• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-Performance Beamformer and Low-Complexity Detector for DF-Based Full-Duplex MIMO Relaying Networks

    2017-05-08 01:46:53FengShuYeZhouRiqingChenJinWangJunLiBrankaVucetic
    China Communications 2017年2期

    Feng Shu, Ye Zhou, Riqing Chen, Jin Wang, Jun Li, Branka Vucetic

    1 College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

    2 School of Mobile Network, Nanjing Technology University Pujiang Institute,Nanjing 21134,China

    3 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

    4 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

    5 School of Electrical and Information Engineering, the University of Sydney, NSW, Australia

    *The corresponding author, E-mail: riqing.chen@fafu.edu.cn

    I. INTRODUCTION

    Recently, full-duplex relaying systems have been intensively investigated due to a wide coverage area and high spectral efficiency[1]. The full duplex operation by supporting concurrent transmission and reception in a single time/frequency channel is expected to be implemented in future generation networks[2,3]. The promise of nearly doubled channel capacity and spectral efficiency compared to conventional half-duplex communications is the most attractive feature in full-duplex communications [4,5]. However, in full-duplex systems, self-interference at the relay, due to the signal leakage from its transmitter to the receiver, will lead to a serious degradation of the system performance. Therefore, one of the key challenges in full-duplex relaying systems is how to manage and control the effect of self-interference successfully and effectively.

    There are several strategies proposed for mitigating self-interference in full-duplex relaying systems [6-14]. In particular, in multiple-input multiple-output (MIMO) based on full-duplex relaying systems, beamforming schemes can be optimized for spatially suppressing the self-interference by utilizing the degree of freedom provided by multiple antennas [10-14]. In [10], the authors consider an amplify-and-forward (AF) based MIMO relaying system with full-duplex transmissions.To deal with the self-interference at the relay,the authors maximize the signal-to-interference ratio at both the input and output of the relays. However, this work neglects the effect of noise. In [11], the authors adopt a twoway full-duplex MIMO relaying system with AF protocol. Instead of purely suppressing the self-interference, the authors improve the system achievable rate by jointly optimizing the beamforming matrix at the relay and the power allocation at the two sources.

    For full-duplex MIMO relay systems with the decoded-and-forward (DF) protocol, several typical beamforming schemes, such as minimum mean square error (MMSE) and nullspace projection (NSP) are investigated [12-14]. The basic idea of the null-space projection is that it forces the self-interference to be zero by designing the receive and transmit beamforming matrices. However, these schemes are not designed to achieve the optimality of the system in terms of achievable rate.

    In this paper, we focus on the optimization of beamforming coefficients in a full-duplex MIMO relaying system consisting of one source, one DF-based relay and one destination. We propose an iterative beamforming structure (IBS) at the relay for enhancing the system achievable rate by alternately maximizing the average signal-to-interference-plus noise ratio (SINR) at receiver and average signal to-leakage-plus-noise ratio (SLNR) at transmitter. Although the proposed structure achieves an improved performance, there still exists residual self-interference and noise. It is a challenge to design an optimal low-complexity detector in the presence of residual self-interference which is not white. Therefore, we then develop a low-complexity maximum likelihood (ML) detector at the relay with an improved decoding performance by using whitening- filter, singular-value decomposition(SVD), and eigenvalue decomposition (EVD).

    Our contributions in this paper are as follows. We first maximize the SINR, namely,Max-SINR, at the input of the relay by optimizing its receive antenna beamforming coefficients. At the same time, we maximize the SLNR, namely, Max-SLNR, at the output of the relay by optimizing its transmit beamforming coefficients. Then an iterative beamforming structure is designed to optimize the receive and transmit beamforming in an iterative manner. For the detector, wefirst design an interference-and-noise whitening filter(WF) for the colored interference-plus-noise.Then a beamforming scheme based on SVD is employed to transform the spatially coupled source-to-relay channels to independent parallel ones. Simulations show that the proposed IBS achieves much better rate and error performance within a few iterations compared with its counterparts. Also, the bit rate error performance of our low-complexity ML detector is better than the conventional ML detector with a much reduced complexity.

    This paper is organized as follows. The system model is described in Section II. Section III presents the design of the IBS. Section IV describes the low complexity ML detector.The simulation results are shown and discussed in section V, and Section VI concludes this entire paper.

    Notations: Throughout the paper, matrices and vectors are denoted by letters of bold upper case and bold lower case, respectively.

    II. SYSTEM MODEL

    As shown in Fig. 1, we consider a two-hop link between a multi-antenna source node and a multi-antenna destination node with a full-duplex DF relay connecting them. The source and destination are equipped withandantennas, respectively. The relay hasreceive andtransmit antennas. The source transmits data towards the relay, while upon receiving the signal from the source,the relay regenerates the source’s information, and transmits it towards the destination using the same frequency band. Here, it is assumed that the direct source-to-destination link is blocked, for example, due to shadow fading and path loss. Letandrepresent the source-to-relay and relay-to-destination channel matrices, respectively. The self-interference channel matrix is denoted byAll the channels are assumed to experience Rayleigh fading and the perfect CSI’s are available at the relay. The signal vectortransmitted from the source is assumed to be taken from an M-QAM constellation with the power constraintwhereis the transmit power at the source.

    Fig.1 System model consisting of one source, one relay, and one destination

    In order to further suppress interference and improve the error performance, we introduce the transmit beamformingat the relay, and thenis given by

    Since we consider the DF protocol, the endto-end achievable rate can be formulated as[15]

    We have

    In the following section, we will enhance the achievable system rate R in Eq. (5) by optimizing the design of the beamforming matricesandat the relay.

    III. ITERATIVE BEAMFORMING STRUCTURE AT THE RELAY

    In this section, we propose a novel beamforming structure at the relay for improving the system achievable rate R. Since R is determined byand, we will alternatively focus on maximizing both the SINR at the relay’s input and the SLNR at the relay’s output.

    First, based on Eqs. (1~3), the average SINR at the relay receiver can be written as

    From (1), the average leakage of the transmit signalto the relay receiver is of the formTherefore, the SLNR at the relay transmitter can be written as [16,17]

    3.1 Maximization of: Fix Optimize

    For more details of the optimization process please see Appendix A. By optimizing the receive beamforming matrixwe jointly suppress the self-interference and noise to enhance the useful signal.

    3.2 Maximization of: Fix Optimize

    A detailed optimization process follows a similar deriving process in Appendix A.

    By optimizing the transmit beamforming matrixwe reduce the leakage part of the transmit signal at the relay and improve the useful relay-to-destination part of the transmitted signal.

    3.3 Iterative beamforming structure

    Based on the optimization processes in the previous two subsections, we thereby propose an iterative beamforming structure (IBS) at the relay as indicated in Fig. 2 by optimizingandin an alternating iterative manner. The IBS is described as follows. Wefirst utilize the initial value ofto obtain the optimalby solving the maximization ofThen this optimizedis utilized to obtainby solving the maximization ofBy doing this process iteratively, wefinally arrive at our solutions ofand

    Additionally, in order to have a good initial value ofwe define

    Fig.2 Proposed iterative beamforming structure at the relay

    Then we substitute (13) into (12) to obtain the initial value ofwhich consists of the eigenvectors corresponding to the largesteigenvalues of the matrix

    To make clear, the IBS operations are summarized as an algorithm below.

    VI. INTERFERENCE-AND-NOISEWHITENING BEAMFORMING FOR ML DETECTION

    In this section, we will propose an interference-and-noise-whitening beamforming method for reducing the complexity of the conventional ML detection at the relay. We rewrite Eq. (1) as

    4.1 Conventional ML detector

    For the conventional ML detection in a white Gaussian channel, the detecting problem of source transmitted signal at the relaycan be casted as

    which has an exponential complexity in the number of the source transmit antennas,i.e.,float point operations (FLOPs),whereis the number of points in the signal

    ?

    4.2 Proposed whitening- filter-based ML detector

    with

    Based on the new model in (20), we get the optimal ML detector, namely, whitening filter ML (WFML), as follows

    Theorem 1: The conventional detector in Eq. (17) is equivalent to our WFML detector in Eq. (22), under the conditionwhere is a positive value. Additionally, this condition approximately holds for the largescale MIMO cases.

    Proof: Please see Appendix B.

    Although the proposed WFML detector in(22) has the optimal detection performance, it still has an exponential complexity ofFLOPs. In what follows, we will present an equivalent low-complexity form of our WFML detector from the beamforming viewpoint.

    4.3 Proposed low-complexity WFML detector

    V. SIMULATIONS

    In this section, we evaluate the performance of the proposed schemes and compare them with the conventional ones. The system parameters in our simulation are set as follows:andAll the channels are modeled by Rayleigh block-fading.

    To observe the convergence of the proposed IBS in Section III, Fig. 3 demonstrates the curves of achievable ratesversus the number of iterations. We consider three different SNR values, i.e.,dB, 5dB, and 10dB.For all the three SNR values, the proposed IBS converges rapidly, i.e., in about four iterations.With the increment of SNR,the required number of iterations will also become larger.

    Fig.3 The system achievable rate R versus the iteration numbers for the proposed IBS with different SNR values

    Fig.4 Comparisons of the system achievable rate under different beamforming schemes

    Fig.5 BER performance under different combination schemes for 16QAM

    Fig.4 compares the achievable rateof the proposed IBS with the ones of two other beamforming schemes and the case of no mitigation. Thefirst benchmark is the null-space projection (NSP) scheme in [12], where the self-interference at the relay is forced to zero via the null-space projection. The second one is the MMSE scheme in [13], where the receive beamformingat the relay is designed based on the MMSE criterion. Additionally,we consider the scheme without the mitigation of interference, i.e., where bothandare identity matrices. It can be observed that the proposed IBS performs much better than the other three schemes in all SNR regions. And the curve of no mitigation tends to be smoothly convergent with a lowest system achievable rate. It has about a 2.5dB gain compared with the second best scheme, i.e., MMSE for the given achievable rate above 15bits/bit/Hz.The main reason for its superiority is that the proposed IBS fully takes both the self-interference and noise into account. Suppose the proposed IBS requiresiterations, then the complexity of the proposed IBS istimes those of NSP and MMSE considering the three schemes use matrix decomposition to compute the beamforming coefficientsFLOPs per matrix decomposition).

    We further evaluate the bit error rate (BER)performance of our low-complexity WFML detector proposed in Section IV, namely,LCWFML. We compare our LCWFL with the conventional ML detector for Gaussian channels, namely, CML. We will investigate the BER performance for these two detectors combined with the four aforementioned beamforming schemes at the relay. As such,we have the following combination schemes:LCWFML+IBS, CML+IBS, LCWFML+NSP, CML+NSP, LCWFML+MMSE,CML+MMSE, LCWFML+No Mitigation, and CML+No Mitigation.

    Fig.5 and Fig. 6 show the BER performance versus SNR for different combination schemes for 16QAM and 64QAM, respectively. From the two figures, it is obvious that the BER performance of the proposed LCWFML+IBS as well as CML+IBS is much better than the other schemes. For a given detector, the proposed IBS is better than MMSE, NSP, and No Mitigation. In particular, the IBS has adB gain at thefor 16QAM and 4dB gain at thefor 16QAM, compared with the second best scheme MMSE. Additionally,for a given beamforming scheme, e.g., IBS,MMSE, and NSP, wefind that the BER curves of the proposed LCWFML detector are slight-ly better than those of the CML. On the other hand, in the case of No Mitigation, the BER performance of our LCWFML detector is better than that of the CML with an obvious gain.The reason behind this is as follows. When using IBS, MMSE, or NSP at the relay, the residual self-interference is very small compared to the useful signal and can be omitted. For No Mitigation, the self-interference at the relay is much stronger and colored, and thus the whitening filter enables that the LCWFML detector in (22) outperforms the CML detector.

    VI. CONCLUSION

    In this paper, we proposed a high-rate beamforming design and a low-complexity ML detector at the relay in a DF-based full-duplex MIMO relay network. The proposed IBS achieves a high-performance rate by alternately optimizing the transmit and receive beamforming. Additionally, a low-complexity ML detector combining the WF and SVD was designed. From our simulations, we found that the proposed IBS converges within only four iterations, and performs much better than the existing beamforming schemes such as NSP and MMSE in terms of both achievable rate and BER performance. The IBS shows about 5dB gain over the MMSE atfor 16QAM. Additionally, for a given beamforming scheme, the BER performance of the proposed detector is better than that of the conventional with a lower-complexity.

    Appendix A: Derivation of the optimal solution of Max-SINR

    For the convenience of proof below, we first consider the caseGiven a fixedmaximizingin(9) can be formulated as

    where w is a row vector, and

    Fig.6 BER performance under different combination schemes for 64QAM

    Although we can view the optimization problem in (27) as a generalized Rayleigh-Ritz ratio and directly give the optimal solution similar to the Max-SLNR in [16]. A strict proof need to be presented to guarantee that the optimal solution holds. Thus, in what follows, we will propose a detailed rigorous mathematical derivation for the optimal solution to the maximization problem in (27).

    Considering that scaling w by any scalar does not change the value of the objective function of the problem (27), the problem (27)may be simplified to the following unconstrained maximization problem

    To solve the above problem, let usfirst defineThen, the optimization problem (29) can be formulated as

    which can be explained as the problem offinding the largest one from all’s satisfying the following constraint

    which implies that the partial derivative of the functionwith respect tosatisfies

    This means that the problem offinding the optimaland w can be found by solving the following equation

    Appendix B: Proof of Theorem 1

    For the convenience of the proof below, let us first defineThen we have

    which means that the optimization problem in(22) achieves the same optimal value as the optimization problem in (17). This is only a sufficient condition for the equivalence between (17) and (22).

    ACKNOWLEDGEMENTS

    This work was supported in part by the National Natural Science Foundation of China(Nos. 61271230, 61472190, and 61501238),the Open Research Fund of National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation (No. 201500013), the open research fund of National Mobile Communications Research Laboratory, Southeast University, China (No.2013D02), the Research Fund for the Doctoral Program of Higher Education of China (No.20113219120019), the Foundation of Cloud Computing and Big Data for Agriculture and Forestry (117-612014063), the China Postdoctoral Science Foundation (2016M591852),and Postdoctoral research funding program of Jiangsu Province (1601257C).

    [1] Bliss D, Parker P, Margetts A, “Simultaneous transmission and reception for improved wireless network performance”,in Proceedings of IEEE Computer Society Workshop on Statistical Signal Processing.,pp 478-482, August, 2007.

    [2] Rankov B, Wittneben A, “Spectral efficient protocols for half-duplex fading relay channels”,IEEE Journal on Selected Areas in Communications, vol. 25, no. 2, pp 379-389, February, 2007.[3] Zhang Z, Chai X, Long K, et al, “Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection”,IEEE Communications Magazine, vol. 53,no. 5, pp 128-137, May, 2015.

    [4] Zou Y L, Zheng B Y, Zhu J, “Outage analysis of opportunistic cooperation over rayleigh fading channels”,IEEE Transactions on Wireless Communications, vol. 8, no. 6, pp 3077-3085, June,2009.

    [5] Zou Y L, Zheng B Y, Zhu J, “Performance evaluation of half-duplex relay-based opportunistic cooperation diversity”,Sciece China Information Sciences, vol. 53, no. 2, pp 325-334, February,2010.

    [6] Riihonen T, Haneda K, Werner S, Wichman R,“SINR analysis of full-duplex OFDM repeaters”,in Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 51, no. 3, pp 3169-3173, September, 2009.

    [7] Haneda K, Kahra E, Wyne S, et al, “Measurement of loopback interference channels for outdoor-to-indoor full-duplex radio relays”,in Proceedings of fourth European Conference on Antennas and Propagation,pp 1-5, April, 2010.[8] Hamazumi H, Imamura K, Iai N, et al, “A study of a loop interference canceller for the relay stations in an SFN for digital terrestrial broadcasting”,in Proceedings of IEEE Global Telecommunications Conference, vol. 1, no. 4, pp 141-150, December, 2000.

    [9] Nasr K M, Cosmas J P, Bard M, et al, “Performance of an echo canceller and channel estimator for on-channel repeaters in DVB-T/H networks”,IEEE Transactions on Broadcasting,vol. 53, no. 3, pp 609-618, September, 2007.

    [10] Lioliou P, Viberg M, Coldrey M, et al, “Self-interference suppression in full-duplex MIMO relays”,in Proceedings of IEEE Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR),pp 658-662. November, 2010.

    [11] Zheng G, “Joint beamforming optimization and power control for full-duplex mimo twoway relay channel”,IEEE Transactions on SignalProcessing, vol. 63, no. 3, pp 555-566, February,2015.

    [12] Riihonen T, Werner S, Wichman R, “Mitigation of loopback self-interference in full-duplex MIMO relays”,IEEE Transactions on Signal Processing, vol. 59, no. 12, pp 5983-5993, December, 2011.

    [13] Riihonen T, Werner S, Wichman R, “Spatial loop interference suppression in full-duplex MIMO relays”,in proceedings of IEEE Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, pp 1508-1512,November, 2009.

    [14] Sung Y, Ahn J, Van Nguyen B, et al, “Loop-interference suppression strategies using antenna selection in full-duplex MIMO relays”,in proceedings of IEEE International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pp 1-4, December, 2011.

    [15] Wang B, Zhang J, Host-Madsen A, “On the capacity of MIMO relay channels”,IEEE Transactions on Information Theory, vol. 51, no. 1, pp 29-43, January, 2005.

    [16] Sadek M, Tarighat A, Sayed A H, “A leakage-based precoding scheme for downlink multi-user MIMO channels”,IEEE Transactions on Wireless Communications, vol. 6, no. 5, pp 1711-1721, May, 2007.

    [17] Shu F, Tong J J, You X H, et al, “Adaptive robust Max-SLNR precoder for MU-MIMO-OFDM systems with imperfect CSI”,Science China Information Sciences, vol. 59, no. 6, pp 1-14, June,2016.

    97碰自拍视频| 老熟妇仑乱视频hdxx| 老司机在亚洲福利影院| 精品不卡国产一区二区三区| 亚洲专区国产一区二区| 亚洲精品日韩av片在线观看 | 18+在线观看网站| 免费人成在线观看视频色| a级一级毛片免费在线观看| 国产伦精品一区二区三区四那| 9191精品国产免费久久| 国产午夜精品论理片| 久久精品国产亚洲av涩爱 | 免费观看的影片在线观看| 中国美女看黄片| 日本 欧美在线| 岛国视频午夜一区免费看| 欧美一区二区国产精品久久精品| 久久精品影院6| 深爱激情五月婷婷| 十八禁人妻一区二区| 国产成人aa在线观看| 黄色片一级片一级黄色片| 成人无遮挡网站| 午夜精品久久久久久毛片777| 成人鲁丝片一二三区免费| 级片在线观看| 久久精品亚洲精品国产色婷小说| 日韩精品中文字幕看吧| 中出人妻视频一区二区| 一本综合久久免费| 免费在线观看影片大全网站| 最好的美女福利视频网| 伊人久久大香线蕉亚洲五| 18禁黄网站禁片免费观看直播| 婷婷六月久久综合丁香| 乱人视频在线观看| 国产精品精品国产色婷婷| 精品久久久久久久末码| 欧美成人a在线观看| 亚洲欧美日韩高清专用| 蜜桃亚洲精品一区二区三区| 亚洲av第一区精品v没综合| 国产亚洲欧美在线一区二区| 欧美一区二区国产精品久久精品| 高清毛片免费观看视频网站| 色综合欧美亚洲国产小说| 日本一本二区三区精品| 99精品在免费线老司机午夜| 欧美最新免费一区二区三区 | 99在线视频只有这里精品首页| 三级国产精品欧美在线观看| 色噜噜av男人的天堂激情| 一夜夜www| 成年免费大片在线观看| 在线十欧美十亚洲十日本专区| 亚洲自拍偷在线| 99国产综合亚洲精品| 亚洲欧美激情综合另类| 在线播放国产精品三级| 少妇的逼水好多| 日韩精品中文字幕看吧| 大型黄色视频在线免费观看| 国内揄拍国产精品人妻在线| 香蕉丝袜av| 99riav亚洲国产免费| 狂野欧美白嫩少妇大欣赏| 精品99又大又爽又粗少妇毛片 | 欧美一级a爱片免费观看看| 亚洲一区二区三区不卡视频| 在线十欧美十亚洲十日本专区| 亚洲一区二区三区色噜噜| 国产午夜精品久久久久久一区二区三区 | 欧美在线一区亚洲| 美女高潮的动态| 欧美大码av| 一级毛片高清免费大全| 看片在线看免费视频| 成人高潮视频无遮挡免费网站| 欧美区成人在线视频| 最好的美女福利视频网| 国产精品一区二区三区四区久久| 一个人免费在线观看电影| 欧美成狂野欧美在线观看| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 亚洲最大成人中文| 成人国产综合亚洲| 免费观看精品视频网站| 中文在线观看免费www的网站| 真人做人爱边吃奶动态| 成人特级黄色片久久久久久久| 人人妻人人澡欧美一区二区| 长腿黑丝高跟| 高清毛片免费观看视频网站| 欧美成人免费av一区二区三区| 中文字幕久久专区| 熟妇人妻久久中文字幕3abv| 欧美日韩黄片免| 国产极品精品免费视频能看的| 欧美日本亚洲视频在线播放| 日韩欧美国产一区二区入口| 亚洲激情在线av| 中文字幕熟女人妻在线| 亚洲成av人片免费观看| 亚洲精品456在线播放app | 亚洲真实伦在线观看| 国产91精品成人一区二区三区| 欧美一区二区国产精品久久精品| 禁无遮挡网站| 久久伊人香网站| 色综合婷婷激情| 麻豆成人av在线观看| 此物有八面人人有两片| 亚洲精品美女久久久久99蜜臀| 免费观看人在逋| 99在线视频只有这里精品首页| 日韩欧美在线二视频| 中文字幕av在线有码专区| 免费av不卡在线播放| 亚洲精品一区av在线观看| 99热只有精品国产| 十八禁网站免费在线| 日日夜夜操网爽| 麻豆国产av国片精品| 亚洲精品久久国产高清桃花| 热99re8久久精品国产| 欧洲精品卡2卡3卡4卡5卡区| a级一级毛片免费在线观看| 亚洲中文字幕日韩| 18禁黄网站禁片免费观看直播| www日本黄色视频网| 美女黄网站色视频| 日韩欧美免费精品| 国产麻豆成人av免费视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品一区二区三区人妻视频| 国产私拍福利视频在线观看| 亚洲精品影视一区二区三区av| 国产69精品久久久久777片| 国产综合懂色| 免费av不卡在线播放| 亚洲欧美日韩无卡精品| 欧美性感艳星| 在线看三级毛片| 中文在线观看免费www的网站| 欧美精品啪啪一区二区三区| 亚洲精品在线观看二区| 最新中文字幕久久久久| 国产一区二区三区视频了| 99国产精品一区二区三区| 日韩欧美在线乱码| 国产美女午夜福利| 日本 av在线| 日本 av在线| 亚洲欧美一区二区三区黑人| 1024手机看黄色片| 国产激情偷乱视频一区二区| 国产野战对白在线观看| 亚洲最大成人手机在线| 搞女人的毛片| 十八禁网站免费在线| 97超级碰碰碰精品色视频在线观看| 欧美不卡视频在线免费观看| 有码 亚洲区| 亚洲一区高清亚洲精品| 999久久久精品免费观看国产| 亚洲狠狠婷婷综合久久图片| av黄色大香蕉| 人人妻人人澡欧美一区二区| 欧美成狂野欧美在线观看| 搡老熟女国产l中国老女人| 男人舔女人下体高潮全视频| 给我免费播放毛片高清在线观看| 内射极品少妇av片p| 国产免费av片在线观看野外av| 日韩亚洲欧美综合| 色老头精品视频在线观看| 色吧在线观看| 色综合欧美亚洲国产小说| 亚洲精品在线美女| 日日干狠狠操夜夜爽| 国产aⅴ精品一区二区三区波| 欧美+亚洲+日韩+国产| 搡老妇女老女人老熟妇| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 午夜日韩欧美国产| 色哟哟哟哟哟哟| 亚洲乱码一区二区免费版| 真人做人爱边吃奶动态| 国产精品99久久久久久久久| 三级国产精品欧美在线观看| 国产高清激情床上av| 亚洲av成人av| 国产高清视频在线观看网站| 日本 欧美在线| 久久久久久九九精品二区国产| 日韩欧美免费精品| 操出白浆在线播放| 亚洲国产日韩欧美精品在线观看 | 久久精品91无色码中文字幕| 欧美一级毛片孕妇| 欧美乱码精品一区二区三区| 中文字幕av成人在线电影| 中文字幕人妻丝袜一区二区| 日本一二三区视频观看| 国产久久久一区二区三区| 91在线观看av| 国产精品久久久久久亚洲av鲁大| 欧美性猛交╳xxx乱大交人| 亚洲欧美精品综合久久99| 老熟妇乱子伦视频在线观看| 国产午夜精品久久久久久一区二区三区 | 三级国产精品欧美在线观看| 国产成人福利小说| 国产真实乱freesex| 亚洲成人久久爱视频| 国产精品永久免费网站| 欧美日韩精品网址| 国产伦精品一区二区三区视频9 | 美女 人体艺术 gogo| 日本在线视频免费播放| 精品一区二区三区人妻视频| 免费高清视频大片| 亚洲人成电影免费在线| 国产精品亚洲美女久久久| 九九久久精品国产亚洲av麻豆| 精品欧美国产一区二区三| 成人精品一区二区免费| 午夜影院日韩av| 深爱激情五月婷婷| 在线观看日韩欧美| 国产精品一区二区免费欧美| www日本在线高清视频| 神马国产精品三级电影在线观看| 亚洲熟妇熟女久久| 麻豆国产av国片精品| 免费一级毛片在线播放高清视频| 国产三级中文精品| a级毛片a级免费在线| 99热6这里只有精品| 亚洲成av人片在线播放无| 2021天堂中文幕一二区在线观| 乱人视频在线观看| 国产成人欧美在线观看| 色老头精品视频在线观看| eeuss影院久久| 熟女人妻精品中文字幕| 精品不卡国产一区二区三区| 国产精品久久久久久人妻精品电影| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 亚洲最大成人手机在线| 亚洲精品一卡2卡三卡4卡5卡| 丰满乱子伦码专区| 欧美国产日韩亚洲一区| 欧美日本亚洲视频在线播放| 国产亚洲精品久久久com| 一级毛片女人18水好多| 久久99热这里只有精品18| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 一个人免费在线观看电影| 啦啦啦韩国在线观看视频| 国产高清激情床上av| 亚洲成a人片在线一区二区| 色哟哟哟哟哟哟| 69av精品久久久久久| 看黄色毛片网站| 亚洲av免费在线观看| 校园春色视频在线观看| 亚洲成人精品中文字幕电影| bbb黄色大片| 欧美区成人在线视频| 18禁美女被吸乳视频| 天堂av国产一区二区熟女人妻| 91麻豆精品激情在线观看国产| 欧美黄色淫秽网站| 久久精品人妻少妇| 91在线精品国自产拍蜜月 | 99久久无色码亚洲精品果冻| 女警被强在线播放| 怎么达到女性高潮| 国产一区二区三区视频了| 亚洲内射少妇av| 欧美一级毛片孕妇| 在线视频色国产色| x7x7x7水蜜桃| 久久久久亚洲av毛片大全| 欧美乱妇无乱码| av福利片在线观看| 国产精品久久久久久人妻精品电影| 在线观看舔阴道视频| 99精品欧美一区二区三区四区| 国产精品 欧美亚洲| 久久久久亚洲av毛片大全| 男人和女人高潮做爰伦理| 国产黄片美女视频| 免费搜索国产男女视频| 国产精品乱码一区二三区的特点| 深爱激情五月婷婷| 搡老熟女国产l中国老女人| 国产黄a三级三级三级人| 特大巨黑吊av在线直播| 欧美日韩精品网址| 欧美黑人欧美精品刺激| 亚洲精品影视一区二区三区av| 亚洲av电影不卡..在线观看| 一级黄色大片毛片| www.999成人在线观看| 久9热在线精品视频| 亚洲午夜理论影院| 国产一级毛片七仙女欲春2| 亚洲激情在线av| 高清毛片免费观看视频网站| 成熟少妇高潮喷水视频| 夜夜看夜夜爽夜夜摸| 淫秽高清视频在线观看| 欧美3d第一页| 亚洲专区国产一区二区| 久久久久久久午夜电影| 中文字幕人妻熟人妻熟丝袜美 | 国产精品久久电影中文字幕| 美女免费视频网站| 国产单亲对白刺激| 91av网一区二区| 免费在线观看亚洲国产| 久久久久亚洲av毛片大全| 久99久视频精品免费| 久久精品91蜜桃| 国产精品久久视频播放| h日本视频在线播放| 成人午夜高清在线视频| 亚洲最大成人中文| 岛国在线免费视频观看| 手机成人av网站| 69人妻影院| 国产精品亚洲美女久久久| 久久久久久大精品| a级一级毛片免费在线观看| 天堂√8在线中文| av黄色大香蕉| 97超视频在线观看视频| 亚洲国产精品合色在线| 亚洲黑人精品在线| av天堂中文字幕网| 国模一区二区三区四区视频| 久久国产精品影院| 最近最新免费中文字幕在线| 一个人看的www免费观看视频| 最近最新中文字幕大全免费视频| 激情在线观看视频在线高清| 岛国在线免费视频观看| 免费无遮挡裸体视频| 岛国在线免费视频观看| 网址你懂的国产日韩在线| 亚洲aⅴ乱码一区二区在线播放| 一级毛片女人18水好多| 女生性感内裤真人,穿戴方法视频| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 国产国拍精品亚洲av在线观看 | 日韩 欧美 亚洲 中文字幕| 成人鲁丝片一二三区免费| 午夜福利18| 老司机午夜十八禁免费视频| av中文乱码字幕在线| bbb黄色大片| 又粗又爽又猛毛片免费看| 狂野欧美白嫩少妇大欣赏| 中文字幕av成人在线电影| 精品熟女少妇八av免费久了| 久久欧美精品欧美久久欧美| 美女高潮的动态| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 美女大奶头视频| 国内精品久久久久久久电影| 最好的美女福利视频网| 特大巨黑吊av在线直播| 99久久精品热视频| 久久久久久久亚洲中文字幕 | 亚洲aⅴ乱码一区二区在线播放| 久久伊人香网站| 国产高清videossex| 身体一侧抽搐| 99在线人妻在线中文字幕| 在线观看日韩欧美| 免费无遮挡裸体视频| 日本与韩国留学比较| 欧美在线一区亚洲| 亚洲欧美日韩东京热| 少妇裸体淫交视频免费看高清| 在线国产一区二区在线| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看| 深爱激情五月婷婷| 一区二区三区高清视频在线| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av| 一夜夜www| 午夜视频国产福利| 91久久精品电影网| 97碰自拍视频| 欧美成人一区二区免费高清观看| 麻豆一二三区av精品| 国产一区在线观看成人免费| 午夜精品久久久久久毛片777| 日韩精品中文字幕看吧| 少妇的逼好多水| www.熟女人妻精品国产| 亚洲自拍偷在线| 亚洲欧美日韩高清专用| 国语自产精品视频在线第100页| 听说在线观看完整版免费高清| 久久人妻av系列| 热99在线观看视频| 可以在线观看的亚洲视频| 国产精品久久久久久久电影 | 国产又黄又爽又无遮挡在线| 在线视频色国产色| 无人区码免费观看不卡| 一二三四社区在线视频社区8| 成人亚洲精品av一区二区| 男女做爰动态图高潮gif福利片| 亚洲精品乱码久久久v下载方式 | 人人妻人人看人人澡| 亚洲国产日韩欧美精品在线观看 | 一级黄色大片毛片| 好男人在线观看高清免费视频| 日韩免费av在线播放| 国产成人av教育| 亚洲自拍偷在线| 亚洲avbb在线观看| 免费av毛片视频| 午夜精品一区二区三区免费看| 国产精品日韩av在线免费观看| 在线观看舔阴道视频| 国产高清有码在线观看视频| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区视频在线 | 午夜福利成人在线免费观看| 婷婷六月久久综合丁香| 国产色婷婷99| 精品久久久久久久毛片微露脸| 国产精品一区二区三区四区久久| 看免费av毛片| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区三区四区免费观看 | 国产精品 欧美亚洲| 97超视频在线观看视频| 小蜜桃在线观看免费完整版高清| 观看美女的网站| 婷婷精品国产亚洲av| 黄片大片在线免费观看| 日韩精品青青久久久久久| 女人被狂操c到高潮| 国产精品av视频在线免费观看| 最新美女视频免费是黄的| 老汉色av国产亚洲站长工具| 一本综合久久免费| 国模一区二区三区四区视频| 久久久久久九九精品二区国产| 成年免费大片在线观看| 久久久成人免费电影| 国产成人a区在线观看| 国产三级黄色录像| 搞女人的毛片| 嫁个100分男人电影在线观看| 老汉色∧v一级毛片| xxxwww97欧美| 日本 av在线| 午夜精品一区二区三区免费看| 中文字幕熟女人妻在线| 国语自产精品视频在线第100页| 黄片大片在线免费观看| 久久久久亚洲av毛片大全| 成熟少妇高潮喷水视频| 波多野结衣高清作品| 韩国av一区二区三区四区| 男女视频在线观看网站免费| 一区二区三区高清视频在线| 久久草成人影院| 欧美午夜高清在线| 午夜免费男女啪啪视频观看 | 亚洲专区中文字幕在线| 免费大片18禁| 9191精品国产免费久久| 成人特级av手机在线观看| 天堂影院成人在线观看| 国产精品亚洲一级av第二区| 有码 亚洲区| 欧美在线黄色| 97超级碰碰碰精品色视频在线观看| 日韩欧美 国产精品| 毛片女人毛片| 99视频精品全部免费 在线| 色播亚洲综合网| 亚洲欧美日韩东京热| 俄罗斯特黄特色一大片| 亚洲国产欧美网| a级毛片a级免费在线| 看黄色毛片网站| 18禁美女被吸乳视频| 精品国产超薄肉色丝袜足j| 精品无人区乱码1区二区| 久久亚洲精品不卡| 天堂av国产一区二区熟女人妻| 岛国在线免费视频观看| 免费在线观看影片大全网站| 国产v大片淫在线免费观看| 欧美黄色片欧美黄色片| 激情在线观看视频在线高清| 欧美色视频一区免费| 国产野战对白在线观看| 久久国产精品人妻蜜桃| 免费大片18禁| 成年女人看的毛片在线观看| 国产日本99.免费观看| 亚洲美女视频黄频| av专区在线播放| 女人十人毛片免费观看3o分钟| 真人一进一出gif抽搐免费| 国产乱人视频| 日本三级黄在线观看| 久久精品影院6| 午夜福利欧美成人| 亚洲av成人精品一区久久| 国内毛片毛片毛片毛片毛片| 国产视频一区二区在线看| 久久久久性生活片| 丰满的人妻完整版| 欧美日本视频| 久久亚洲真实| 精品人妻偷拍中文字幕| 国产精品 欧美亚洲| 九九热线精品视视频播放| 黄色日韩在线| 免费在线观看成人毛片| 国产91精品成人一区二区三区| 亚洲国产日韩欧美精品在线观看 | 精品一区二区三区视频在线观看免费| 欧美黄色淫秽网站| 中文字幕人妻丝袜一区二区| 亚洲最大成人中文| 精品熟女少妇八av免费久了| 国产精品香港三级国产av潘金莲| 脱女人内裤的视频| 99久久无色码亚洲精品果冻| 欧美+亚洲+日韩+国产| 丰满人妻熟妇乱又伦精品不卡| 亚洲av电影在线进入| 黄色日韩在线| 日本撒尿小便嘘嘘汇集6| 色综合亚洲欧美另类图片| 9191精品国产免费久久| 男插女下体视频免费在线播放| 国产午夜精品久久久久久一区二区三区 | 在线十欧美十亚洲十日本专区| 欧美色视频一区免费| 久久精品国产自在天天线| 国产激情偷乱视频一区二区| 一区二区三区免费毛片| 亚洲乱码一区二区免费版| 国产成人a区在线观看| 狠狠狠狠99中文字幕| 国产免费一级a男人的天堂| 国产精品久久久久久久久免 | 在线观看美女被高潮喷水网站 | 2021天堂中文幕一二区在线观| xxx96com| 国产黄色小视频在线观看| 亚洲成人久久性| 法律面前人人平等表现在哪些方面| 久久久久久大精品| 夜夜看夜夜爽夜夜摸| 国产v大片淫在线免费观看| 有码 亚洲区| 一级黄色大片毛片| 女人被狂操c到高潮| 少妇的逼好多水| 免费av不卡在线播放| 日本黄色片子视频| АⅤ资源中文在线天堂| 免费看光身美女| 国产精品美女特级片免费视频播放器| 热99在线观看视频| 久久久久免费精品人妻一区二区| 亚洲成av人片免费观看| 啦啦啦免费观看视频1| 成人精品一区二区免费| 黄片大片在线免费观看| 中文字幕人成人乱码亚洲影| 亚洲中文日韩欧美视频| 欧美成人一区二区免费高清观看| 色在线成人网| 看免费av毛片| 国模一区二区三区四区视频| 男女午夜视频在线观看| 脱女人内裤的视频| 免费观看人在逋| 日韩免费av在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 最近最新中文字幕大全免费视频| 伊人久久大香线蕉亚洲五| 两个人看的免费小视频| 91久久精品国产一区二区成人 | 麻豆国产av国片精品| 久久99热这里只有精品18| 国产精品99久久久久久久久| 熟女人妻精品中文字幕| 国产精品免费一区二区三区在线|