• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 600W Broadband Doherty Power Amplifier with Improved Linearity for Wireless Communication System

    2017-05-08 01:46:27JingLiWenhuaChenQianZhang
    China Communications 2017年2期

    Jing Li, Wenhua Chen, Qian Zhang

    Department of Electronic Engineering, Tsinghua University, Beijing100084, China

    * The corresponding author, email: chenwh@tsinghua.edu.cn

    I. INTRODUCTION

    With the evolution of communication standards, modern communication systems often require transmitters to work at multi-band or multi-standard operation efficiently. Besides,to reach higher data rate and spectral efficiency, complex modulation technique is employed, which results in high peak-to-average power ratio (PAPR). Power amplifier, which is used to amplify modulated signals, is a crucial part of the wireless transmitter and its performance affects the linearity and efficiency of the whole wireless communication systems.

    Doherty power amplifier (DPA) is an attractive choice to amplify modulated signals due to its high average efficiency. A number of bandwidth extension techniques have been proposed in recent years due to the demand of communication systems for multi-band and multi-standard operation [1]- [11]. These modified DPAs achieved high back-off and peak efficiency as well as good linearity. However,the traditional Doherty architecture does not always work well for higher power application especially at frequencies around 2GHz which is the mainstream wireless communication bands. The optimal impedance of high power transistors is usually much lower than the characteristic impedance of the communication system which makes it difficult to design matching networks due to the large impedance transformation ratio. [12] presented a threestage high power DPA to extend the back-off range. And [13] presented a high efficiency 3W-DPA with Class-F topology. A 200W DPA is carefully designed considering both fundamental and the second harmonic optimal impedance in [14]. An asymmetric Doherty architecture easing the matching structures is presented in [15]. And authors in [16]- [19]designed several high power and high efficiency DPAs using semiconductor technology.However, most of these high power amplifiers worked at one single frequency and few literatures proposed wide-band high power ampli fiers using packaged transistors.

    In general, there is a trade-off between efficiency and linearity especially for Doherty power amplifiers (DPAs). And DPAs with extended back-off range often have poor linearity which is difficult to be corrected even using digital pre-distortion algorithm. Therefore, it’s important to consider both high efficiency and good linearity for DPAs. Authors in [20] indicate that power amplifier devices contain more than one nonlinearity mechanism. Due to their interaction,the third order products IMD3 are affected not only by the fundamental component, but also the envelope and second harmonic frequenciesandIt means that the products at frequencyare added to the fundamental component atand contribute to the third order intermodulation products.

    Usually, the bias network acts as an inductance at envelope frequency and parallel resonation occurs due to the parasitic capacitor of the packaged transistor. Generally, the parasitic capacitor varies with different devices and the equivalent inductance depends on the desired frequency. For mostly used Cree’s HEMT, the resonant frequency is at 100MHz level. And the mainstream communication bands are separated by 100MHz~700MHz. Once the resonant frequency is close to the differential frequency when the DPA is excited by two-tone signals and then the produced inter-modulated components leads to poor linearity.

    The bandwidth from DC to this resonant frequency is defined as envelope bandwidth(EBW) by authors in this paper and in order to analyze its effect on linearity, the IMD2 and IMD3 is simulated and measured before and after extending EBW. And bandwidth, efficiency and linearity is discussed in detail on the basis of [21]. This paper is organized as follows: Section2.1 presents detailed analysis of the modified combining architecture and explain why this architecture has its advantage to design a wide-band and high efficiency power amplifier.Section2.2 defines the bandwidth from DC to the resonant frequency as envelope bandwidth(EBW) and the effect of EBW on concurrent multi-band performance of a broadband DPA is analyzed and Section2.3 provides several EBW extension techniques. Section3 presents the simulated and experimental results. Finally,conclusion is given in section4.

    II. THEORETICAL ANALYSIS OF THE PROPOSED 3W-DPA

    2.1 Analysis of the modified combining network

    The proposed output combining network for high power 3W-DPA is shown in Fig.1.

    According to the ABCD matrix of atransmission line, the drain voltage and current of carrier and peaking PA is written by

    The fundamental component of the drain current and voltage of the carrier and peaking PAs versus the normalized input voltagepro-files are shown in Fig.2 whereis the maximum drain current and Vdc is the bias voltage.

    Fig.1 Modified combining network for high power 3W-DPA

    As can be seen, the maximum magnitude of the output voltage equals the drain DC voltageand the maximum fundamental drain current is. Therefore, at the maximum output power level, equation (1) and (2) can be rewritten and simplified as

    As the carrier and peaking PAs have the same optimal impedances, which arethenequalsat the saturation power level in Fig.1, and the impedancesandseen from the two peaking PAs at the combining node are three times of the load impedance.

    The relation of the characteristic impedances of quarter-wave lines is derived from (3)and (4)

    Therefore, the drain impedance of the carrier PA at the saturation output power level is

    At low power region, the two peaking PAs is theoretically open at the combining node.The drain impedance of the carrier PA at the back-off output power level is

    Fig.2 (a) Fundamental component of the drain current pro files versus normalized input voltage;(b) Fundamental component of the drain voltage profiles versus normalized input voltage

    From (6) (7) and (8), there are four parameters,andtwo of which are free.Different load impedanceslead to different impedance bandwidth and letbe equal tothen there is

    This proposed combining architecture provides a wide impedance bandwidth at back off output power level because the desired impedance of the transistor at 9.5dB back-off level is also equal toConsidering the bandwidth of the other two paths at high power level, we utilized two quarter-wave lines with different characteristic impedance and the values are set asBesides, post matching network is needed to match the load impedanceto the characteristic impedance of the RF transmitter.

    2.2 Definition of envelope bandwidth for the broadband DPA

    A simplified low frequency equivalent circuit of the bias network at the drain of the power amplifier is shown in Fig.3. Bias networks of power amplifiers often act as small inductances at envelope frequency and then form the parallel network together with the parasitic capacitor of the transistor. Bandwidth from DC to the resonant frequency is defined as envelope bandwidth (EBW).

    Consider a broadband PA covering a frequency band fromtoas shown in Fig.4b. When this broadband PA is driven by two-tone Continuous Wave (CW) signals whose carrier frequencies areandthe

    If the resonant frequency of the device is close to the differential frequency of two-tone concurrent input signals, and this parallel resonation produces a higher impedance seen from the ideal current source of the transistor which leads to concurrent performance degradation.

    The contribution of products at envelope frequency to the total third order inter-modulation (IM3) can be seen from the composition of IM3 in Fig.4a.second order inter-modulation (IMD2) component falls into region I. Once the frequency differenceequals EBW, strong nonlinearity and reduced output power occurs.Therefore, EBW should be extended out of region I to guarantee a satisfying concurrent performance of the broadband PA.

    2.3 EBW extension techniques

    As multi-band concurrent performance of a broadband DPA deteriorates evidently due to the narrow EBW, measures must be taken in broadband DPA circuits to extend EBW.

    The drain bias network is equivalent to an inductance at low frequency and forms parallel resonation together with the parasitic capacitor. From (10), although the parasitic capacitor cannot be changed, a conclusion still can be reached that a reduced equivalent inductance makes a higher resonant frequency which means a wider EBW. Then there are several practical tips to extend EBW of the broadband 3W-DPA based on above analysis.

    2.3.1 Shorter micro-strip line of the bias network

    Usually, the bias networks is amicro-strip line at RF frequency and its low frequency equivalent inductanceis proportional to its electrical length. Therefore, if the length of the micro-strip line is shorter than, the equivalent inductanceis also reduced. And then,the EBW of the proposed PA can be extended as expected.

    2.3.2 Balanced DC supply network:

    A balanced drain bias network provides two equivalent inductances in parallel, thus the effective inductance at the drain of transistor is also reduced. So the traditional single-stub micro-strip line can be replaced by balanced DC power supply network for wider EBW.

    Fig.3 Simplified equivalent circuit of the bias network at the drain of the PA

    Fig.4 (a) Contribution of the second order inter-modulation to IM3; (b) Spectrum of broadband PA under two-tone excitation

    As for the proposed broadband 3W-DPA,its schematic diagram is depicted in Fig.5a and the simplified diagram of the drain bias network is shown in Fig.5b. Three transistors in the circuit are powered by one voltage source placed at the end of the feeding line of thefirst peaking PA. Each section of transmission line in Fig.5b has the same length to simplify the analysis. LC equivalent networks at the drain of each transistor are also shown in Fig.5b.is an envelope decoupling capacitor. The feed line’s impedances at the drain of each transistor are expressed as follows.

    Fig.5 (a) Schematic diagram of the proposed 3W-DPA; (b) Simplified bias network of the proposed 3W-DPA; (c) Photograph of the proposed 3W-DPA

    As can be seen, the LC networks resonate at a higher frequency and EBW of the threeway DPA is extended as well.

    III. IMPLEMENTATION OF A BROADBAND 3W-DPA AND EXPERIMENTAL RESULTS

    3.1 Design of the broadband 3W-DPA

    Based on the theoretical analysis of the proposed three-way combining network for high power amplifiers, a broadband 3W-DPA using three CGHV22200 transistors is fabricated on a RF60 substrate as illustrated in Fig.5c. Its output matching network is modified slightly due to parasitic effects and the optimal impedance is decided by load-pull simulation. Besides, post matching network is used to match the load impedance to the system impedance.The bias network of the proposed 3W-DPA is marked with red line in Fig.5c. Large decoupling capacitors are added in the bias network to extend EBW. The gate of two peaking PAs is biased at -5.5V and the carrier PA is biased at -2.73V with 50V drain bias. The input power is divided equally by 3dB and 5dB hybrid couplers in cascade into the gate of these three transistors.

    3.2 Simulated performance of the proposed 3W-DPA using continuous wave

    The simulated result of the proposed 3W-DPA using continuous wave (CW) is shown in Fig.6a. As can be seen, its drain efficiency at back-off region is above 50% from 1.9 GHz to 2.2 GHz and the output power is about 600W with gains above 10dB. To verify the effect of EBW on the 3W-DPA’s two-tone concurrent performance, two-tone CW signal is used to excite this 3W-DPA. One frequencyisfixed,and the frequency intervalis swept from 40MHz to 180MHz. Simulated IMD2 and IMD3 versus frequency intervals are shown in Fig.7.

    IMD2 and IMD3 varies with the frequency differenceand IMD3 atalmost gets close to the output power level at fundamental frequency which means strong nonlinearity and makes it hard to correct the nonlinearity of the DPA even with digital pre-distortion (DPD) algorithm. After employing EBW extension techniques mentioned above, Fig.7b shows that EBW is extended to 170MHz from 90 MHz and the worst IMD3 of 3W-DPA is also improved by about 9dB. Therefore, linearity of the broadband 3W-DPA is also improved.

    Fig.6 (a) Simulated drain efficiency and power gain at different frequencies(b) Measured drain efficiency and power gain at different frequencies

    3.3 Measured performance of the proposed 3W-DPA using continuous wave

    Drain efficiency and power gain of this 3W-DPA is measured with a 10%-duty cycle pulse CW signal. As can be seen from Fig.7b,the designed 3W-DPA delivers 57.7dBm maximum output power. The back-off drain efficiency is above 45% from 2GHz to 2.2GHz while the efficiency decreases slightly to 35.5% at 1.9GHz and drain efficiency at saturation output power level is above 47.5%. In addition, the measured power gain is above 10dB across the whole band. The performance of this 3W-DPA is also compared with several high power amplifiers in table1.

    Fig. 7(a) Simulated IMD2 before and after extending EBW versus frequency intervals; (b) Simulated IMD3 before and after extending EBW versus frequency intervals

    Table I Comparison with three-way high power Doherty PA

    To measure the concurrent performance of the designed broadband DPA, two-tone CW signals with the same input power are used to feed into the input port of this 3W-DPA. Thefirst frequencyisfixed on 1.92GHz and the second frequencychanges from 1.96GHz to 2.1GHz. Measured IMD2 and IMD3 are shown in Fig.8, which indicates the measured EBW is extended to 120 MHz from 70MHz and the worst IMD3 of proposed 3W-DPA is improved by about 5dB.

    3.4 Measured results using twotone modulated signals

    Then the 3W-DPA is also excited by two-tone modulation signals and the measured adjacent channel power ratio (ACPR) versus carrier frequency intervalsshown in Fig.9a suggests that linearity of this high power amplifier is improved by 5dB.

    Finally, the concurrent power spectrum density (PSD) of this 3W-DPA measured with two-tone LTE signals at frequency 1.92 GHz and 2.01 GHz is shown in Fig.9b. EBW extension techniques are employed in this circuit to improve linearity, so ACPR is easily decreased under -45dBc at these two frequencies after applying digital pre-distortion (DPD).

    IV. CONCLUSION

    It is a great challenge to synthesize a broadband network for high power DPA as the optimal impedance of a high power transistor is much lower. Hence, modified combing network suitable to high power Doherty power amplifier is proposed and analyzed in this paper. Impedance bandwidth of this combining network varies with different load impedances.The proposed high power 3W-DPA is carefully designed considering both bandwidth and design complexity.

    Fig.8 (a) Measured IMD2 before and after extending EBW versus frequency intervals; (b) Measured IMD3 before and after extending EBW versus frequency intervals

    Fig.9 (a) Measured ACPR before and after extending EBW versus frequency intervals; (b) Measured concurrent spectrum at 1.92GHz and 2.01GHz with and without 2D-DPD after extending EBW

    In addition, EBW is defined as the resonant frequency in this paper. When a broadband DPA is used to amplify two-tone modulated signals, narrow EBW results in strong nonlinearity especially under condition that carrier frequency interval equals EBW. Several EBW extension techniques are provided to improve the concurrent performance such as employing shorter micro-strip lines and balanced supply bias networks. Finally, EBW of this broadband 3W-DPA is extended to 120MHz from 70MHz and its linearity is also improved by about 5dB.

    This work was supported in part by the National Basic Research Program of China(Grant No. 2014CB339900), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. Grant 2015ZX03002002 and Grant 2016ZX03002009, and Grant 2016ZX03001005), the 863 program (Grant No. 2015AA010802), the National Natural Science Foundation of China (Grant No.61522112, 61331003), and the New Century Excellent Talents in University (NCET).

    [1] D. Y. T. Wu and S. Boumaiza, “A Modified Doherty Con figuration for Broadband Ampli fication Using Symmetrical Devices,”IEEE Trans.Microw. Theory Tech., vol. 60, no. 10, pp. 3201-3213, Oct. 2012.

    [2] R. Giofré, L. Piazzon, P. Colantonio and F. Giannini, “A Doherty Architecture with High Feasibility and Defined Bandwidth Behavior,”IEEE Trans.Microw. Theory Tech., vol. 61, no. 9, pp. 3308-3317, Sept. 2013.

    [3] G. Sun and R. H. Jansen, “Broadband Doherty Power Amplifier via Real Frequency Technique,”IEEE Trans. Microw. Theory Tech., vol. 60, no. 1,pp. 99-111, Jan. 2012

    [4] J. M. Rubio, J. Fang, V. Camarchia, et al, “3–3.6-GHz Wideband GaN Doherty Power Amplifier Exploiting Output Compensation Stages,”IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp.2543-2548, Aug. 2012

    [5] H. Golestaneh, F. A. Malekzadeh and S. Boumaiza, “An Extended-Bandwidth Three-Way Doherty Power Amplifier,”IEEE Trans. Microw. Theory Tech., vol. 61, no. 9, pp. 3318-3328, Sept. 2013

    [6] C. M. Andersson, D. Gustafsson, J. Chani Cahuana, et al, “A 1–3-GHz Digitally Controlled Dual-RF Input Power-Amplifier Design Based on a Doherty-Outphasing Continuum Analysis,”IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp.3743-3752, Oct. 2013

    [7] M. N. A. Abadi, H. Golestaneh, H. Sarbishaei and S. Boumaiza, “An extended bandwidth Doherty power amplifier using a novel output combiner,”2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, 2014, pp. 1-4.

    [8] R. Giofrè, L. Piazzon, P. Colantonio,et al, “A Closed-Form Design Technique for Ultra-Wideband Doherty Power Amplifiers,”IEEE Trans.Microw. Theory Tech., vol. 62, no. 12, pp. 3414-3424, Dec. 2014.

    [9] X. H. Fang and K. K. M. Cheng, “Improving Power Utilization Factor of Broadband Doherty Amplifier by Using Bandpass Auxiliary Transformer,”IEEE Trans. Microw. Theory Tech., vol. 63, no. 9,pp. 2811-2820, Sept. 2015.

    [10] R. Kalyan, K. Rawat and S. K. Koul, “Design strategy of concurrent multi-band Doherty power amplifier,”IET Microwaves, Antennas & Propagation, vol. 9, no. 12, pp. 1313-1322, 9 17 2015

    [11] J. Pang, S. He, C. Huang, et al, “A Post-Matching Doherty Power Amplifier Employing Low-Order Impedance Inverters for Broadband Applications,”IEEE Trans. Microw. Theory Tech., vol. 63,no. 12, pp. 4061-4071, Dec. 2015.

    [12] M. J. Pelk, W. C. E. Neo, J. R. Gajadharsing,et al, “A High-Efficiency 100-W GaN Three-Way Doherty Amplifier for Base-Station Applications,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 7, pp.1582-1591, July 2008

    [13] J. Moon, J. Kim, I. Kim, et al, “Highly Efficient Three-Way Saturated Doherty Amplifier with-Digital Feedback Predistortion,”IEEE Trans.Microw. Theory Tech., vol. 18, no. 8, pp. 539-541,Aug. 2008.

    [14] K. Bathich, M. T. Arnous and G. Boeck, “Design of 200 W wideband Doherty amplifier with 34% bandwidth,”2013 European Microwave Conference, Nuremberg, 2013, pp. 279-282.

    [15] J. Staudinger, G. Bouisse and J. Kinney, “High efficiency 450W asymmetric three-device Doherty amplifier with digital feedback predistortion,”2010 IEEE Radio and Wireless Symposium (RWS),New Orleans, LA, 2010, pp. 116-119.

    [16] S. Embar R., L. Wang, J. Kim, et al, “A 400 W 2-way asymmetrical doherty PA with 50% efficiency based on second-generation airfastTMLDMOS technology,”2015 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), San Diego, CA, 2015, pp. 1-3.

    [17] J. Kim, B. Fehri, S. Boumaiza and J. Wood, “Power Efficiency and Linearity Enhancement Using Optimized Asymmetrical Doherty Power Amplifiers,”IEEE Trans. Microw. Theory Tech., vol. 59,no. 2, pp. 425-434, Feb. 2011.

    [18] H. Deguchi, N. Watanabe, A. Kawano, et al, “A 2.6GHz band 537W peak power GaN HEMT asymmetric Doherty amplifier with 48% drain efficiency at 7dB,”2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC,Canada, 2012, pp. 1-3.

    [19] T. Landonet al., “Design of a 600W Doherty using generation 2 HVHBT with 55% WCDMA efficiency linearized to ?55dBc for 2c11 6.5dB PAR,”2012 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications,Santa Clara, CA, 2012, pp. 73-76.

    [20] Vuolevi J, Rahkonen T. Distortion in RF power amplifiers[M]. Artech house, 2003.

    [21] Jing Li, Jianli Liu, Wenhua Chen, Gongzhe Su and Zonghao Wang, “A 600W broadband threeway Doherty power amplifier for multi-standard wireless communications,” 2015 IEEE MTT-S International Microwave Symposium, Phoenix,AZ, 2015, pp. 1-3.

    [22] H. Kang; H. Lee; H. Oh; W. Lee; C. s. Park; K. C.Hwang; K. Y. Lee; Y. Yang, “Symmetric Three-Way Doherty Power Amplifier for High Efficiency and Linearity,”IEEE Transactions on Circuits and Systems II: Express Briefs, vol.PP, no.99,pp.1-1

    久久青草综合色| 国产三级黄色录像| 日韩成人在线观看一区二区三区| 欧美成人午夜精品| 亚洲色图av天堂| 欧美乱色亚洲激情| 又黄又爽又免费观看的视频| 久久久久久久久中文| 亚洲aⅴ乱码一区二区在线播放 | 成熟少妇高潮喷水视频| 欧美色欧美亚洲另类二区| 久久久久久大精品| www.自偷自拍.com| 欧美成人午夜精品| 侵犯人妻中文字幕一二三四区| 757午夜福利合集在线观看| 亚洲国产欧美日韩在线播放| 欧美亚洲日本最大视频资源| 国产精品一区二区免费欧美| 美女 人体艺术 gogo| 后天国语完整版免费观看| 在线观看午夜福利视频| 精品欧美国产一区二区三| 真人一进一出gif抽搐免费| 国产精品 国内视频| 国产av一区在线观看免费| 视频在线观看一区二区三区| 国产精品九九99| 亚洲熟妇熟女久久| 亚洲精品久久成人aⅴ小说| 丰满的人妻完整版| 欧美激情极品国产一区二区三区| 欧美激情极品国产一区二区三区| 亚洲无线在线观看| 欧美在线黄色| 欧美一区二区精品小视频在线| 欧美性长视频在线观看| 国产激情欧美一区二区| 国产成人精品久久二区二区免费| www.自偷自拍.com| 久久精品影院6| 嫩草影院精品99| 久久久国产欧美日韩av| 国产精品免费视频内射| 超碰成人久久| 久久精品亚洲精品国产色婷小说| 久久久久国产精品人妻aⅴ院| 韩国精品一区二区三区| 黄色视频不卡| a级毛片在线看网站| 久久精品91无色码中文字幕| 波多野结衣高清作品| 国产私拍福利视频在线观看| 久久久久亚洲av毛片大全| 色在线成人网| 啦啦啦免费观看视频1| 国产欧美日韩一区二区三| 欧美+亚洲+日韩+国产| 不卡一级毛片| 国产精品98久久久久久宅男小说| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品一卡2卡三卡4卡5卡| 亚洲三区欧美一区| 手机成人av网站| 亚洲一区高清亚洲精品| 村上凉子中文字幕在线| 1024视频免费在线观看| 人人妻人人看人人澡| 国产高清有码在线观看视频 | 桃红色精品国产亚洲av| 国产精品乱码一区二三区的特点| 国产精品 国内视频| 午夜福利欧美成人| 亚洲 欧美一区二区三区| 亚洲五月天丁香| 免费在线观看完整版高清| 日韩欧美 国产精品| 高潮久久久久久久久久久不卡| 久久精品91无色码中文字幕| avwww免费| 日本五十路高清| 日韩 欧美 亚洲 中文字幕| 色哟哟哟哟哟哟| 婷婷精品国产亚洲av| 欧美国产精品va在线观看不卡| 美女免费视频网站| 亚洲人成网站在线播放欧美日韩| 亚洲激情在线av| 亚洲国产毛片av蜜桃av| 丝袜在线中文字幕| 国语自产精品视频在线第100页| 精品卡一卡二卡四卡免费| 夜夜躁狠狠躁天天躁| 1024视频免费在线观看| 在线永久观看黄色视频| 神马国产精品三级电影在线观看 | 国产精品亚洲美女久久久| 我的亚洲天堂| 性欧美人与动物交配| 亚洲成人久久爱视频| 在线观看免费日韩欧美大片| 99国产极品粉嫩在线观看| 国产一区二区三区视频了| 白带黄色成豆腐渣| 国产成+人综合+亚洲专区| 黄色a级毛片大全视频| 国产片内射在线| 色av中文字幕| 国产熟女午夜一区二区三区| 人成视频在线观看免费观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久午夜电影| 波多野结衣高清作品| 欧美黑人精品巨大| 亚洲成人国产一区在线观看| 亚洲成人精品中文字幕电影| 一区二区三区高清视频在线| 麻豆成人av在线观看| 日本熟妇午夜| 国产亚洲精品av在线| 精品一区二区三区av网在线观看| 久久热在线av| 中文字幕最新亚洲高清| 欧美成人免费av一区二区三区| 97超级碰碰碰精品色视频在线观看| 久9热在线精品视频| 亚洲精品中文字幕在线视频| 亚洲自拍偷在线| 亚洲第一av免费看| 99国产极品粉嫩在线观看| 黄色 视频免费看| 一级a爱视频在线免费观看| 一本综合久久免费| 男男h啪啪无遮挡| 亚洲在线自拍视频| 熟女少妇亚洲综合色aaa.| av片东京热男人的天堂| 无人区码免费观看不卡| 中文字幕精品亚洲无线码一区 | 久久久久久久午夜电影| 午夜福利在线在线| 亚洲最大成人中文| 色综合婷婷激情| netflix在线观看网站| 国产黄片美女视频| www.自偷自拍.com| 国产一区在线观看成人免费| 日韩欧美一区二区三区在线观看| 久久99热这里只有精品18| 久久天堂一区二区三区四区| 国产欧美日韩精品亚洲av| videosex国产| 黄频高清免费视频| 亚洲黑人精品在线| 亚洲五月天丁香| 欧美乱妇无乱码| 女警被强在线播放| 久久久久久亚洲精品国产蜜桃av| 中出人妻视频一区二区| 亚洲国产中文字幕在线视频| xxx96com| 精品卡一卡二卡四卡免费| www日本在线高清视频| 一二三四在线观看免费中文在| 亚洲成人免费电影在线观看| 午夜视频精品福利| 久久欧美精品欧美久久欧美| 中文字幕人成人乱码亚洲影| 欧美黑人欧美精品刺激| 窝窝影院91人妻| 成人永久免费在线观看视频| 成年版毛片免费区| 999久久久精品免费观看国产| 老司机靠b影院| 亚洲av成人不卡在线观看播放网| 波多野结衣av一区二区av| 欧美在线黄色| 少妇被粗大的猛进出69影院| 亚洲久久久国产精品| av有码第一页| 亚洲七黄色美女视频| 又大又爽又粗| 操出白浆在线播放| 精品久久蜜臀av无| 高清在线国产一区| 日日摸夜夜添夜夜添小说| 欧美精品亚洲一区二区| 久久精品91蜜桃| 18禁观看日本| 啦啦啦免费观看视频1| 国产私拍福利视频在线观看| 欧美性猛交黑人性爽| 国产成人精品无人区| 视频在线观看一区二区三区| 亚洲成人久久爱视频| 精品日产1卡2卡| xxx96com| 美国免费a级毛片| 亚洲人成网站在线播放欧美日韩| 午夜福利高清视频| 日韩 欧美 亚洲 中文字幕| 99精品欧美一区二区三区四区| 91成年电影在线观看| 久久中文字幕人妻熟女| 听说在线观看完整版免费高清| 亚洲无线在线观看| a级毛片a级免费在线| 亚洲av日韩精品久久久久久密| 国产av不卡久久| 十八禁网站免费在线| 亚洲精品美女久久av网站| 亚洲人成77777在线视频| 一区二区日韩欧美中文字幕| 国产精品免费一区二区三区在线| 久久亚洲真实| 人人澡人人妻人| 国内少妇人妻偷人精品xxx网站 | 日韩欧美在线二视频| 亚洲在线自拍视频| 人人妻人人看人人澡| 超碰成人久久| 欧美精品亚洲一区二区| 欧美人与性动交α欧美精品济南到| 91国产中文字幕| 欧美人与性动交α欧美精品济南到| 天天添夜夜摸| 成在线人永久免费视频| 欧美zozozo另类| 日韩高清综合在线| 中文字幕人妻熟女乱码| 国产视频内射| 久久伊人香网站| 亚洲人成网站高清观看| 中文字幕高清在线视频| 国产精品99久久99久久久不卡| 女同久久另类99精品国产91| 国产精品综合久久久久久久免费| av天堂在线播放| 久久久久亚洲av毛片大全| 亚洲第一av免费看| 国产精品,欧美在线| 国产午夜精品久久久久久| 丝袜美腿诱惑在线| 久久亚洲真实| 别揉我奶头~嗯~啊~动态视频| aaaaa片日本免费| 特大巨黑吊av在线直播 | 亚洲真实伦在线观看| 国产又色又爽无遮挡免费看| 欧美激情 高清一区二区三区| 国产午夜精品久久久久久| 国内毛片毛片毛片毛片毛片| 1024视频免费在线观看| 最新在线观看一区二区三区| 人人澡人人妻人| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产欧美网| 午夜激情av网站| 一区二区三区高清视频在线| 成人三级黄色视频| 黄片小视频在线播放| 久久久国产精品麻豆| 男女视频在线观看网站免费 | a级毛片在线看网站| 亚洲人成电影免费在线| 精品午夜福利视频在线观看一区| 欧美黑人欧美精品刺激| 哪里可以看免费的av片| 18禁美女被吸乳视频| 香蕉国产在线看| 老司机午夜福利在线观看视频| 人人澡人人妻人| 亚洲va日本ⅴa欧美va伊人久久| 不卡一级毛片| 搡老岳熟女国产| 哪里可以看免费的av片| 欧美zozozo另类| 国产麻豆成人av免费视频| 国产精品久久电影中文字幕| 久久国产亚洲av麻豆专区| 成人国产综合亚洲| 日韩免费av在线播放| 久久精品国产亚洲av香蕉五月| 久久久久久国产a免费观看| 啪啪无遮挡十八禁网站| 一进一出抽搐动态| 日本在线视频免费播放| 91在线观看av| 妹子高潮喷水视频| 午夜福利欧美成人| 色综合站精品国产| www.www免费av| 性欧美人与动物交配| 成人一区二区视频在线观看| 曰老女人黄片| 精华霜和精华液先用哪个| 午夜免费激情av| 午夜日韩欧美国产| 男女下面进入的视频免费午夜 | www.熟女人妻精品国产| 观看免费一级毛片| 国产精品野战在线观看| 岛国在线观看网站| 午夜视频精品福利| 丰满的人妻完整版| 亚洲av第一区精品v没综合| 久久久久国内视频| 国产麻豆成人av免费视频| 18美女黄网站色大片免费观看| 一边摸一边抽搐一进一小说| 国产色视频综合| 黄色丝袜av网址大全| 亚洲成人免费电影在线观看| av有码第一页| 国内精品久久久久久久电影| 国产精品1区2区在线观看.| 国产精品二区激情视频| 免费在线观看成人毛片| 韩国av一区二区三区四区| 国产又爽黄色视频| 老鸭窝网址在线观看| 日本撒尿小便嘘嘘汇集6| 久久热在线av| 婷婷亚洲欧美| 巨乳人妻的诱惑在线观看| 国产一区二区三区在线臀色熟女| 91av网站免费观看| 亚洲成人久久爱视频| 天堂影院成人在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 精品人妻1区二区| 亚洲成人国产一区在线观看| а√天堂www在线а√下载| 午夜老司机福利片| 一本精品99久久精品77| 国产免费男女视频| 男人舔奶头视频| АⅤ资源中文在线天堂| 色精品久久人妻99蜜桃| 精品午夜福利视频在线观看一区| 看片在线看免费视频| 成年版毛片免费区| 女人高潮潮喷娇喘18禁视频| 国产精品二区激情视频| 色精品久久人妻99蜜桃| 免费看日本二区| 亚洲国产欧美网| 亚洲精品在线美女| 久久亚洲精品不卡| 免费观看人在逋| 无人区码免费观看不卡| 黄片播放在线免费| 精品少妇一区二区三区视频日本电影| 国产主播在线观看一区二区| 亚洲精品中文字幕一二三四区| 女人被狂操c到高潮| 成人永久免费在线观看视频| 男女午夜视频在线观看| 久久久久久久精品吃奶| 色av中文字幕| 亚洲精品在线美女| 午夜亚洲福利在线播放| 久久国产精品人妻蜜桃| 国产三级在线视频| 欧美成狂野欧美在线观看| 白带黄色成豆腐渣| 亚洲精品粉嫩美女一区| 色尼玛亚洲综合影院| 亚洲真实伦在线观看| 丝袜人妻中文字幕| 精品卡一卡二卡四卡免费| 久久婷婷人人爽人人干人人爱| а√天堂www在线а√下载| 人妻丰满熟妇av一区二区三区| 身体一侧抽搐| 国产伦人伦偷精品视频| 观看免费一级毛片| 男人舔女人下体高潮全视频| 一进一出抽搐动态| 女同久久另类99精品国产91| 淫秽高清视频在线观看| 亚洲国产精品久久男人天堂| 每晚都被弄得嗷嗷叫到高潮| 久久久精品欧美日韩精品| 精品久久久久久成人av| 一进一出抽搐gif免费好疼| 1024视频免费在线观看| 搡老熟女国产l中国老女人| 18禁国产床啪视频网站| 日本撒尿小便嘘嘘汇集6| 国产精品99久久99久久久不卡| 在线免费观看的www视频| 欧美性长视频在线观看| 欧美av亚洲av综合av国产av| 一本久久中文字幕| 亚洲国产日韩欧美精品在线观看 | 2021天堂中文幕一二区在线观 | 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕高清在线视频| 久久亚洲精品不卡| 日韩一卡2卡3卡4卡2021年| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区三| 人人妻人人澡人人看| 侵犯人妻中文字幕一二三四区| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 久久欧美精品欧美久久欧美| 国产高清有码在线观看视频 | 大香蕉久久成人网| 国产精品野战在线观看| 亚洲国产毛片av蜜桃av| 国产精品久久视频播放| 久久国产亚洲av麻豆专区| 欧美日本亚洲视频在线播放| 这个男人来自地球电影免费观看| 黄色毛片三级朝国网站| 国产真人三级小视频在线观看| 操出白浆在线播放| 婷婷亚洲欧美| 久久久久久国产a免费观看| 精品久久蜜臀av无| 亚洲三区欧美一区| 亚洲av电影在线进入| 国内久久婷婷六月综合欲色啪| 国产爱豆传媒在线观看 | 69av精品久久久久久| 国产激情欧美一区二区| 国产又色又爽无遮挡免费看| 好男人在线观看高清免费视频 | 成人亚洲精品一区在线观看| 欧美日韩亚洲国产一区二区在线观看| 韩国精品一区二区三区| 满18在线观看网站| 一级毛片精品| 搡老岳熟女国产| 欧美日韩一级在线毛片| 91字幕亚洲| 亚洲av熟女| 50天的宝宝边吃奶边哭怎么回事| 波多野结衣高清无吗| 成人午夜高清在线视频 | 此物有八面人人有两片| 狠狠狠狠99中文字幕| 久久热在线av| 神马国产精品三级电影在线观看 | 丝袜美腿诱惑在线| 美女扒开内裤让男人捅视频| 亚洲三区欧美一区| 色综合站精品国产| 人妻久久中文字幕网| 在线观看www视频免费| 欧美性猛交黑人性爽| 色综合欧美亚洲国产小说| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 午夜福利成人在线免费观看| 国产午夜福利久久久久久| 观看免费一级毛片| 亚洲一区二区三区不卡视频| 妹子高潮喷水视频| 国产精品免费一区二区三区在线| 在线观看午夜福利视频| 成人三级做爰电影| 国产亚洲av高清不卡| 国产精品精品国产色婷婷| 级片在线观看| 日本五十路高清| 日韩高清综合在线| netflix在线观看网站| 一区二区日韩欧美中文字幕| 国产真实乱freesex| 少妇熟女aⅴ在线视频| 十八禁网站免费在线| 中文字幕人妻熟女乱码| 老司机深夜福利视频在线观看| 香蕉av资源在线| 热99re8久久精品国产| 在线观看66精品国产| 亚洲人成77777在线视频| www.熟女人妻精品国产| 此物有八面人人有两片| 欧美成人一区二区免费高清观看 | 国产成年人精品一区二区| 狂野欧美激情性xxxx| 身体一侧抽搐| 精品免费久久久久久久清纯| 我的亚洲天堂| 国内揄拍国产精品人妻在线 | 国产精品一区二区免费欧美| 午夜福利18| 成人手机av| 一本精品99久久精品77| 国产精品久久久久久亚洲av鲁大| 国产精品 国内视频| 人人妻人人看人人澡| 1024香蕉在线观看| 女人被狂操c到高潮| 悠悠久久av| 国产精品久久久久久人妻精品电影| 久久 成人 亚洲| 免费电影在线观看免费观看| 少妇的丰满在线观看| 久久久久久九九精品二区国产 | 精品国产乱码久久久久久男人| 精品一区二区三区av网在线观看| 一级a爱片免费观看的视频| 欧美色视频一区免费| 777久久人妻少妇嫩草av网站| or卡值多少钱| 欧美一级a爱片免费观看看 | 国产野战对白在线观看| 欧美成狂野欧美在线观看| 激情在线观看视频在线高清| 露出奶头的视频| 国产成人av激情在线播放| 久久精品夜夜夜夜夜久久蜜豆 | 十八禁网站免费在线| 中出人妻视频一区二区| 91字幕亚洲| 青草久久国产| 国产精品乱码一区二三区的特点| 女性生殖器流出的白浆| 最近最新中文字幕大全电影3 | 午夜免费激情av| 黑人巨大精品欧美一区二区mp4| 18美女黄网站色大片免费观看| 久久国产精品影院| 亚洲黑人精品在线| 欧美不卡视频在线免费观看 | 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久久人妻蜜臀av| 久久久久久久久久黄片| 黄色丝袜av网址大全| av在线播放免费不卡| 亚洲欧美精品综合久久99| 日本五十路高清| 无人区码免费观看不卡| 成人国产一区最新在线观看| 国产真实乱freesex| 一区二区三区高清视频在线| 真人一进一出gif抽搐免费| 国产视频一区二区在线看| 男人的好看免费观看在线视频 | 亚洲中文av在线| 国产99久久九九免费精品| 日韩欧美三级三区| 精品高清国产在线一区| 国产私拍福利视频在线观看| 制服人妻中文乱码| 国产精品久久久久久精品电影 | 午夜a级毛片| 中出人妻视频一区二区| 色在线成人网| 女人被狂操c到高潮| 97人妻精品一区二区三区麻豆 | 人人妻人人看人人澡| 亚洲无线在线观看| 9191精品国产免费久久| 亚洲狠狠婷婷综合久久图片| 91在线观看av| 听说在线观看完整版免费高清| netflix在线观看网站| av在线天堂中文字幕| 国产成+人综合+亚洲专区| 性色av乱码一区二区三区2| 一本大道久久a久久精品| 搡老妇女老女人老熟妇| 亚洲最大成人中文| 夜夜爽天天搞| 熟女电影av网| 欧美人与性动交α欧美精品济南到| 亚洲精品中文字幕在线视频| 精品欧美国产一区二区三| 动漫黄色视频在线观看| 国产色视频综合| 12—13女人毛片做爰片一| 久99久视频精品免费| 亚洲精品一区av在线观看| 国产v大片淫在线免费观看| 男女做爰动态图高潮gif福利片| 天堂影院成人在线观看| 欧美黄色片欧美黄色片| 日日夜夜操网爽| 欧美性猛交黑人性爽| 国产亚洲精品av在线| 一夜夜www| 国产精品98久久久久久宅男小说| 视频在线观看一区二区三区| 一边摸一边做爽爽视频免费| 黄片大片在线免费观看| 国产高清视频在线播放一区| 欧美色欧美亚洲另类二区| 亚洲第一av免费看| 国产精品久久电影中文字幕| 在线观看一区二区三区| √禁漫天堂资源中文www| 国产不卡一卡二| 国产精品 欧美亚洲| 午夜免费观看网址| 九色国产91popny在线| 久久久久久久久久黄片| 亚洲精品av麻豆狂野| 久久久久久大精品| 少妇熟女aⅴ在线视频| 夜夜爽天天搞| 熟女电影av网| 18禁裸乳无遮挡免费网站照片 | avwww免费| 高清在线国产一区| 免费电影在线观看免费观看| 精品国产乱子伦一区二区三区| 长腿黑丝高跟| 久久久久久久久中文|