論宣講如何答疑解惑
    无人区码免费观看不卡| 精品一区二区三区人妻视频| 91av网一区二区| 亚洲欧美激情综合另类| 国产视频一区二区在线看| 麻豆成人午夜福利视频| 免费电影在线观看免费观看| 午夜福利18| 亚洲av五月六月丁香网| 亚洲在线自拍视频| 免费看日本二区| 国产精品美女特级片免费视频播放器| 岛国在线免费视频观看| 久久这里只有精品中国| 国产精品一区二区性色av| 成人永久免费在线观看视频| 男人狂女人下面高潮的视频| 欧美成人一区二区免费高清观看| 亚洲av.av天堂| 久久精品91蜜桃| 国内精品久久久久久久电影| 嫩草影院新地址| 搡老岳熟女国产| .国产精品久久| 国产探花在线观看一区二区| 99riav亚洲国产免费| 嫩草影院精品99| 18禁黄网站禁片免费观看直播| 亚洲精品一卡2卡三卡4卡5卡| 成人综合一区亚洲| 最近在线观看免费完整版| 国产高清视频在线观看网站| 成人毛片a级毛片在线播放| 国产成人a区在线观看| 少妇猛男粗大的猛烈进出视频 | 日韩精品中文字幕看吧| 久久精品国产99精品国产亚洲性色| 亚洲国产精品成人综合色| 久久精品国产清高在天天线| 12—13女人毛片做爰片一| 国产乱人伦免费视频| 高清在线国产一区| 久久久久久久午夜电影| 波多野结衣高清无吗| h日本视频在线播放| 99精品在免费线老司机午夜| 特大巨黑吊av在线直播| 一本一本综合久久| 久久6这里有精品| 九九热线精品视视频播放| 欧美黑人欧美精品刺激| 九九久久精品国产亚洲av麻豆| 国产精品av视频在线免费观看| 精品一区二区三区人妻视频| 老熟妇乱子伦视频在线观看| 真实男女啪啪啪动态图| 性欧美人与动物交配| 中亚洲国语对白在线视频| 国产一区二区激情短视频| 精品久久久久久久久亚洲 | 国产国拍精品亚洲av在线观看| 亚洲自拍偷在线| 动漫黄色视频在线观看| 国产亚洲精品av在线| 亚洲天堂国产精品一区在线| 午夜激情福利司机影院| 亚洲av电影不卡..在线观看| 免费黄网站久久成人精品| 国产精品1区2区在线观看.| 国产精品人妻久久久久久| 内地一区二区视频在线| 亚洲人与动物交配视频| 日韩高清综合在线| 免费大片18禁| 免费不卡的大黄色大毛片视频在线观看 | 人妻久久中文字幕网| 能在线免费观看的黄片| 69人妻影院| 亚洲国产欧美人成| 丰满的人妻完整版| av中文乱码字幕在线| 成人特级黄色片久久久久久久| 久久久久久久久久成人| 国产色爽女视频免费观看| 色视频www国产| 能在线免费观看的黄片| 中亚洲国语对白在线视频| 欧美性感艳星| 欧美精品国产亚洲| 国内揄拍国产精品人妻在线| 亚洲精品亚洲一区二区| 麻豆成人av在线观看| 免费看光身美女| 在线播放无遮挡| 国产精品一区二区免费欧美| 啦啦啦啦在线视频资源| 精品一区二区三区视频在线| 欧美zozozo另类| 免费观看人在逋| 床上黄色一级片| 国产精品一及| 色噜噜av男人的天堂激情| 国产精品久久久久久亚洲av鲁大| 国产极品精品免费视频能看的| 亚洲经典国产精华液单| 欧美+日韩+精品| av在线亚洲专区| 日日摸夜夜添夜夜添小说| 国产成人a区在线观看| 一本精品99久久精品77| 久久草成人影院| 久久久国产成人精品二区| 国产麻豆成人av免费视频| 久9热在线精品视频| 美女cb高潮喷水在线观看| 久久午夜福利片| 国产精华一区二区三区| 精品久久久久久久末码| 久久久久久久精品吃奶| 99九九线精品视频在线观看视频| 狂野欧美激情性xxxx在线观看| 久久久久久伊人网av| 神马国产精品三级电影在线观看| 欧美日韩综合久久久久久 | 亚洲三级黄色毛片| 人妻少妇偷人精品九色| 嫩草影院新地址| 超碰av人人做人人爽久久| 日韩欧美国产一区二区入口| 欧美三级亚洲精品| 欧美三级亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 日本在线视频免费播放| 1024手机看黄色片| 欧美在线一区亚洲| 成人特级av手机在线观看| 欧美日韩精品成人综合77777| 97碰自拍视频| 久久久久久九九精品二区国产| 少妇高潮的动态图| 熟妇人妻久久中文字幕3abv| 欧美日本视频| 亚洲国产精品合色在线| 亚洲国产精品合色在线| 搞女人的毛片| 国内久久婷婷六月综合欲色啪| 干丝袜人妻中文字幕| 成人性生交大片免费视频hd| 成人av在线播放网站| 最后的刺客免费高清国语| 亚洲av熟女| 欧美性猛交╳xxx乱大交人| 国产高清激情床上av| 久久国产乱子免费精品| 五月伊人婷婷丁香| 久久久久久伊人网av| 亚洲自偷自拍三级| 性插视频无遮挡在线免费观看| 亚洲精品粉嫩美女一区| 精品久久国产蜜桃| 黄色视频,在线免费观看| 美女大奶头视频| av中文乱码字幕在线| 亚洲精品在线观看二区| 国产三级在线视频| 亚洲一区二区三区色噜噜| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久久电影| 亚洲自拍偷在线| 国产高潮美女av| 在线观看av片永久免费下载| av国产免费在线观看| 91午夜精品亚洲一区二区三区 | 久久精品国产亚洲av香蕉五月| 国产真实伦视频高清在线观看 | 丝袜美腿在线中文| 日韩高清综合在线| 岛国在线免费视频观看| 啪啪无遮挡十八禁网站| 欧美成人a在线观看| 日本a在线网址| 麻豆国产av国片精品| 精品久久久久久久末码| 男人的好看免费观看在线视频| 嫁个100分男人电影在线观看| 一个人观看的视频www高清免费观看| 欧美成人一区二区免费高清观看| 两个人视频免费观看高清| 一夜夜www| 亚洲自偷自拍三级| 深夜精品福利| 国产成年人精品一区二区| or卡值多少钱| 国产欧美日韩一区二区精品| bbb黄色大片| 黄色女人牲交| 免费搜索国产男女视频| 亚洲人成网站在线播| 成人高潮视频无遮挡免费网站| 国产三级中文精品| 久久人人爽人人爽人人片va| 久久久久九九精品影院| 日本一本二区三区精品| 成年女人看的毛片在线观看| 国产一区二区激情短视频| 亚洲一区高清亚洲精品| 91麻豆av在线| 欧美最黄视频在线播放免费| 人妻久久中文字幕网| 亚洲成a人片在线一区二区| 国产aⅴ精品一区二区三区波| 日韩一区二区视频免费看| 免费看光身美女| 91av网一区二区| 亚洲内射少妇av| 亚洲四区av| 蜜桃久久精品国产亚洲av| 99久久九九国产精品国产免费| av天堂中文字幕网| 日韩欧美精品v在线| 免费不卡的大黄色大毛片视频在线观看 | 身体一侧抽搐| 一级a爱片免费观看的视频| 哪里可以看免费的av片| 变态另类丝袜制服| 亚洲av一区综合| 麻豆国产av国片精品| 极品教师在线视频| 九色国产91popny在线| 成人欧美大片| 亚洲最大成人中文| 国产高清视频在线播放一区| 午夜影院日韩av| 日日撸夜夜添| 久久久精品欧美日韩精品| 国产精品久久久久久av不卡| 久久草成人影院| 一个人看视频在线观看www免费| 人人妻,人人澡人人爽秒播| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av成人精品一区久久| 国产午夜精品论理片| 国产熟女欧美一区二区| 国产乱人视频| 热99在线观看视频| 亚洲熟妇熟女久久| 天美传媒精品一区二区| 亚洲欧美清纯卡通| 久久精品国产亚洲网站| 国产av一区在线观看免费| 欧美潮喷喷水| 欧美不卡视频在线免费观看| 老熟妇仑乱视频hdxx| 国产精品福利在线免费观看| 久久99热这里只有精品18| 哪里可以看免费的av片| 午夜亚洲福利在线播放| 99riav亚洲国产免费| 中文字幕精品亚洲无线码一区| 婷婷丁香在线五月| 久久久久久久亚洲中文字幕| 日日摸夜夜添夜夜添av毛片 | 久久精品影院6| 岛国在线免费视频观看| 人妻少妇偷人精品九色| 国产高清三级在线| av天堂中文字幕网| 一a级毛片在线观看| 成人特级av手机在线观看| 亚洲aⅴ乱码一区二区在线播放| 日本欧美国产在线视频| 免费黄网站久久成人精品| 一个人看视频在线观看www免费| 国内少妇人妻偷人精品xxx网站| 国产蜜桃级精品一区二区三区| 成年女人永久免费观看视频| 日日干狠狠操夜夜爽| 久久久久久大精品| 18禁在线播放成人免费| 波多野结衣高清作品| 成人无遮挡网站| 51国产日韩欧美| 中文字幕人妻熟人妻熟丝袜美| 伦精品一区二区三区| 欧美日韩黄片免| www.色视频.com| 日本免费a在线| 嫁个100分男人电影在线观看| 国产视频内射| 日本在线视频免费播放| av在线亚洲专区| 91午夜精品亚洲一区二区三区 | 无人区码免费观看不卡| 欧美性感艳星| 色精品久久人妻99蜜桃| 欧美成人免费av一区二区三区| 日日夜夜操网爽| 国产视频一区二区在线看| 午夜a级毛片| 国产伦人伦偷精品视频| 亚洲欧美激情综合另类| 中文字幕av在线有码专区| 老熟妇仑乱视频hdxx| 国产成年人精品一区二区| 精品久久久久久久末码| 亚洲精品456在线播放app | 免费观看在线日韩| 97人妻精品一区二区三区麻豆| 国产精品人妻久久久影院| 久久6这里有精品| 国产中年淑女户外野战色| 中文字幕人妻熟人妻熟丝袜美| 国产伦一二天堂av在线观看| 亚洲专区中文字幕在线| 在线免费观看的www视频| 欧美zozozo另类| 国内精品久久久久久久电影| 亚洲人成网站高清观看| 婷婷精品国产亚洲av| 国产男靠女视频免费网站| a级毛片免费高清观看在线播放| 亚洲人与动物交配视频| 两性午夜刺激爽爽歪歪视频在线观看| 精品一区二区免费观看| 国产精品爽爽va在线观看网站| 给我免费播放毛片高清在线观看| 蜜桃亚洲精品一区二区三区| 免费av观看视频| 免费在线观看影片大全网站| 九九久久精品国产亚洲av麻豆| 日韩强制内射视频| 18禁黄网站禁片午夜丰满| 午夜精品一区二区三区免费看| 亚洲av五月六月丁香网| 亚洲美女黄片视频| 国产av不卡久久| videossex国产| 国产精品伦人一区二区| 中文字幕av在线有码专区| 精品一区二区三区人妻视频| 国产蜜桃级精品一区二区三区| 国产黄色小视频在线观看| 亚洲欧美激情综合另类| 久久久久国产精品人妻aⅴ院| 免费av毛片视频| 嫩草影院新地址| 久久草成人影院| 一个人看视频在线观看www免费| 国产 一区精品| 欧美激情在线99| 校园春色视频在线观看| 欧美激情国产日韩精品一区| 国产精品福利在线免费观看| 观看美女的网站| 成年免费大片在线观看| 国产精品99久久久久久久久| 少妇丰满av| 久久天躁狠狠躁夜夜2o2o| 啦啦啦观看免费观看视频高清| 精品人妻1区二区| 欧美激情在线99| 久久久久精品国产欧美久久久| 人妻夜夜爽99麻豆av| 有码 亚洲区| 夜夜夜夜夜久久久久| 韩国av一区二区三区四区| 国产av在哪里看| 国产一区二区亚洲精品在线观看| 亚洲av免费高清在线观看| 观看免费一级毛片| 国产精品98久久久久久宅男小说| 男人舔女人下体高潮全视频| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 免费看光身美女| 亚洲一级一片aⅴ在线观看| 在线免费十八禁| 亚洲无线观看免费| 色在线成人网| 岛国在线免费视频观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲最大成人中文| 欧美bdsm另类| 性插视频无遮挡在线免费观看| 国内久久婷婷六月综合欲色啪| 九九在线视频观看精品| 亚洲18禁久久av| 精品一区二区三区视频在线| 国产精品野战在线观看| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| 老司机午夜福利在线观看视频| 亚洲性久久影院| 亚洲欧美日韩无卡精品| 俺也久久电影网| 看黄色毛片网站| 少妇被粗大猛烈的视频| 日韩av在线大香蕉| 亚洲人成网站在线播| 日本成人三级电影网站| 亚洲av美国av| 国产欧美日韩一区二区精品| 国产av麻豆久久久久久久| 亚洲精品一区av在线观看| 亚洲av熟女| 校园春色视频在线观看| 免费看光身美女| 久久这里只有精品中国| 欧美成人a在线观看| 国产综合懂色| 日韩人妻高清精品专区| 俄罗斯特黄特色一大片| 精品99又大又爽又粗少妇毛片 | 久久婷婷人人爽人人干人人爱| 国产欧美日韩一区二区精品| 看黄色毛片网站| 精华霜和精华液先用哪个| 97热精品久久久久久| 久久久精品大字幕| 2021天堂中文幕一二区在线观| 精品久久久久久久末码| 在线观看舔阴道视频| 97超视频在线观看视频| 午夜激情福利司机影院| 欧美激情国产日韩精品一区| 欧美bdsm另类| 成人无遮挡网站| 人妻丰满熟妇av一区二区三区| 22中文网久久字幕| 乱人视频在线观看| 亚洲欧美精品综合久久99| 国产精品98久久久久久宅男小说| 日韩欧美三级三区| 精品人妻熟女av久视频| 国产伦一二天堂av在线观看| 99久久精品热视频| 国内精品宾馆在线| 免费av观看视频| 一a级毛片在线观看| 国产成人影院久久av| 午夜精品一区二区三区免费看| 午夜福利高清视频| 最近视频中文字幕2019在线8| 欧美中文日本在线观看视频| 老熟妇乱子伦视频在线观看| 97超视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 国内精品一区二区在线观看| 99久久中文字幕三级久久日本| 999久久久精品免费观看国产| 日韩,欧美,国产一区二区三区 | 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 最近最新中文字幕大全电影3| 悠悠久久av| 亚洲乱码一区二区免费版| 亚洲精品久久国产高清桃花| 亚洲中文日韩欧美视频| 他把我摸到了高潮在线观看| 国产日本99.免费观看| 午夜福利在线观看免费完整高清在 | 啪啪无遮挡十八禁网站| 午夜视频国产福利| 亚洲av.av天堂| 免费在线观看成人毛片| 波野结衣二区三区在线| 99九九线精品视频在线观看视频| 老师上课跳d突然被开到最大视频| 午夜福利在线在线| 性插视频无遮挡在线免费观看| 国产伦精品一区二区三区四那| 日本 av在线| 最新在线观看一区二区三区| 人妻夜夜爽99麻豆av| 少妇猛男粗大的猛烈进出视频 | ponron亚洲| 五月玫瑰六月丁香| 嫁个100分男人电影在线观看| 黄色欧美视频在线观看| 特级一级黄色大片| 少妇人妻一区二区三区视频| 国产精品自产拍在线观看55亚洲| 午夜免费激情av| 九色国产91popny在线| 欧美潮喷喷水| 又粗又爽又猛毛片免费看| 国产欧美日韩精品亚洲av| 97超级碰碰碰精品色视频在线观看| 国产伦在线观看视频一区| 少妇高潮的动态图| 成人特级av手机在线观看| 国产精品美女特级片免费视频播放器| 久久久久久久久中文| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 99久久成人亚洲精品观看| 女同久久另类99精品国产91| 国产伦精品一区二区三区视频9| 嫩草影院新地址| 亚洲av电影不卡..在线观看| 小说图片视频综合网站| 最近视频中文字幕2019在线8| 很黄的视频免费| 老熟妇乱子伦视频在线观看| 欧美bdsm另类| 亚洲黑人精品在线| 久久久精品大字幕| 亚洲一区二区三区色噜噜| 国产一区二区在线av高清观看| 麻豆成人午夜福利视频| 九色国产91popny在线| 日本免费一区二区三区高清不卡| 日韩欧美三级三区| 熟女人妻精品中文字幕| 在线国产一区二区在线| 成人国产一区最新在线观看| 国产精品日韩av在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 永久网站在线| 久久久久久久午夜电影| 欧美色视频一区免费| 啦啦啦韩国在线观看视频| 久久精品人妻少妇| 丝袜美腿在线中文| 看黄色毛片网站| 亚洲自拍偷在线| 啪啪无遮挡十八禁网站| 日韩大尺度精品在线看网址| 国产精品一区二区性色av| 国产91精品成人一区二区三区| 99久久精品国产国产毛片| 免费人成在线观看视频色| 日韩人妻高清精品专区| 在线观看美女被高潮喷水网站| 国产 一区 欧美 日韩| 欧美一区二区精品小视频在线| 亚洲熟妇中文字幕五十中出| 99精品久久久久人妻精品| 观看免费一级毛片| 永久网站在线| 变态另类丝袜制服| 99久国产av精品| 婷婷精品国产亚洲av| 我的女老师完整版在线观看| 嫁个100分男人电影在线观看| 国产精品电影一区二区三区| 国产白丝娇喘喷水9色精品| 俄罗斯特黄特色一大片| 欧美极品一区二区三区四区| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 99在线视频只有这里精品首页| 啦啦啦韩国在线观看视频| 国产精品久久久久久亚洲av鲁大| 日韩av在线大香蕉| 麻豆成人午夜福利视频| 免费一级毛片在线播放高清视频| 精品人妻1区二区| 欧美黑人欧美精品刺激| 国产又黄又爽又无遮挡在线| 精品人妻1区二区| 午夜亚洲福利在线播放| 直男gayav资源| 国产白丝娇喘喷水9色精品| 亚洲av美国av| 可以在线观看的亚洲视频| 少妇高潮的动态图| 成人国产一区最新在线观看| 亚洲欧美日韩卡通动漫| 观看免费一级毛片| 日韩人妻高清精品专区| 18禁在线播放成人免费| av黄色大香蕉| 91av网一区二区| 久久午夜福利片| 在线国产一区二区在线| 我的女老师完整版在线观看| 国内精品久久久久久久电影| 国产亚洲精品综合一区在线观看| 九九久久精品国产亚洲av麻豆| 久久久久九九精品影院| 国产免费男女视频| 久久久久久久午夜电影| 国产精品久久久久久久久免| 一区二区三区激情视频| 我要看日韩黄色一级片| 中文在线观看免费www的网站| 午夜福利18| 热99re8久久精品国产| 精品福利观看| 午夜亚洲福利在线播放| 九色国产91popny在线| 男女做爰动态图高潮gif福利片| 国产成人aa在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美激情在线99| 免费无遮挡裸体视频| 免费大片18禁| 国产白丝娇喘喷水9色精品| 日韩av在线大香蕉| 日韩欧美在线乱码| 亚洲av美国av| 久久久久久久亚洲中文字幕| 91久久精品电影网| 午夜精品久久久久久毛片777| 黄色日韩在线| 欧美成人a在线观看| 国产成人一区二区在线| 日韩欧美免费精品| 波多野结衣巨乳人妻| a级毛片免费高清观看在线播放| 最近最新中文字幕大全电影3| 免费电影在线观看免费观看| 欧美极品一区二区三区四区| 嫩草影视91久久|