朱張兵,王 猛,張?jiān)摧x,2,李保明,張婷婷,董泰麗,劉志丹※
?
雞糞發(fā)酵液培養(yǎng)的小球藻水熱液化制備生物原油及其特性
朱張兵1,王 猛1,張?jiān)摧x1,2,李保明1,張婷婷1,董泰麗3,劉志丹1※
(1. 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院農(nóng)業(yè)部設(shè)施農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室,環(huán)境增值能源實(shí)驗(yàn)室,北京100083; 2. 美國(guó)伊利諾伊大學(xué)香檳校區(qū)農(nóng)業(yè)與生物工程系,厄巴納61801;3. 山東民和生物科技有限公司,蓬萊 265600)
為探索沼液資源再利用,以雞糞沼氣發(fā)酵液培養(yǎng)的小球藻為原料,采用水熱液化技術(shù)制備生物原油。采取正交試驗(yàn),在溫度250~330 ℃、時(shí)間30~90 min及含固量15%~25%下,探討了水熱反應(yīng)后各相產(chǎn)物特性及元素回收效率。生物原油產(chǎn)率為13.23%~23.83%,最高產(chǎn)油率在330 ℃、60 min、15%時(shí)取得。生物原油中碳、氫及氮回收率分別是16.13%~31.14%、19.18%~34.89%及5.97%~14.32%,最高碳回收率及最低氮回收率分別在330 ℃、60 min、15%及250 ℃、30 min、15%時(shí)獲得。水熱液化各相產(chǎn)物中,碳、氫及氮回收率在水相中占主導(dǎo)地位,分別為48.74%~60.43%、46.81%~62.13%及74.84%~82.67%。熱重分析暗示生物原油可能適合制備潤(rùn)滑油。此外,GC-MS分析表明生物原油中烴類物質(zhì)質(zhì)量分?jǐn)?shù)為16.14%~24.91%,主要為低碳鏈烴類,如甲苯及二氫茚等。
回收率;沼氣;碳;微藻;熱化學(xué);水熱液化;生物原油;雞糞沼液
隨著化石能源不斷消耗,可再生、清潔的生物質(zhì)能引起廣泛關(guān)注。中國(guó)是傳統(tǒng)的農(nóng)業(yè)大國(guó),產(chǎn)生了大量農(nóng)業(yè)廢棄物,如2010年,中國(guó)畜禽糞便總量約為22.35億t[1]。畜禽糞便是一種重要生物質(zhì)資源,可被用于沼氣發(fā)酵[2-4]。但畜禽糞便沼氣發(fā)酵液產(chǎn)量大、氮磷及金屬離子含量高,不合理利用,會(huì)造成環(huán)境二次污染[5-6]。微藻可以吸收沼液中的碳、氮、磷等營(yíng)養(yǎng)物質(zhì),積累生物量的同時(shí)可凈化沼液[7-10],而微藻經(jīng)水熱液化技術(shù)又可轉(zhuǎn)化為生物原油[11-13]。
水熱液化技術(shù)指高溫(200~380 ℃)、高壓(5~ 28 MPa)及無(wú)氧環(huán)境下,廢棄生物質(zhì)被轉(zhuǎn)化成類似石油的物質(zhì)——生物原油[11,14-16]。由于水熱液化技術(shù)可直接轉(zhuǎn)化濕生物質(zhì),且適用于各種原料,被國(guó)內(nèi)外眾多科學(xué)家認(rèn)為是一種期望的熱化學(xué)轉(zhuǎn)化方法[14]。近年來(lái),關(guān)于微藻水熱轉(zhuǎn)化的研究逐漸引起國(guó)內(nèi)外研究者的關(guān)注。利用廢水培養(yǎng)的微藻為原料,用于水熱液化的研究極少。Chen等[17]利用污水處理系統(tǒng)中的污水進(jìn)行微藻培養(yǎng),探討了不同反應(yīng)溫度(260~320 ℃)及時(shí)間(0~1.5 h)對(duì)微藻水熱產(chǎn)油的影響。Fortier等[18]利用市政污水培養(yǎng)微藻,對(duì)微藻水熱產(chǎn)油進(jìn)行了生命周期評(píng)價(jià)的研究。目前利用雞糞發(fā)酵液培養(yǎng)微藻,并用于水熱產(chǎn)油的研究,國(guó)內(nèi)外未有相關(guān)報(bào)道。
本文以雞糞沼氣發(fā)酵液培養(yǎng)的微藻為原料,在不同溫度(250~290 ℃)、時(shí)間(30~90 min)及含固量(15%~25%)下,探討了此類型微藻水熱轉(zhuǎn)化規(guī)律,并系統(tǒng)分析水熱液化氣、油、水等各相產(chǎn)物的元素回收率及特性,以期為沼液資源再利用提供新的理論基礎(chǔ)。
1.1 微藻培養(yǎng)及水熱液化過(guò)程
溫室中,小球藻在含有350 L雞糞發(fā)酵液的開(kāi)放盆中進(jìn)行培養(yǎng)。發(fā)酵液初始氨氮質(zhì)量濃度為500 mg/L,培養(yǎng)溫度為20~30 ℃,光照為2 500~10 000 lx。培養(yǎng)的小球藻經(jīng)濾膜反滲透及脫水后,直接收獲用于水熱轉(zhuǎn)化試驗(yàn)。小球藻理化性質(zhì)如表1所示,小球藻有較低的脂肪(1.00%)及較高的灰分(55.06%)。低脂肪的產(chǎn)生是由于發(fā)酵液含有高濃度的氮。高灰分是由于:1)敞盆培養(yǎng),塵埃進(jìn)入培養(yǎng)盆中;2)收獲后的小球藻依然含有85%的水分(發(fā)酵液),烘干后存在于發(fā)酵液中的灰分被折算到小球藻灰分體系中。
表1 小球藻理化性質(zhì)
水熱液化試驗(yàn)采用美國(guó)Parr4593高溫高壓100 mL反應(yīng)釜[12]。將鮮質(zhì)量40 g小球藻加入到反應(yīng)釜中,密封反應(yīng)釜,用N2吹掃3~5次排除體系中空氣,并維持初始?jí)簭?qiáng)為1.5 MPa。加熱反應(yīng)釜至目標(biāo)溫度后開(kāi)始計(jì)時(shí),反應(yīng)完成后,用電風(fēng)扇進(jìn)行快速降溫。待反應(yīng)釜降到常溫后收集氣相產(chǎn)物,釜中混合物經(jīng)真空抽濾后獲得水相產(chǎn)物及粗油,粗油通過(guò)丙酮進(jìn)一步萃取,得到生物原油及固體殘?jiān)?/p>
1.2 分析方法及計(jì)算公式
氣相產(chǎn)物、水相產(chǎn)物的測(cè)試方法參照之前文獻(xiàn)所 述[12]。利用熱重分析儀(STA6000,Perkin Elmer,美國(guó))及氣質(zhì)聯(lián)用儀(GC-MS,Model QP2010,Shimadzu,日本)對(duì)生物原油進(jìn)行組分分析[19]。熱重分析儀采取高純N2為載氣,流速25 mL/min;初始溫度為30 ℃,以10 ℃/min升至700 ℃;測(cè)試樣品質(zhì)量為5 mg。GC-MS采取DB-5色譜柱,以高純氦氣為載氣,流速1.78 mL/min,分流比20∶1,進(jìn)樣量1L;接口溫度、進(jìn)樣口溫度及離子源溫度分別是250、250及230 ℃,柱箱溫度(40 ℃)保留5 min后,以10 ℃/min的升溫速度升至150 ℃,保留2 min后再以5 ℃/min升到250 ℃,并保留1 min;EI源,電子能量70 eV,分子量掃描范圍為50~500。主要指標(biāo)計(jì)算詳見(jiàn)公式(1)至(5)。
(2)
(3)
(5)
2.1 產(chǎn)油率及液化率
小球藻在不同溫度(250~330 ℃)、時(shí)間(30~ 90 min)及含固量(15%~25%)下進(jìn)行水熱反應(yīng),生物原油產(chǎn)率為13.23%~23.83%(圖1),表明反應(yīng)條件影響生物原油的轉(zhuǎn)化。本研究的最高生物原油產(chǎn)率低于其他研究者(>30%)[20-23],主要是其他研究者所用小球藻是人工純凈環(huán)境培養(yǎng),有機(jī)成分高(>90%),尤其是利于生物原油轉(zhuǎn)化的脂肪含量高。本研究所用小球藻培養(yǎng)于雞糞發(fā)酵液,培養(yǎng)環(huán)境導(dǎo)致小球藻有較高的灰分(55.06%)及較低的脂肪(1.00%)。過(guò)高的灰分會(huì)附著在有機(jī)物表面,阻礙有機(jī)物轉(zhuǎn)化,導(dǎo)致生物原油產(chǎn)率偏低[11]。此外,多數(shù)研究表明微藻3大組分(脂肪、蛋白質(zhì)及碳水化合物),脂肪是轉(zhuǎn)化生物原油最有效的化合物[11,21]。盡管在不同反應(yīng)條件下,生物原油產(chǎn)率不到24%,但經(jīng)水熱反應(yīng)后,小球藻液化率達(dá)到72.77%~80.73%(圖1),暗示灰分在水熱過(guò)程中被重新分配。生物原油有機(jī)組分高達(dá)99%,而殘?jiān)谢曳譃?9%~73%,表明部分灰分被遷移到水相中。雞糞發(fā)酵液培養(yǎng)的小球藻富含鉀、鈉等離子,這些離子在水熱過(guò)程中會(huì)優(yōu)先進(jìn)入到水相中。其他研究者也得到類似結(jié)果,Anastasakis等[24]的研究表明生物質(zhì)中金屬離子在水熱條件下被分配進(jìn)入到水相。
注:250-30-15代表反應(yīng)溫度、時(shí)間及含固量分別為250 ℃、30 min及15%,下同。
2.2 有機(jī)元素回收
生物原油中氫及碳回收率分別為19.18%~34.89%及16.13%~31.14%(圖2),最高生物原油碳回收率為31.14%,在330 ℃、60 min、含固量15%時(shí)獲得。顯然,在不同反應(yīng)條件下,生物原油中氫質(zhì)量分?jǐn)?shù)近似于10%(表2),變化趨勢(shì)不明顯,表明生物原油中氫回收率主要是由產(chǎn)油率決定。生物原油中碳含量在不同反應(yīng)條件下差異明顯,暗示碳回收率主要是由產(chǎn)油率及生物原油中碳含量共同決定。生物原油中氮回收率為5.97%~14.32%,最低氮回收率(5.97%)在250 ℃、30 min、15%時(shí)獲得。過(guò)高的氮對(duì)生物原油品質(zhì)造成不利影響,需進(jìn)一步對(duì)生物原油進(jìn)行脫氮提質(zhì)。相較于生物原油,氣相產(chǎn)物中碳及氫回收率較低,分別為1.47%~3.51%及0~3.72%。在溫和反應(yīng)條件下(如250 ℃),碳及氫回收率偏低,尤其是氫回收率基本趨于0。隨著反應(yīng)劇烈程度加強(qiáng)(如330 ℃),碳及氫回收率顯著提升,表明劇烈的反應(yīng)條件會(huì)促進(jìn)氣體的轉(zhuǎn)化。此外,水相中碳、氫及氮回收率在所有反應(yīng)條件下,均占主導(dǎo)地位,分別是48.74%~60.43%、46.81%~62.13%及74.84%~82.67%。高碳及氫回收率的產(chǎn)生主要是碳水化合物被降解,形成糖、酸及醛等易溶性化合物進(jìn)入到水相,被Sasaki等[25]研究所支持,其研究表明纖維素等碳水化合物在水熱條件下可被降解成各種糖、酸及醛。水相中高氮回收率會(huì)間接減少生物原油中氮回收率,影響生物原油品質(zhì)。高氮回收率的產(chǎn)生主要由于原料中蛋白質(zhì)在水熱條件下進(jìn)行脫氮反應(yīng),形成氨氮進(jìn)入水相,Yu等[26]研究結(jié)果也表明氨基酸在水熱條件下易被降解進(jìn)入到水相。
圖2 水熱產(chǎn)物元素回收率
2.3 生物油特性
小球藻含有26.46%碳、3.08%氫及3.49%氮。水熱反應(yīng)后,生物原油中碳及氫質(zhì)量分?jǐn)?shù)分別提升至71.77%~76.95%及9.36%~10.38%,H/C比也由原料中1.40提升至1.50~1.66(表2)。生物原油中氮含量有輕微提升,但N/C比由原料中0.11降至0.04~0.06,接近石油N/C比[11]。
表2 生物原油元素分布
生物原油成分復(fù)雜,含有烴類、酮類、醛類等物質(zhì)[11]。生物原油熱重反應(yīng)試驗(yàn)中,這些化合物由于沸點(diǎn)和熱穩(wěn)定性不同,會(huì)在不同溫度區(qū)間內(nèi)揮發(fā)。在低溫條件下(<300 ℃),生物原油中揮發(fā)的是輕組分,主要是低碳鏈的烴類、醇類等,重油組分在更高的溫度區(qū)間內(nèi)揮發(fā)。Anastasakis等[24]的研究也表明生物原油中輕組分在 250 ℃以下?lián)]發(fā),重組分在高溫?fù)]發(fā)。這些輕組分可能來(lái)源于小球藻中碳水化合物或蛋白質(zhì)水解,重組分主要是由于蛋白質(zhì)或碳水化合物的水解產(chǎn)物重新發(fā)生縮合聚合等反應(yīng),或者蛋白質(zhì)與碳水化合物的美拉德反應(yīng)[14]。熱重分析儀被選擇用于模擬生物原油沸點(diǎn)分布[24]。100~200 ℃,生物原油被蒸餾的質(zhì)量分?jǐn)?shù)為0.94%~5.42% (圖3),Chen等[27]的研究表明,石油經(jīng)過(guò)蒸餾,汽油的溫度區(qū)間為100~200 ℃;柴油的溫度區(qū)間為200~300 ℃,此溫度內(nèi),生物原油被蒸餾的質(zhì)量分?jǐn)?shù)為17.53%~32.31%;300~400 ℃,生物原油被蒸餾的質(zhì)量分?jǐn)?shù)為17.90%~29.86%,可用于發(fā)動(dòng)機(jī)潤(rùn)滑油;400~550 ℃,輪船潤(rùn)滑油或燃料可經(jīng)石油蒸餾得到,此時(shí),生物原油被蒸餾的質(zhì)量分?jǐn)?shù)為17.91%~30.20%;550~700 ℃,用于工廠及集中供熱的燃料可經(jīng)石油煉制而獲得,而生物原油被蒸餾的質(zhì)量分?jǐn)?shù)為3.63%~5.35%。這些結(jié)果表明本研究所獲得的生物原油可能適合潤(rùn)滑油生產(chǎn),而汽油或柴油的生產(chǎn),需進(jìn)一步對(duì)生物原油進(jìn)行提制。
圖3 生物原油失質(zhì)量率
根據(jù)C、N、O,生物原油中化合物被分成4類,烴類(CH)、碳氮雜合物(CN)、碳氧化合物(CO)及碳氮氧雜合物(CNO)。由GC-MS分析可知(圖4),生物原油中烴類物質(zhì)達(dá)到16.14%~24.91%,這些化合物主要以低碳鏈烴類為主,如甲苯、枯烯及二氫茚等。而生物原油中的氮化合物(0.72%~3.75%)及氮氧化合物(0%~2.60%)較少,與前文生物原油中氮含量分析結(jié)果趨于一致。生物原油中主要以氧化合物為主(>69%),這些氧化合物主要是酯類、酮類及醛類物質(zhì),如2-戊酮及鄰苯二甲酸二甲酯等。
雞糞沼氣發(fā)酵液培養(yǎng)的小球藻制備生物原油,實(shí)現(xiàn)了沼液凈化及能源再生的雙贏局面。但相比于原油,生物原油的氮氧含量仍偏高。通過(guò)添加催化劑(Co/Mo/ Al2O3、KOH、Na2CO3等)及引入還原氣體(CO及H2)等輔助方法,可降低生物原油氮氧含量,有效改善油 品[28-30]。此外,尋找適合生物原油脫氧脫氮的煉制方法也是必須的。
2.4 氣相及水相特性
水熱反應(yīng)產(chǎn)生的氣相產(chǎn)物質(zhì)量分?jǐn)?shù)為1.36%~3.33%,在所有反應(yīng)條件下,CO2均占主導(dǎo)地位(>93%)(表3),暗示水熱反應(yīng)中,形成CO2是脫氧反應(yīng)的一個(gè)主要途徑。相對(duì)于CO2,其他氣體產(chǎn)物含量較低,尤其是在溫和的反應(yīng)條件下,如250℃時(shí),CH4及H2的質(zhì)量分?jǐn)?shù)僅為0~1.14%及0.00%~0.06%。隨著反應(yīng)強(qiáng)度的加強(qiáng),CH4及H2的含量得到提升,在330℃時(shí),CH4及H2的質(zhì)量分?jǐn)?shù)分別提升至2.24%~3.05%及2.22%~3.55%。
水相產(chǎn)物的pH值是8.53~9.15(表3),呈堿性,表明小球藻水熱反應(yīng)后,可能形成了堿性或弱堿性的化合物。此外,水相中氨氮質(zhì)量濃度為1 218~3 629 mg/L,過(guò)高的氨氮可能也會(huì)導(dǎo)致pH值呈堿性。水相總磷及總有機(jī)碳分別為107~270 mg/L及24 360~47 760 mg/L,表明水相含有豐富的有機(jī)物,可被進(jìn)一步資源化利用。
注:CH、CN、CO和CNO分別指烴類、碳氮雜合物、碳氧化合物、碳氮氧雜合物。
表3 氣相及水相產(chǎn)物分析
1)雞糞沼氣發(fā)酵液培養(yǎng)的小球藻經(jīng)水熱液化技術(shù)可被轉(zhuǎn)化為生物原油,最大產(chǎn)油率為23.83%,在330 ℃、60 min、含固量15%時(shí)取得,原料高灰分、低脂肪含量制約著生物原油的轉(zhuǎn)化。
2)生物原油中最高碳回收率及最低氮回收率分別是31.14%(330 ℃、60 min、含固量15%)及5.97%(250 ℃、 30 min、含固量15%),碳及氮回收率主要由生物原油產(chǎn)率決定。水相中氮回收率超過(guò)74%,主要是原料中蛋白質(zhì)形成氨氮進(jìn)入水相。
3)相比于原油,水熱液化技術(shù)所得到的生物原油氮氧含量偏高,需進(jìn)一步對(duì)生物原油進(jìn)行脫氧脫氮處理。
[1] 耿維,胡林,崔建宇,等. 中國(guó)區(qū)域畜禽糞便能源潛力及總量控制研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(1):171-179. Geng Wei, Hu Lin, Cui Jianyu, et al. Biogas energy potential for livestock manure and gross control of animal feeding in region level of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 171-179. (in Chinese with English abstract)
[2] 李軼,劉雨秋,張鎮(zhèn),等. 玉米秸稈與豬糞混合厭氧發(fā)酵產(chǎn)沼氣工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):185-192. Li Yi, Liu Yuqiu, Zhang Zhen, et al. Optimization of anaerobic fermentation with mixed materials of corn straw and pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 185-192. (in Chinese with English abstract)
[3] 李金平,周丹丹,張慶芳,等. 溫度對(duì)高濃度恒溫厭氧發(fā)酵產(chǎn)沼氣成分的影響[J]. 蘭州理工大學(xué)學(xué)報(bào),2012,38(6):44-48. Li Jinping, Zhou Dandan, Zhang Qingfang, et al. Influence of temperature on composition of biogas fermented in high-concentrated thermostatic anaerobic environment[J]. Journal of Lanzhou University of Technology, 2012, 38(6): 44-48. (in Chinese with English abstract)
[4] 秦文弟,蔣湖波,黃凌志,等. 牲畜糞便沼氣發(fā)酵過(guò)程中微生物豐度變化分析[J]. 廣西林業(yè)科學(xué),2015,44(4): 416-420. Qin Wendi, Jiang Hubo, Huang Lingzhi, et al. Analysis on abundance changes of microorganisms during biogas fermentation of livestock dung[J]. Guangxi Forestry Science, 2015, 44(4): 416-420. (in Chinese with English abstract)
[5] 靳紅梅,常志州,葉小梅,等. 江蘇省大型沼氣工程沼液理化特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):291-296. Jin Hongmei, Chang Zhizhou, Ye Xiaomei, et al. Physical and chemical characteristics of anaerobically digested slurry from large-scale biogas project in Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 291-296. (in Chinese with English abstract)
[6] 陳玉成,楊志敏,陳慶華,等. 大中型沼氣工程厭氧發(fā)酵液的后處置技術(shù)[J]. 中國(guó)沼氣,2010,28(1):14-20. Chen Yucheng, Yang Zhimin, Chen Qinghua, et al. An overview on disposal of anaerobic digestate for large scale biogas engineering[J]. China Biogas, 2010, 28(1): 14-20. (in Chinese with English abstract)
[7] 霍書(shū)豪,陳玉碧,劉宇鵬,等. 添加沼液的BG11營(yíng)養(yǎng)液微藻培養(yǎng)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(8):241-246. Huo Shuhao, Chen Yubi, Liu Yupeng, et al. Experiment on microalgae cultivation in BG11 nutrient solution adding biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 241-246. (in Chinese with English abstract)
[8] 巫小丹,劉偉,阮榕生,等. 不同預(yù)處理方法對(duì)沼液養(yǎng)殖微藻的影響[J]. 環(huán)境污染與防治, 2014,36(1):9-12. Wu Xiaodan, Liu Wei, Ruan Rongsheng, et al. Impacts of different pretreatment methods on microalgae cultivation in biogas slurry[J]. Environmental Pollution & Control, 2014, 36(1): 9-12. (in Chinese with English abstract)
[9] 李攀榮,鄒長(zhǎng)偉,萬(wàn)金保,等. 微藻在廢水處理中的應(yīng)用研究[J]. 工業(yè)水處理,2016,36(5):5-9. Li Panrong, Zou Zhangwei, Wan Jinbao, et al. Research of micro algae processing wastewater[J]. Industrial Water Treatment, 2016, 36(5): 5-9.(in Chinese with English abstract)
[10] Zhang Li, Lu Haifeng, Zhang Yuanhui, et al. Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater[J]. Journal of Applied Phycology, 2016, 28(2): 1031-1039.
[11] Tian Chunyan, Li Baoming, Liu Zhidan, et al. Hydrothermal liquefaction for algal biorefinery: A critical review[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 933-950.
[12] 屈埴,劉志丹,朱張兵,等. 廚余垃圾水熱液化成油特性研究[J]. 太陽(yáng)能學(xué)報(bào),2016,37(5):1327-1333. Qu Zhi, Liu Zhidan, Zhu Zhangbing, et al. Bio-crude production from kitchen waste through hydrothermal liquefaction[J]. Acta Energiae Solaris Sinica, 2016, 37(5): 1327-1333. (in Chinese with English abstract)
[13] 徐玉福,俞輝強(qiáng),朱利華,等. 小球藻粉水熱催化液化制備生物油[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2012,28(19):194-199. Xu Yufu, Yu Huiqiang, Zhu Lihua, et al. Preparation of bio-fuel fromby hydrothermal catalytic liquefaction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 194-199. (in Chinese with English abstract)
[14] López Barreiro Diego, Prins Wolter, Ronsse Frederik, et al. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects[J]. Biomass and Bioenergy, 2013, 53:113-127.
[15] Lu Jianwen, Zhang Jiaren, Zhu Zhangbing, et al. Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction[J]. Energy Conversion and Management, 2017, 134: 340-346.
[16] Tian Chunyan, Liu Zhidan, Zhang Yuanhui, et al. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: Effects of operational parameters and relations of products[J]. Bioresource Technology, 2015, 184: 336-343.
[17] Chen Wanting, Zhang Yuanhui, Zhang Jixiang, et al. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil[J]. Bioresource Technology, 2014, 152: 130-139.
[18] Fortier Marie-Odile P, Roberts Griffin W, Stagg-Williams Susan M, et al. Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae[J]. Applied Energy, 2014, 122: 73-82.
[19] Zhu Zhangbing, Liu Zhidan, Zhang Yuanhui, et al. Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity[J]. Bioresource Technology, 2016, 199: 220-227.
[20] Li Hao, Liu Zhidan, Zhang Yuanhui, et al. Conversion efficiency and oil quality of low-lipid high-protein and high- lipid low-protein microalgae via hydrothermal liquefaction[J]. Bioresource Technology, 2014, 154: 322-329.
[21] Biller P, Ross A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content[J]. Bioresource Technology, 2011, 102(1): 215-225.
[22] Gai Chao, Zhang Yuanhui, Chen Wanting, et al. An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis[J]. Energy Conversion and Management, 2015, 96: 330-339.
[23] Xu Yufu, Zheng Xiaojing, Yu Huiqiang, et al. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5[J]. Bioresource Technology, 2014, 156: 1-5.
[24] Anastasakis K, Ross A B. Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition[J]. Bioresource Technology, 2011, 102(7): 4876-4883.
[25] Sasaki Mitsuru, Fang Zhen, Fukushima Yoshiko, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research, 2000, 39(8): 2883-2890.
[26] Yu Guo, Zhang Yuanhui, Schideman Lance, et al. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae[J]. Energy & Environmental Science, 2011, 4: 4587-4595.
[27] Chen Wanting, Zhang Yuanhui, Zhang Jixiang, et al. Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil[J]. Applied Energy, 2014, 128: 209-216.
[28] Akhtar Javaid, Amin Nor Aishah Saidina. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1615-1624.
[29] Toor Saqib Sohail, Rosendahl Lasse, Rudolf Andreas. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342.
[30] Xiu Shuangning, Shahbazi Abolghasem. Bio-oil production and upgrading research: A review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4406-4414.
Biocrude oil preparation by hydrothermal liquefaction ofcultivated in biogas digestate from chicken manure and its characteristic
Zhu Zhangbing1, Wang Meng1, Zhang Yuanhui1,2, Li Baoming1, Zhang Tingting1, Dong Taili3, Liu Zhidan1※
(1.()100083; 2.61801;3.265600)
Improper treatment of biogas slurry results in serious environmental pollution. Cultivating algae using the biogas slurry is a promising strategy. By doing this, we can realize the reuse of nutrients, the further treatment of wastewater and the biomass production. In this study, the producedcultivated in the biogas slurry of chicken manure was used as feedstock for biocrude oil production through hydrothermal liquefaction (HTL). An orthogonal design was applied to investigate the effects of operational parameters on biocrude oil production, including the holding temperature (250, 290 and 330 ℃), the retention time (30, 60 and 90 min) and the total solid content (15%, 20% and 25%). The characteristics of products and element migration during HTL were analyzed. The highest biocrude oil yield reached up to 23.83% under a temperature of 330 ℃, a retention time of 60 min and a total solid content of 15%. The low yield of biocrude oil in this study may result from the low content of lipid (1.00%) and high content of ash (55.06%). The reaction conditions significantly affected the biocrude oil yields and chemical distribution of HTL products. The carbon recovery, hydrogen recovery and nitrogen recovery of the biocrude oil were 16.13%-31.14%, 19.18%-34.89% and 5.97%-14.32%, respectively. The highest carbon recovery was achieved under the condition of 330 ℃, 60 min and 15%, and the lowest nitrogen recovery was achieved at the condition of 250 ℃, 30 min and 15%. The increased carbon and hydrogen recovery of biocrude oil were mainly due to the increase of the biocrude oil yield. Carbon (48.74%-60.43%), hydrogen (46.81%-62.13%) and nitrogen (74.84%-82.67%) were effectively recovered in the aqueous phase. The high nitrogen recovery in the aqueous phase was mainly due to the promotion of the denitrification during the HTL process. The high nitrogen distribution in the aqueous phase had a harmful effect to biocrude oil, nitrogen content of which needed to be further decreased. Gas chromatograph-mass spectrometer (GC-MS) was chosen to analyze the organic groups in the biocrude oil. The hydrocarbons content in the biocrue oil was 16.14%-24.91%. The highest hydrocarbon content was obtained under the condition of 330 ℃, 30 min and 25%. However, the high content of oxygenates and nitrogen containing compounds in the biocrude oil decreased the quality of biocrude oil. Hence, the further deoxygenation and denitrogenation of the biocrude oil were maybe required before its application to the transport fuel. A thermogravimetric analyzer (TGA) was used to simulate the distribution of boiling points in the biocrude oil. The results indicated that the biocrude oil contained a lot of high molecular weight compounds. Based on the analysis, the biocrude oil seemed suitable for the production of lubricating oil. The concentration of total organic carbon, the total phosphorous and the ammonia nitrogen in the aqueous phase were 24 360-47 760, 107-270 and 1 218-3 629 mg/L, respectively, and the pH value was 8.53-9.15. The aqueous phase rich in nutrients could be recycled for algae cultivation. In addition, the main gas products CO2(>93%) could be used as carbon asset for algae cultivation. This study provides a potential approach for the biofuel production fromcultivated in biogas slurry.
recovery; biogas; carbon; microalgae; thermochemistry; hydrothermal liquefaction; biocrude oil; biogas digestate of chicken manure
10.11975/j.issn.1002-6819.2017.08.026
S216.2
A
1002-6819(2017)-08-0191-06
2016-09-24
2017-04-11
國(guó)家自然科學(xué)基金(U1562107, 51576206);北京市科技計(jì)劃項(xiàng)目(Z161100001316009);大北農(nóng)教育基金會(huì)(1091-2415001)
朱張兵,男,安徽安慶,博士生,研究方向?yàn)樯镔|(zhì)水熱液化技術(shù)研究。北京 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,100083。 Email:zhuzhangbing@163.com
劉志丹,男,河南安陽(yáng),博士,副教授,博士生導(dǎo)師,主要從事環(huán)境增值能源與水熱液化技術(shù)研究。北京 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,100083。Email:zdliu@cau.edu.cn
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:劉志丹(E041200655S)
朱張兵,王 猛,張?jiān)摧x,李保明,張婷婷,董泰麗,劉志丹. 雞糞發(fā)酵液培養(yǎng)的小球藻水熱液化制備生物原油及其特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):191-196. doi:10.11975/j.issn.1002-6819.2017.08.026 http://www.tcsae.org
Zhu Zhangbing, Wang Meng, Zhang Yuanhui, Li Baoming, Zhang Tingting, Dong Taili, Liu Zhidan. Biocrude oil preparation by hydrothermal liquefaction ofcultivated in biogas digestate from chicken manure and its characteristic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 191-196. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.08.026 http://www.tcsae.org