• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compact Coplanar Epsilon-Negative Antenna with Ultra-Wide Band Character

    2017-05-08 01:46:32JunTaoQuanyuanFengZongliangZheng
    China Communications 2017年2期

    Jun Tao, Quanyuan Feng, Zongliang Zheng

    Institute of Microelectronics, Southwest Jiaotong University, Chengdu 611756, China

    * The corresponding author, email: fengquanyuan@163.com

    I. INTRODUCTION

    In the decade years, the antennas with compact sizes were studied and proposed to satisfy the requirements of the rapidly developing modern communication devices, especially for the small and compact handle devices.Moreover, the modern communication modes become more and more complex, and thus wide or ultra-wide communication spectrums are also needed. Among these studies, the electromagnetic metamaterial (MTM) antennas have aroused extensive attention due to their specific physical features. Multiple MTM antennas based on composite right/left-handed(CRLH), epsilon-negative (ENG) and mu-negative (MNG) unit cells were proposed [1-3].These MTM antennas can control their phase velocities of the input waves to resonate at desired frequencies by modifying the parameters of equivalent circuits. The most common utilization of the MTM antenna is the zeroth-order resonant (ZOR) mode whose propagation constant is equal to zero. Thus, the physical length is vanished and the resonant frequency is only determined by the parameters of the equivalent circuit, which means that the resonant frequency is irrelevant with its physical size and the antenna can possess extremely compact size. However, the quality factor of the ZOR mode is pretty high, which causesnarrow bandwidth, low gain and low radiation efficiency. Furthermore, many MTM antennas can possess multiple resonant modes through fine-tune feeding structures. Unfortunately,these isolated resonant modes can hardly merge into one wide bandwidth due to high quality factor and flat dispersion curve [4-7].These problems are the emphases of the studies for MTM antennas.

    In order to solve the mentioned problems,bandwidth merging and expansion technologies were studied for the MTM antennas with high gain and radiation efficiency [8-16]. In ref. [8], the mushroom-array MTM antenna was proposed and the fundamental TM10and TM20modes of the antenna were merged into one wide bandwidth due to the dispersion features of the unit cells. The antenna adopted the slot-coupling feeding structure, which leaded to good impedance matching and high gain. However, the size and number of the unit cell were considerable to achieve the specific phase shift in the MTM array. In ref. [9], the modified ground plane, which worked as an extra resonator, was introduced to the proposed CRLH antenna. The bandwidth generated by the ground plane merges with the ZOR and FROR bandwidths of CRLH cells, which can entirely cover the UWB spectrum. In ref.[10-12], the theoretical methods to obtain the wide ZOR bandwidth were provided. These antennas can extend their ZOR bandwidth through changing the values of distribution parameters of the equivalent circuits. Notice that,the parameters, which influenced the ZOR bandwidth, were not same for open-ended and short-ended MTM antennas and the theoretical analyses didn’t consider the impedance matching at the input terminals. These theoretical analyses, however, did provide a clear guideline for ZOR bandwidth expansion. The EBG-like ground planes were employed in ref. [13-14] and this was the new method to achieve the wide ZOR frequency. However, the limited improvement, complex ground design and the in fluence in impedance matching were the defects of such structures. Meanwhile, it was difficult to obtain the multiple modes merging.

    In this paper, a compact coplanar ENG antenna, with small size of 18×11.5 mm2, is proposed and the ultra-wide bandwidth is also achieved. Owning to the coplanar structure,the via-free feature is obtained, which benefits the convenient tuning of the ZOR frequency and extension of the ZOR bandwidth. In the other hand, the via-free feature also brings more degrees freedom for the antenna design.The shunt left-handed inductance of the ENG unit cell is integrated between the radiating patch and the ground, and it has slight influence to the high-order resonances of the proposed antenna. Therefore, by merging the ZOR and high-order resonant bandwidths into one single band, the ultra-wide bandwidth from 5.25 to 13 GHz, is achieved. The proposed ENG antenna also obtains high and relatively stable peak gains and radiation efficiency. The approximately omin-directional feature is achieved in its H-plane. These advantages of the proposed antenna indicate that it is a competitive candidate for modern handle wireless devices.

    II. DESIGN AND ANALYSES OF THE ENG ANTENNA

    Fig. 1(a) shows the configuration and prototype of the proposed coplanar epsilon-negative antenna. It is printed on the F4b-2 substrate with compact size of 18×11.5 mm2, relative dielectric constant of 2.65 and thickness of 0.8 mm. The equivalent circuit model of the ENG unit cell is shown in Fig. 1(b) including the series inductance (LR), shunt inductance (LL) and shunt capacitance (CR).

    2.1 ZOR mechanism and bandwidth extension

    In fig. 1(b), the equivalent circuit model is derived from the CRLH transmission line model.As for epsilon-negative transmission line, the series capacitance is removed from the CRLH transmission line. The meandering metallic line provides the shunt inductance for the proposed antenna. The shunt capacitance and series inductance are the inherent properties of the normal transmission line. The dispersion equation of the ENG-TL can be obtained similarly by applying the Bloch and Floquet theory to the unit cell of period structure [15]:

    Fig.1 (a) Geometry and fabricated prototype of proposed ENG antenna, (b) Equivalent circuit model. W = 11.5, L = 18, l1 = 4.5, l2 = 3.2, l3 = 5.5, l4 = 0.2, l5 =1.6, ws = 0.7, wf = 1.6, wp = 6.5, wm = 0.3, w1 = 2.6, w2 = 5.9, w3 = 3, t = 0.1(unit: mm)

    Fig.2 (a) Evolution processes of ENG antenna, (b) Simulated and Measured |S11|.

    where n is the resonance mode, N is the number of the unit cell, and l is the total length of the ENG-TL, respectively. Thus, when n=0,the ZOR mode happens and the propagation constant equals to zero, which means that the propagating wavelength is infinite and it is independent on the physical length of the antenna. The ZOR frequency can be calculated according to (1) and (2), and it is shown as below:

    It can be observed that the ZOR frequency is able to be modified by altering LLand CR. Furthermore, considering the open ended ENG-TL, it only dependents on the series admittance. The average electric energy stored in the shunt capacitance CRand the average magnetic energy stored in the shunt inductance LL. The relationship between the Q factor and bandwidth can be computed in (4):

    It indicates that the bandwidth is inverse proportion to the CR. Thus, the coplanar structure is prone to possessing smaller shunt capacitance and extending the bandwidth. As aforementioned, this coplanar structure also brings the via-free feature, decreasing the complexity of antenna design and fabrications.

    2.2 Studies of the ENG antenna

    The proposed ENG antenna is shown in Fig.1(a). It is designed based on a simple monopole antenna, and a protruded ground is added in the right to help construct the ground of the ENG unit cell. A meandering metallic line connects the radiating patch and the protruded ground. Notice that, the protruded ground also generates a low resonant frequency. However, its performance is undesirable due to the impedance mismatching, and the protruded ground has significant effects on the high-frequency impedance matching. Thus, here, we primarily regard the protruded ground plane as a matching network and optimize it to be a half slot structure to achieve ultra-wide bandwidth. The proposed antenna is fed by the CWP-fed structure which is tuned to be 50 Ohm.

    To further study the operation mechanism,the evolution processes of the proposed antenna are shown in Fig. 2(a). Ant 1 is the basic monopole antenna with a protruded ground plane, Ant 2 is Ant 1 with a meandering metallic line, forming the original ENG antenna,and Ant 3 is the proposed antenna. The simulated re flection coefficients of these antennas are illustrated in Fig. 2(b). It can be found that Ant 1 generates three resonant frequencies(f1=5.7, f2=9.3 and f3=12.2 GHz). As for Ant 1,the length of the current path in the protruded ground approximates to 11.4 mm that is about quarter wavelength corresponding to 5.7 GHz,and the higher resonant frequencies, f2and f3,are the high-order resonant modes of Ant 1. In order to specify the operating mechanism of Ant 1, the current distributions are depicted in Fig. 3(a) at 5.7, 9.3 and 12.2 GHz, respectively. At 5.7 GHz, the currents mainly distribute on the protruded ground and a quarter-wavelength current path can be found. Lots of currents concentrate on the left slot at 9.3 GHz,while those currents concentrate on right slot at 12.2 GHz, which illustrates that the higher frequencies have significant relevance with these slots. When the meandering metallic line is introduced to Ant 1, a new resonant frequency, denoted as fzero, at 7.2 GHz appears, while the other frequencies nearly remain unchanging. Thus, a wider bandwidth is achieved by merging f1, f2and fzero. The dispersion curve is shown in Fig. 4(a), and the electric filed distribution of Ant 2 at 7.2 GHz is depicted in Fig. 4(b). It can be observed that the simulated ZOR frequency occurs around 7 GHz, which almost accords with the fzeroof Ant 2. The slight frequency shift between the ZOR frequencies of the re flection coefficient of Ant 2 and the dispersion of the unit cell results from the impact of impedance matching. Moreover,the electric filed has the same attitude and phase in the ENG unit cell at 7.2 GHz, which is the typical ZOR electric filed distribution.The currents distributions of Ant 2, at 7.2, 9.3 and 12.2 GHz, are also shown in Fig. 3(b). At higher frequencies, f2and f3, Ant 2 and Ant 1 have the similar current distributions, which indicates that the meandering metallic line has slight in fluence on the higher resonant modes.To extend the bandwidth of Ant 2, a long in-verse L-shaped protruded ground plane is introduced. As seen from Fig. 2(b), the proposed antenna possesses a wider bandwidth, from 5.5 to 13 GHz, and its ZOR frequency moves to lower frequency, 6.14 GHz, due to the increasing of CR. f3is also decreased, while its higher frequency, f2, remains relatively stable.Increasing the protruded ground plane will introduce a larger shunt capacitance and it may narrow the ZOR bandwidth according to (4).But the impedance matching of whole bandwidth is improved. Thus, the inverse L-shaped ground brings more benefits rather than disadvantages. The current distributions of Ant 3, at 6.1, 9.3 and 11.6 GHz, are shown in Fig.3(c), and it can be observed that the currents distributions of 9.36 and 11.6 GHz are similar as those of Ant 2. The third resonant frequency, f3, of Ant 3 declines mainly due to the extension of the current path on the protruded ground plane.

    Fig.3 Current distributions of (a) Ant 1, (b) Ant 2 and (c) Ant 3

    Fig.4 (a) Dispersion curve of the unit cell, (b) Simulated electric field at 7.2 GHz

    2.3 The high resonant modes

    To verify the relationships between the high frequencies and the slots, the high resonant modes are studied in this part based on Ant 2. When we investigate f2, Ant 2 with and without the left ground are simulated using HFSS and the simulated results are depicted in Fig. 5(a). It can be observed that the resonant frequency at 9.3 GHz vanishes when the left ground plane is removed, while the other resonant frequencies remain unchanging.Thus, the left slot primarily generates f2and it also influences the impedance matching of the proposed antenna. When we investigate the f3, we can’t directly delete the right ground like above simulations. Directly removing the right ground will cause severe impedance mismatching, which is adverse to our investigations. Therefore, we change the length of the inverse L-shaped protruded ground. Three different lengths are chosen to be the references and the simulated results are shown in Fig.5(b). Notice that, the initial vertical length, Len,of the protruded ground of Ant 2 is 8.5 mm.With the increasing of length of the protruded ground, fzeroand f2approximately remain unchanged, while f1and f3observably move to the lower frequency.

    The slight frequency shift happens for fzeromainly due to the increasing of CR.

    Thus, the left slot primarily determines the f2, while the right slot determines the f1and f3.Modifying the ground plane causes the changes of the impedance matching and then the ground plane can be regarded as the matching network for the proposed antenna. The sizes of the inverse L-shaped protruded ground are optimized through the multiple experiments and optimizations.

    III. RESULTS AND ANALYSES OF THE ENG ANTENNA

    3.1 The impedance bandwidth

    Fig.5 (a) Simulated |S11| of Ant 2 with or without left ground, (b) Simulated |S11| of different Len

    Fig.6 (a) E-plane, (b) H-plane

    The impedance performance of the proposed antenna is measured by the Agilent E5071C vector network analyzer. As depicted in Fig.2(b), the measured impedance bandwidth(|S11| < -10 dB) is from 5.25 to 13 GHz. The discrepancies between the simulated and measured reflecting coefficients are acceptable.The measured results indicate that proposed ENG antenna achieves an ultra-wide bandwidth and it can completely covers the upper band of the UWB communication.

    3.2 Radiation performance

    The 2-D radiation patterns (xoz- and yozplanes) at 6, 9 and 12 GHz of the proposed ENG antenna are plotted in Fig. 6. As observed, the xoz-plane is the E-plane while the yoz-plane is the H-plane for the proposed antenna. The proposed antenna achieves quasi-omnidirectional radiation in H-plane at low frequencies. At higher frequencies, the H-plane slightly orientates towards –y axis due to the re flection effects of the protruded plane,and the radiation patterns of E- and H-planes are not regular resulting from the complex currents distributions.

    Fig.7 Peak gains and radiation efficiency

    The peak gains and radiation efficiency of the proposed antenna are shown in Fig. 7.A relatively average peak gains are obtained around 3.5 dBi over the frequency band of 5-14 GHz. At the ZOR frequency, the high peak gain reaches 3 dBi. The radiation efficiency is above 90% in most of the operation frequency band.

    IV. CONCLUSION

    In this paper, an ENG antenna with very compact size of 18×11.5 mm2has been fabricated and measured. The ENG unit cell has slight influence on the high resonant modes of the half slot structure and they generate three main resonant frequencies, which provides a wide impedance bandwidth from 5.25 to 13 GHz,covering the upper band of UWB communication. Quai-omnidirectional radiation patterns and relatively stable gains guarantee the antenna with superior radiation performance. These superiorities of the proposed ENG antenna indicates that it is competitive for portable devices.

    ACKNOWLEDGEMENT

    This work was supported by the National Natural Science Foundation of China (NNSF)under Grant 61531016, National Natural Science Foundation of China (NNSF) under Grant 61271090, Sichuan province science and technology support project under Grant 2016GZ0059 and Sichuan province science and technology support project under Grant 2017GZ0110.

    [1] Zhou C., Wang G., Wang Y., Zong B., Ma J.,“CPW-fed Dual-band Linearly and Circularly Polarized Antenna Employing Novel Composite Right/Left-handed Transmission-line”,IEEE An-tennas & Wireless Propagation Letters,vol.12,PP.1073 - 1076, Aug., 2013.

    [2] Chen, P. W., and Chen, F. C., “Asymmetric Coplanar Waveguide (ACPW) Zeroth-Order Resonant(ZOR) Antenna with High Efficiency and Bandwidth Enhancement”,IEEE Antennas & Wireless Propagation Letters, vol.11.9, PP.527 - 530, May,2012.

    [3] Rezaeieh, S. A., Antoniades, M. A., and Abbosh,A. M., “Bandwidth and Directivity Enhancement of Loop Antenna by Nonperiodic Distribution of Mu-Negative Metamaterial Unit Cells”,IEEE Transactions on Antennas & Propagation,vol.64,PP. 3319 - 3329, June, 2016.

    [4] Lai, A., Leong, K. M. K. H., and Itoh, T., “In finite Wavelength Resonant Antennas with monopolar radiation pattern based on periodic structures”,IEEE Transactions on Antennas & Propagation,vol.55, PP.868 - 876, March, 2007.

    [5] Amani N. and Jafargholi, A., “Zeroth-Order and TM10Modes in One-Unit Cell CRLH Mushroom Resonator”,IEEE Antennas & Wireless Propagation Letters,vol.14, PP.1396 - 1399, March, 2015.

    [6] Dong, Y., and Itoh, T., “Miniaturized Substrate Integrated Waveguide Slot Antennas Based on Negative Order Resonance”,IEEE Transactions on Antennas & Propagation,vol.58, PP.3856 -3864, Sep., 2010.

    [7] Lee, H. M., “A Compact Zeroth-Order Resonant Antenna Employing Novel Composite Right/Left-Handed Transmission-Line Unit-Cells Structure”,IEEE Antennas & Wireless Propagation Letters,vo.10, PP.1377 - 1380, Nov., 2011.

    [8] Liu, W., Chen, Z. N. and Qing, X., “Metamaterial-based Low-Profile Broadband Mushroom Antenna”,IEEE Transactions on Antennas &Propagation,vol.62, PP.1165 - 1172. Dec., 2013.

    [9] Lee, H., Woo, D., and Nam, S., “Compact and Bandwidth-Enhanced Asymmetric Coplanar Waveguide (ACPW) Antenna Using CRLH-TL and Modified Ground Plane”,IEEE Antennas &Wireless Propagation Letters,vol.15, PP.810 -813, Sep., 2015.

    [10] Yang, S. Y. and Ng, M. K. M., “A Bisected Miniaturized ZOR Antenna with Increased Bandwidth and Radiation Efficiency”,IEEE Antennas& Wireless Propagation Letters,vol.12, PP.159 -162, Jan., 2013.

    [11] Jang, T., Choi, J., and Lim, S., “Compact Coplanar Waveguide (CPW)-Fed Zeroth-Order Resonant Antennas with Extended Bandwidth and High Efficiency on Vialess Single Layer”,IEEE Transactions on Antennas & Propagation,vol.59, PP. 363- 372, Dec., 2010.

    [12] Chi, P. L. and Shih, Y. S., “Compact and Bandwidth-Enhanced Zeroth-Order Resonant Antenna”,IEEE Antennas & Wireless Propagation Letters,vol.14, PP.285 - 288, Oct., 2015.

    [13] Sharma, S. K., Gupta, A., and Chaudhary, R. K.,“Epsilon Negative CPW-Fed Zeroth-Order Res-onating Antenna with Backed Ground Plane for Extended Bandwidth and Miniaturization.IEEE Transactions on Antennas & Propagation,vol.63,PP.5197 - 5203, Sep., 2015.

    [14] Liu, L. Y., and Wang, B. Z., “A Broadband and Electrically Small Planar Monopole Employing Metamaterial Transmission Line”,IEEE Antennas& Wireless Propagation Letters,vol.14, PP.1018 -1021, Jan., 2015.

    [15] Park, J. H., Ryu, Y. H., Lee, J. G., and Lee, J. H.,“Epsilon Negative Zeroth-Order Resonator Antenna”,IEEE Transactions on Antennas & Propagation, vol.55, PP.3710 - 3712, Dec., 2007.

    一级片免费观看大全| 黄片播放在线免费| 巨乳人妻的诱惑在线观看| 成年动漫av网址| 大香蕉久久网| 两性夫妻黄色片| 中文字幕色久视频| 一区二区三区乱码不卡18| 一二三四在线观看免费中文在| 精品人妻一区二区三区麻豆| 最近中文字幕2019免费版| 日本午夜av视频| 成人18禁高潮啪啪吃奶动态图| 国产片特级美女逼逼视频| 久久精品国产a三级三级三级| 午夜免费男女啪啪视频观看| 国产精品久久久久久人妻精品电影 | av天堂在线播放| 一本一本久久a久久精品综合妖精| 男女之事视频高清在线观看 | 男人爽女人下面视频在线观看| 极品少妇高潮喷水抽搐| 黄色视频不卡| 欧美人与性动交α欧美精品济南到| 亚洲欧洲精品一区二区精品久久久| 一本久久精品| 免费黄频网站在线观看国产| 亚洲欧美精品自产自拍| 操美女的视频在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产区一区二| 人人妻人人爽人人添夜夜欢视频| 男人操女人黄网站| 久久精品久久精品一区二区三区| 午夜视频精品福利| 国产免费现黄频在线看| 日韩一卡2卡3卡4卡2021年| 在线观看国产h片| 水蜜桃什么品种好| kizo精华| 如日韩欧美国产精品一区二区三区| 国产片内射在线| 亚洲午夜精品一区,二区,三区| 亚洲成人免费av在线播放| videosex国产| 精品国产一区二区久久| 精品久久久精品久久久| 午夜影院在线不卡| 亚洲av日韩在线播放| 十分钟在线观看高清视频www| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产av蜜桃| 欧美人与善性xxx| 免费高清在线观看视频在线观看| 伦理电影免费视频| 久久久久久免费高清国产稀缺| kizo精华| 在线观看免费午夜福利视频| 午夜日韩欧美国产| 久久久国产欧美日韩av| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 老司机影院成人| 国产成人系列免费观看| 国产精品 国内视频| 亚洲国产中文字幕在线视频| 亚洲欧美日韩另类电影网站| 一二三四社区在线视频社区8| 久久性视频一级片| 脱女人内裤的视频| 人人妻,人人澡人人爽秒播 | 日日夜夜操网爽| 中文字幕制服av| 国产欧美亚洲国产| 免费不卡黄色视频| 国产老妇伦熟女老妇高清| 日本欧美视频一区| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 欧美精品啪啪一区二区三区 | 蜜桃在线观看..| 久久天躁狠狠躁夜夜2o2o | 捣出白浆h1v1| 日韩制服骚丝袜av| 午夜91福利影院| 精品人妻一区二区三区麻豆| 国产精品 国内视频| 国产视频首页在线观看| 欧美亚洲日本最大视频资源| 亚洲av电影在线进入| 日韩制服骚丝袜av| 9热在线视频观看99| 久久精品熟女亚洲av麻豆精品| 永久免费av网站大全| √禁漫天堂资源中文www| 欧美日韩av久久| 国产又色又爽无遮挡免| 操出白浆在线播放| 一本综合久久免费| 久久久精品免费免费高清| 日韩一本色道免费dvd| 欧美精品av麻豆av| 亚洲精品国产av蜜桃| 久久国产精品大桥未久av| 亚洲av男天堂| 老司机影院成人| 两个人免费观看高清视频| 1024视频免费在线观看| 一区二区三区四区激情视频| 精品亚洲乱码少妇综合久久| 交换朋友夫妻互换小说| 久久综合国产亚洲精品| 国产深夜福利视频在线观看| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 麻豆乱淫一区二区| 亚洲av日韩精品久久久久久密 | 热re99久久精品国产66热6| 91精品三级在线观看| 国产精品一国产av| 一本久久精品| 欧美激情 高清一区二区三区| 国产色视频综合| 日本av手机在线免费观看| 纯流量卡能插随身wifi吗| 久久女婷五月综合色啪小说| 自拍欧美九色日韩亚洲蝌蚪91| 精品福利观看| 亚洲av美国av| 操美女的视频在线观看| 丝袜脚勾引网站| 蜜桃在线观看..| 99精品久久久久人妻精品| 99国产精品99久久久久| 免费黄频网站在线观看国产| 中文欧美无线码| 男男h啪啪无遮挡| 亚洲成人免费av在线播放| av网站免费在线观看视频| 亚洲av电影在线观看一区二区三区| 亚洲专区国产一区二区| 免费黄频网站在线观看国产| 国产伦理片在线播放av一区| 国产一区二区三区综合在线观看| 人人妻人人澡人人爽人人夜夜| 黄频高清免费视频| 亚洲精品日韩在线中文字幕| 中文字幕人妻丝袜一区二区| 午夜福利,免费看| 看十八女毛片水多多多| 大陆偷拍与自拍| 欧美日韩成人在线一区二区| 69精品国产乱码久久久| 亚洲国产中文字幕在线视频| 日日摸夜夜添夜夜爱| www日本在线高清视频| 丝袜在线中文字幕| 成人亚洲欧美一区二区av| 自拍欧美九色日韩亚洲蝌蚪91| 一级黄片播放器| 日韩,欧美,国产一区二区三区| 亚洲欧美成人综合另类久久久| 最近手机中文字幕大全| 深夜精品福利| 可以免费在线观看a视频的电影网站| 侵犯人妻中文字幕一二三四区| 19禁男女啪啪无遮挡网站| 免费不卡黄色视频| 久久久久久免费高清国产稀缺| 午夜福利在线免费观看网站| 国产一区二区在线观看av| 欧美少妇被猛烈插入视频| 成人18禁高潮啪啪吃奶动态图| 9色porny在线观看| 99久久综合免费| 亚洲精品日本国产第一区| 国产亚洲一区二区精品| 午夜影院在线不卡| www.av在线官网国产| 只有这里有精品99| 婷婷丁香在线五月| 国产成人免费无遮挡视频| 97精品久久久久久久久久精品| 国产亚洲av片在线观看秒播厂| 91精品三级在线观看| 视频在线观看一区二区三区| 亚洲欧美成人综合另类久久久| 精品少妇内射三级| 在现免费观看毛片| 在线 av 中文字幕| 一二三四在线观看免费中文在| 999精品在线视频| 在线观看免费视频网站a站| 捣出白浆h1v1| 亚洲精品日韩在线中文字幕| 久久久久国产一级毛片高清牌| 久久久久久久精品精品| 一本综合久久免费| 久久久久久久国产电影| 亚洲精品久久成人aⅴ小说| 国产男女超爽视频在线观看| 成年人黄色毛片网站| 一本—道久久a久久精品蜜桃钙片| 成人18禁高潮啪啪吃奶动态图| 男人爽女人下面视频在线观看| 国产精品久久久av美女十八| 在线看a的网站| 两个人看的免费小视频| 无遮挡黄片免费观看| 亚洲精品日韩在线中文字幕| 热99国产精品久久久久久7| 久久天堂一区二区三区四区| 国产精品亚洲av一区麻豆| 韩国高清视频一区二区三区| 最近最新中文字幕大全免费视频 | 午夜福利视频在线观看免费| 国产午夜精品一二区理论片| 国产av精品麻豆| 国产精品国产三级专区第一集| 美女扒开内裤让男人捅视频| 啦啦啦中文免费视频观看日本| 超碰成人久久| 男人舔女人的私密视频| 免费在线观看完整版高清| 永久免费av网站大全| 国产一区亚洲一区在线观看| 久久久久久久精品精品| 欧美精品亚洲一区二区| 在线亚洲精品国产二区图片欧美| 欧美激情 高清一区二区三区| 最新的欧美精品一区二区| 黑人猛操日本美女一级片| 色综合欧美亚洲国产小说| 又黄又粗又硬又大视频| 18禁观看日本| 精品久久久久久久毛片微露脸 | 色视频在线一区二区三区| 男女午夜视频在线观看| 制服诱惑二区| 狂野欧美激情性bbbbbb| 黑丝袜美女国产一区| 国产日韩一区二区三区精品不卡| 精品一区二区三卡| 日韩伦理黄色片| 下体分泌物呈黄色| 久久中文字幕一级| 久久精品久久精品一区二区三区| 黄片小视频在线播放| av片东京热男人的天堂| 老汉色∧v一级毛片| 国产免费福利视频在线观看| 啦啦啦中文免费视频观看日本| 一区二区日韩欧美中文字幕| 国产精品亚洲av一区麻豆| 免费在线观看影片大全网站 | 99九九在线精品视频| 另类亚洲欧美激情| 婷婷丁香在线五月| 免费黄频网站在线观看国产| 精品久久久久久电影网| 久久久久久免费高清国产稀缺| 最近最新中文字幕大全免费视频 | 男女下面插进去视频免费观看| 国产av国产精品国产| 精品一品国产午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 午夜精品国产一区二区电影| 国产色视频综合| 亚洲国产精品成人久久小说| 亚洲九九香蕉| 久久精品国产综合久久久| 中文字幕人妻丝袜一区二区| 中国国产av一级| 国产真人三级小视频在线观看| 久9热在线精品视频| 亚洲午夜精品一区,二区,三区| 90打野战视频偷拍视频| 精品少妇久久久久久888优播| 国产精品香港三级国产av潘金莲 | 精品视频人人做人人爽| 国产成人精品久久二区二区免费| 伊人久久大香线蕉亚洲五| 中国美女看黄片| netflix在线观看网站| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 韩国精品一区二区三区| 女警被强在线播放| 国产欧美日韩一区二区三区在线| 香蕉国产在线看| 曰老女人黄片| 亚洲av日韩在线播放| 好男人视频免费观看在线| 十八禁网站网址无遮挡| 久久影院123| 搡老岳熟女国产| 91国产中文字幕| 国产老妇伦熟女老妇高清| 大陆偷拍与自拍| 中文字幕av电影在线播放| 亚洲视频免费观看视频| √禁漫天堂资源中文www| 亚洲国产毛片av蜜桃av| 亚洲伊人久久精品综合| 亚洲 国产 在线| 久久精品亚洲av国产电影网| 久热爱精品视频在线9| 国产免费福利视频在线观看| 2021少妇久久久久久久久久久| 国产在线免费精品| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 精品一品国产午夜福利视频| 免费久久久久久久精品成人欧美视频| 男女无遮挡免费网站观看| 日韩大片免费观看网站| 亚洲成人免费av在线播放| 亚洲欧洲国产日韩| 亚洲精品国产av蜜桃| 国产一区二区三区av在线| 国产黄色视频一区二区在线观看| 交换朋友夫妻互换小说| 不卡av一区二区三区| 美女脱内裤让男人舔精品视频| 一区二区三区四区激情视频| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 亚洲精品一二三| 欧美日韩亚洲国产一区二区在线观看 | kizo精华| 亚洲av电影在线观看一区二区三区| 两个人免费观看高清视频| 国产亚洲欧美精品永久| 欧美在线黄色| 婷婷丁香在线五月| 青春草视频在线免费观看| 国产成人欧美在线观看 | 大码成人一级视频| 国产一区有黄有色的免费视频| 桃花免费在线播放| 男女午夜视频在线观看| 亚洲精品乱久久久久久| 久久国产精品男人的天堂亚洲| 日韩一卡2卡3卡4卡2021年| 好男人电影高清在线观看| 日本色播在线视频| 999久久久国产精品视频| 免费观看a级毛片全部| 亚洲中文字幕日韩| 这个男人来自地球电影免费观看| 国产精品国产三级国产专区5o| 免费看十八禁软件| 国产精品一二三区在线看| 亚洲精品自拍成人| 秋霞在线观看毛片| 欧美精品一区二区免费开放| 超碰97精品在线观看| 日韩大码丰满熟妇| 亚洲三区欧美一区| 大香蕉久久成人网| 国产一级毛片在线| 99香蕉大伊视频| 亚洲av综合色区一区| 嫁个100分男人电影在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品国产av蜜桃| 在线观看免费午夜福利视频| av线在线观看网站| 精品久久久久久电影网| 无遮挡黄片免费观看| 18禁裸乳无遮挡动漫免费视频| 日本91视频免费播放| 在线av久久热| 国产亚洲精品第一综合不卡| 精品欧美一区二区三区在线| 欧美黑人精品巨大| av一本久久久久| 80岁老熟妇乱子伦牲交| 精品第一国产精品| 91精品三级在线观看| 色视频在线一区二区三区| www.999成人在线观看| 看免费av毛片| 五月开心婷婷网| 国产国语露脸激情在线看| 女人被躁到高潮嗷嗷叫费观| 69精品国产乱码久久久| 好男人电影高清在线观看| 少妇人妻 视频| 国产在线一区二区三区精| 国产成人av教育| 伊人久久大香线蕉亚洲五| 精品国产一区二区久久| 一个人免费看片子| www.精华液| 久久久欧美国产精品| 久久影院123| 男女床上黄色一级片免费看| 久久99热这里只频精品6学生| 看免费成人av毛片| 欧美日韩国产mv在线观看视频| 久久国产精品大桥未久av| 一区二区三区乱码不卡18| 久久人妻熟女aⅴ| 夜夜骑夜夜射夜夜干| 国产熟女欧美一区二区| 中文乱码字字幕精品一区二区三区| 国产成人精品久久久久久| 国产精品久久久久成人av| 满18在线观看网站| 欧美精品亚洲一区二区| 久久九九热精品免费| 晚上一个人看的免费电影| 精品熟女少妇八av免费久了| 精品亚洲成a人片在线观看| av又黄又爽大尺度在线免费看| av欧美777| 欧美精品av麻豆av| 国产成人一区二区在线| 亚洲精品久久午夜乱码| 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av高清一级| 黄色视频在线播放观看不卡| 日韩av在线免费看完整版不卡| 精品少妇一区二区三区视频日本电影| 久久性视频一级片| 丝瓜视频免费看黄片| 日韩一卡2卡3卡4卡2021年| 亚洲国产毛片av蜜桃av| 男女国产视频网站| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区久久| 国产免费福利视频在线观看| 首页视频小说图片口味搜索 | 欧美少妇被猛烈插入视频| 久久亚洲国产成人精品v| 制服人妻中文乱码| 欧美激情极品国产一区二区三区| 一本久久精品| 久久久亚洲精品成人影院| 侵犯人妻中文字幕一二三四区| 亚洲美女黄色视频免费看| 天天躁夜夜躁狠狠躁躁| 可以免费在线观看a视频的电影网站| 成年动漫av网址| 亚洲国产精品一区三区| 性高湖久久久久久久久免费观看| 欧美人与性动交α欧美软件| 麻豆av在线久日| 秋霞在线观看毛片| 国产欧美日韩综合在线一区二区| 少妇精品久久久久久久| 亚洲欧洲精品一区二区精品久久久| 久久精品国产亚洲av涩爱| 免费一级毛片在线播放高清视频 | www.精华液| 亚洲,欧美精品.| 丁香六月欧美| 国产免费福利视频在线观看| 亚洲中文字幕日韩| 国产精品秋霞免费鲁丝片| 久久久国产欧美日韩av| 国产高清videossex| 亚洲,欧美精品.| 美女福利国产在线| 日本a在线网址| 久久人人爽人人片av| 亚洲天堂av无毛| 亚洲av成人不卡在线观看播放网 | 亚洲精品国产av成人精品| 亚洲黑人精品在线| 欧美成人午夜精品| 亚洲av欧美aⅴ国产| 久久久久网色| 丝袜美腿诱惑在线| 免费观看a级毛片全部| 国产女主播在线喷水免费视频网站| 中文字幕精品免费在线观看视频| 男女之事视频高清在线观看 | 蜜桃国产av成人99| 首页视频小说图片口味搜索 | 久久亚洲国产成人精品v| 夫妻午夜视频| 男人添女人高潮全过程视频| 天天躁夜夜躁狠狠久久av| 9热在线视频观看99| 成在线人永久免费视频| 国产在视频线精品| 国产男女超爽视频在线观看| av国产久精品久网站免费入址| 亚洲视频免费观看视频| 女人精品久久久久毛片| 女人高潮潮喷娇喘18禁视频| 在线av久久热| 女人被躁到高潮嗷嗷叫费观| 超色免费av| 一级黄片播放器| 黄频高清免费视频| av不卡在线播放| av网站免费在线观看视频| 一边摸一边抽搐一进一出视频| 黄色一级大片看看| 50天的宝宝边吃奶边哭怎么回事| 午夜福利乱码中文字幕| 又大又黄又爽视频免费| 免费在线观看影片大全网站 | 我的亚洲天堂| 欧美变态另类bdsm刘玥| 亚洲成国产人片在线观看| 好男人电影高清在线观看| 男的添女的下面高潮视频| 秋霞在线观看毛片| 久久九九热精品免费| 国精品久久久久久国模美| 欧美人与善性xxx| 亚洲国产精品一区三区| 精品国产一区二区三区四区第35| 两人在一起打扑克的视频| 久久人人97超碰香蕉20202| 国产黄频视频在线观看| 一区二区三区激情视频| 亚洲人成电影观看| 久久久久久久大尺度免费视频| 亚洲精品自拍成人| 亚洲欧美一区二区三区国产| 亚洲av国产av综合av卡| 高潮久久久久久久久久久不卡| 国产一卡二卡三卡精品| 国产精品免费大片| 亚洲成人国产一区在线观看 | 嫩草影视91久久| 日韩伦理黄色片| 国产在线一区二区三区精| 人人妻人人澡人人看| 亚洲av成人不卡在线观看播放网 | 一区二区av电影网| 亚洲av在线观看美女高潮| 欧美日韩福利视频一区二区| 久久久久久免费高清国产稀缺| 日韩大码丰满熟妇| 精品少妇一区二区三区视频日本电影| 大型av网站在线播放| 人妻人人澡人人爽人人| 国产成人一区二区在线| 免费久久久久久久精品成人欧美视频| 搡老岳熟女国产| 色综合欧美亚洲国产小说| 在线观看一区二区三区激情| 欧美亚洲 丝袜 人妻 在线| 一级黄色大片毛片| 纵有疾风起免费观看全集完整版| 一本综合久久免费| 日本wwww免费看| 精品欧美一区二区三区在线| 又紧又爽又黄一区二区| 国产成人影院久久av| 999久久久国产精品视频| 黄色视频不卡| 中文字幕制服av| 十八禁网站网址无遮挡| 久久人妻熟女aⅴ| 欧美人与性动交α欧美软件| 欧美日韩亚洲综合一区二区三区_| 精品少妇久久久久久888优播| 一二三四社区在线视频社区8| 亚洲精品久久午夜乱码| 亚洲精品美女久久久久99蜜臀 | 乱人伦中国视频| 精品久久久久久电影网| 99久久人妻综合| 日本vs欧美在线观看视频| 丝袜喷水一区| xxx大片免费视频| 国产主播在线观看一区二区 | 人妻 亚洲 视频| 制服人妻中文乱码| www.999成人在线观看| 国产免费视频播放在线视频| 看免费成人av毛片| 中文字幕精品免费在线观看视频| 如日韩欧美国产精品一区二区三区| 日韩视频在线欧美| 国产成人a∨麻豆精品| 久久天躁狠狠躁夜夜2o2o | 男女边吃奶边做爰视频| 国产高清不卡午夜福利| 亚洲中文字幕日韩| 国产男人的电影天堂91| 日韩熟女老妇一区二区性免费视频| 又紧又爽又黄一区二区| 首页视频小说图片口味搜索 | 99国产精品一区二区三区| 99精品久久久久人妻精品| av视频免费观看在线观看| 国产在视频线精品| 婷婷色综合大香蕉| h视频一区二区三区| 午夜福利视频精品| 最新的欧美精品一区二区| 麻豆乱淫一区二区| 91麻豆av在线| 国产精品九九99| 黄色视频在线播放观看不卡| 少妇人妻久久综合中文| 欧美激情 高清一区二区三区| 在线 av 中文字幕| 国产一区二区在线观看av| 中文字幕人妻丝袜一区二区| 老司机在亚洲福利影院| 麻豆国产av国片精品| 搡老岳熟女国产| 99久久综合免费| 午夜av观看不卡|