• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    構(gòu)建AP-HTPB固體推進(jìn)劑松弛模量主曲線的不同方法

    2017-05-07 01:26:33WalidAdel梁國(guó)柱
    含能材料 2017年10期
    關(guān)鍵詞:梁國(guó)北京航空航天大學(xué)宇航

    Walid M Adel, 梁國(guó)柱

    (北京航空航天大學(xué)宇航學(xué)院, 北京100083 )

    1 Introduction

    The solid propellant exhibits very complicated viscoelastic behavior and its mechanical properties (the relationship between tension and stress) and failure mechanisms are really sensible at the time of application loads, and temperature change. Relaxation modulus is one of the most important mechanical properties of viscoelastic materials which can be used to simulate the viscoelastic material behavior[1]. The master curve of the relaxation modulus is defined as the relationship between the relaxation modulus and the reduced loading time and it is constructed based on a selected reference temperature of interest to which all data must be shifted using shift factors. The shift factor is defined as a unique parameter which takes into account both the temperature and strain rate effects of the temperature of interest relative to the reference temperature[2]. Depending on a master curve, the mechanical properties and the behavior of composite solid propellant can be predicted at different times and temperatures based on a limited set of experimental data. This anticipation is often performed through basic time-temperature superposition (TTS) principle.

    The related publications in the extant literature, primarily concentrate on the application of TTS principle of solid propellant under different loading conditions. Chyuan analyzed numerically the structural integrity of HTPB solid propellant grains subjected to temperature loading[3], ignition pressurization loading[4], and Poisson′s ratio varies under ignition pressure loading[5], using a constitutive model based on the relaxation testing that employed the TTS and reduced integration by using WLF method. B. K. Bihari et al.[6]used both method WLF and Arrhenius to determine the activation energy of composite solid propellant to predict the useful lifetime of solid propellant. Marimuthu et al.[7]simulated the structural integrity of the solid propellant grains under gravity loading and inner pressure using relaxation tests and the TTS to specify the effective Poisson′s ratio and Young′s modulus. Moreover, Xu[8]proposed a new method to get the relaxation modulus of HTPB propellants using the TTS in the temperature range of -50 ℃ to +35 ℃. John Kim et al.[1]estimated the master curve of the relaxation modulus for solid propellant according to the basic TTS method and WLF method, but without comparison between the two methods. Some studies have been focused on comparing different TTS methods and methods to generate the relaxation modulus master curve, but using different materials for example Allex E. Alvarez et al.[9]evaluated various methods and examples that can be satisfactorily applied to get the relaxation modulus master curves of hot-mix asphalt (HMA) by using three methods WLF, Arrhenius, and an optimization technique with the sum of square error (SSE) method. However, there is still limited information available about the difference between the methods that usually used to generate the relaxation modulus master curves of solid propellant, therefore, further researches should be performed to demonstrate the differences between these methods.

    In this work, the specimen preparation and the stress relaxation tests at different temperatures are conducted.The three methods of generating the relaxation modulus master curves are discussed. Then the best fit model for the experimental data are presented.

    2 Material and Experiment

    2.1 Material and Specimens Preparation

    The solid propellant used in this research is a heterogeneous propellant which consists of solid oxidizer particles ammonium perchlorate (AP) 67%, and metallic fuel particle aluminum powder (Al) 18%, dispersing in polymeric binder matrix (HTPB) forming the rest percentage. These gradients were mixed together, and then the propellant slurry was cast in special molds under vibration and vacuum with internal dimensions of 200 mm× 150 mm× 150 mm. Then the molds are placed in a large curing oven with temperature controlled at 60 ℃, for a total curing time of 240 h. After curing the molds are cut into sheets with a uniform thickness. And so the test specimens (shown in Fig.1) are produced using special cut press according to Joint Army-Navy-NASA-Air Force Propulsion Committee (JANNAF) standard[10], and the dimensions of the test specimens are illustrated in Fig. 2. The actual thickness of the specimens is 11.04 mm less than the standard one due to some limitation of the sheet cutting machine. As a quality control step, the produced specimens are checked by a non-destructive method for voids like air bubbles or micro cracks by X-Ray to ensure the result of experimental data. After that, the accepted specimens were stored in desiccators at ambient temperature and relative humidity RH≤30%. The mechanical and physical prosperities of the selected solid propellant (measured at room temperature) are listed in Table 1.

    Fig.1 HTPB solid propellant test specimen

    Fig.2 Standard dimensions of the specimen(unit: mm)

    Table 1 The mechanical and physical prosperities of the HTPB solid propellant

    Young′smodulus/MPamax.stress/MPamax.strain/%density/kg·m-3glasstransitiontemperature/℃3.400.72434.51760-60

    2.2 Stress Relaxation Test

    To define the behavioral characteristics of a viscoelastic solid propellant accurately, its responses to an applied load or displacement must be determined as a function of strain rate, time, and temperature. These characteristics may be specified by means of creep or stress relaxation tests. The viscous nature of the mechanical behavior of a HTPB solid propellant is demonstrated by relaxation test which consists in subjecting a specimen to a constant elongation and measuring the evolution of the forceF(t) versus time, so the stress relaxation describes the time-dependent change in force due to applied displacement[11].The experiments were conducted using a computer controlled universal test machine (UTM) Zwick Z050 at different temperatures -40,+20 ℃ and +76 ℃ for 1380 s by maintaining constant strain level 10% during the whole time test and the initial tension rate was 10 mm.min-1. Normally the researchers test the solid propellant specimens from -40 ℃ to +50 ℃, but we select the high test temperature as +76 ℃ according to some engineering applications. Before the experimental tests the specimens are conditioned in an external environment chamber for three hours to ensure the thermal equilibrium, and also the relaxation tests were conducted in a digital control environmental temperature chamber with tolerance ±0.1 ℃ of the set temperature point. The stress relaxation test shall also be repeated to check the result of the deflection superposition during the stress relaxation phenomena[12]. In order to ensure the consistency of the measured data, every experimental test was carried out on three specimens in the same conditions and the mean values of these results were taken as the final result. From the measured data, the stress relaxation modulus is calculated as indicated in Eq. (1).

    (1)

    whereER(t) is the time-dependent stress relaxation modulus, MPa;F(t) is the measured time-dependent load, N;Ais the cross section area of the specimen (A=104.88 mm2) andεis the applied constant loading strain. The actual value of the applied strain is 0.098, a little less than 0.1, due to crosshead speed accuracy of the UTM.

    Fig. 3 shows that the trend of the relaxation modulus decreases as time increases under various temperatures. The major change of the stress relaxation occurs in the first 120 s of the relaxation time after that the stress relaxation is still decreasing but with very slow rate. Also, it can be observed that the high effect of the low temperature and time on the stress relaxation curves for the composite solid propellant especially at the initial values, but this effect decreases as the relaxation time increases. For example, att=0 s and at a constant strain level the difference percentage value between the relaxation modulus at -40℃ and +20 ℃ is 155.7%, while this value att=1380 s is approximately 9.5%. These results totally represent that the current HTPB propellant is a viscoelastic material and exhibits the dependence of time-temperature behavior.

    Fig.3 Relaxation modulus at different temperatures and constant strain levelε=10%

    3 Methods for Generating the Master Curve

    TTS principle has been used to get the master curves for several mechanical properties such as stress, strain, creep compliance and relaxation modulus against time or dynamic modulus against frequency[13]. The various methods and models for producing the relaxation modulus master curves are discussed and evaluated in this section. These methods include the basic TTS method, the WLF method, and the Arrhenius method. The major difference between these methods is basically in the computation of the temperature shift factors. It should be emphasized here that the shift factor is the main driving force in the generation of any master-curve[9].

    3.1 Basic Time-Temperature Superposition Method

    To generate themaster curve of the relaxation modulus using the basic TTS method, it is necessary to plot the log relaxation modulus versus log time at different temperatures to obtain the shift factors of each time-temperature as shown in Fig. 4. The relationship between time and temperature can be written as the following equations[1]:

    ER(t0,T0)=ER(t1,T1)=ER(t2,T2)

    (2)

    (3)

    (4)

    Fig.4 logERvs. logt

    Table 2 Shift factors at different temperatures

    T/℃logaT76-0.354200-400.477

    Fig.5 Shifting process using the basic TTS method

    A sole curve can be obtained from the above results called the master curve, which gives the values of the relaxation modulusERagainst the values of the reduced timeξ=t/aTfor various temperatures as shown in Fig. 6.

    Fig.6 Master curve using basic TTS method

    3.2 The Williams-Landel-Ferry (WLF) Method

    The WLF equation is an empirical equation that can be used to predict the behavior of the viscoelastic properties of the polymer at a wide range of temperatures. The WLF method is based on a free volume theory which is related to the macroscopic motion of the bulk material, and it is verified at temperatures above the glass transition temperature. The WLF TTS method for calculating the shift factor is shown in Eq.5[1, 2, 9]

    (5)

    whereC1andC2are the material constants which are non-universal values, although they vary with the nature of the polymer system[14]. In order to calculate the shift factor at other temperatures, the material constants must be calculated by the following method. The linearized WLF equation can be rewritten as shown in Eq.6[1, 15].

    (6)

    According to Eq.6, if we plot 1/logaTas a function of 1/(T-T0) we can extractC2/C1from the resulting slope of the straight line and 1/C1from the point of intersection withY-axis.

    Fig. 7 shows the linear relationship between 1/logaTand 1/(T-T0), from Fig. 7 we can find 1/C1=-0.185 and hence

    Fig.7 Linearized WLF equation

    C1=-5.4, and also we can findC2/C1=-142.5, soC2=770.27. Then the shift factor, according to WLF can be calculated at different temperatures according to the Eq. 4. Fig. 8 shows the TTS using WLF method, and Fig. 9 shows the master curve of the relaxation modulus using the same method.

    Fig.8 Shifting process using WLF method

    Fig.9 Masster curve using WLF method

    3.3 The Arrhenius Method

    The Arrhenius relationship is verified at temperatures under the glass transition temperature of the material, and the Arrhenius TTS method for shift factor calculation is shown in Eq.7[2, 9].

    (7)

    whereCais the material constant that is a function of the activation energy (Ea) and the universal gas constant (R),Ca=Ea/2.303R).Tis the test temperature in K, andT0is the reference temperature (293 K). To obtain the material constant we must plot logaTverses (1/T-1/T0) and then the slop of the resulting line will be represent the material constant as shown in Fig.10, soCa=572.4. Now, the shift factors at different temperatures can be obtained as shown in Fig.11, and by using Eq.6 the master curve of the relaxation modulus according to Arrhenius method can be plotted as shown in Fig.12.

    Fig.10 Linearized Arrhenius equation

    Fig.11 Shifting process using Arrhenius method

    Fig.12 Master curve using Arrhenius method

    4 Results and Analysis

    The master curves generated based on the basic TTS method, the WLF method, and the Arrhenius method using the same experimental relaxation test data presented in Fig. 3 are plotted in Fig.13. The plots are for relaxation modulus as a function of reduced time in the log-log scale. All the curves are very similar, and this is an indication of the suitability of these methods for generating the relaxation modulus master curves of solid propellant. However, it should be stressed here that generation of satisfactory master curves and its accuracy is mostly dependent on the following factors:

    Experimental test data consistency, which is a function of different variables, including both the parameters and the set-up of the relaxation test, machine vibrations or noises, specimen homogeneity and uniformity, specimen fabrication for example the dimensions and parallelism of end surfaces of the specimen, and the variation of humidity conditions.

    (2)The behavior of the shift factor variation with temperature.

    (3)The condition of the polymeric material state.

    (4)The heating rate applied to arrive to the desired temperature.

    However, the analysis of the results demonstrated that the basic method for TTS has the highest accuracy of the relaxation modulus curve fitting given determination coefficient (R2=0.9992), and this is not surprising because this method uses only the experimental data. Likewise, both the empirical methods can get acceptable results if appropriate material constants are used in these methods. Table 3 demonstrates the main statistical factors obtained during calculation of material constants, and then we can note the effect of these results on the accuracy of fitting curves. The sum of squared error (SSE), is a preliminary statistical calculation that leads to other data values. It is useful to be able to find how closely related those values are. The root mean squared error(RMSE) is the distance, on average, of a data point from the fitted line,measuring along a vertical line. It seems that the data meet WLF method givenR2coefficient (R2=0.9984), while the data meet the Arrhenius method givenR2coefficient (R2=0.9974), less than the WLF one. Compared to the other two methods, the major advantage of the basic method is that it revolves around the actual experimental data without introducing any external constant when generation the master curve, while the WLF and Arrhenius methods use already existing empirical formulas which are dependent on externally determined material constants. Table 4 is a summary of the analysis and the calculated shift factors at different temperatures when generating the master curves of solid propellant. In Fig. 14, another type of master curve can be obtained from the previous calculation shows the relation between the shift factors corresponding to each temperature. It can be observed that the data meet WLF method given higherR2coefficient, and also given lower error than the data meet the Arrhenius method. In order to simulate the nonlinear viscoelastic behavior of the composite solid propellant under different loads and conditions using various commercial finite element codes (Ansys, Abaqus, Mark, etc.), one of the time-temperature dependent shift functions must be used, and the material constants such asC1,C2, andCamust be entered as determined by the shift function specified and selected by the user in the code.

    Fig.13 Master curve of AP-HTPB solid propellant obtained using the three methods

    Table 3 Statistics of analysis and material constant calculation for HTPB solid propellant

    parameterWLFmethodC1=-5.4 C2=770.27ArrheniusmethodCa=572.4SSE0.00052470.002355R20.99890.9932RMSE0.001560.03431

    Table 4 List of analysis and calculated parameters of master curves for HTPB solid propellant

    parameterbasicmethodWLFmethodArrheniusmethodaT-40℃0.4419060.4312510.485892aT+20℃111aT+76℃3.0021472.8518463.184198R20.99920.99840.9974

    Fig.14 Shift factors corresponding to each temperature

    5 Conclusions

    In this paper,a series of conventional relaxation tests have been performed using a universal test machine at a broad range of temperatures (-40, +20, +76 ℃) to evaluate and get the master curves of the relaxation modulus for AP-HTPB composite solid propellant as a purpose of reduced time and at a reference temperature of 20 ℃. These master curves were generated according to three different methods (the basic, WLF, and Arrhenius) by using the TTS principle, and then comparative study was conducted to show the level of accuracy for each method. The following conclusions can be drawn:

    (1)The basic method is the best method for generating a fit function for the relaxation modulus master curve followed by the WLF method and lastly, the Arrhenius method.

    (2)The results presented here can be used as a reference for selecting the appropriate methods for generating the relaxation modulus master curve of AP-HTPB solid propellant.

    (3)Most of the finite element software′s need some material constants to define the time-temperature dependent material method, so the basic method cannot be used alone and some material constants must be calculated using empirical formulas like WLF or Arrhenius methods, and between these two methods, the WLF method would be recommended.

    [1]Bohwi S, Jaehoon K. Estimation of master curves of relaxation modulus and tensile properties for solid propellant [J].AdvancedMaterialsResearch, 2014, 871: 247-252.

    [2]Salvador N, Antonio M. New method for estimating shift factors in time-temperature superposition models [J].JournalofThermalAnalysisandCalorimetry, 2013, 113: 453-460.

    [3]Chyuan S. Nonlinear thermoviscoelastic analysis of solid propellant grains subjected to temperature loading [J].FiniteElementsinAnalysisandDesign, 2002, 38(7): 613-630.

    [4]Chyuan S. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading [J].JournalofSoundandVibration, 2003, 268(3): 465-483.

    [5]Chyuan S. Studies of Poisson′s ratio variation for solid propellant grains under ignition pressure loading [J].InternationalJournalofPressureVesselsandPiping, 2003, 80(12): 871-877.

    [6]Bihari B K, Waniet V S, Rao N P N, et al. Determination of activation energy of relaxation events in composite solid propellants by dynamic mechanical analysis [J].DefenseScienceJournal, 2014, 64(2): 173-178.

    [7]Marimuthu R, Nageswara B. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains [J].InternationalJournalofPressureVesselsandPiping, 2013, 111: 131-145.

    [8]Xu J, Ju Y, Han B. et al. Research on relaxation modulus of viscoelastic materials under unsteady temperature states based on TTSP [J].MechanicsofTime-DependentMaterials, 2013, 17(4) : 543-556.

    [9]Lubinda F, Allex E, Geoffrey S. Evaluating and comparing different methods and models for generating relaxation modulus master-curves for asphalt mixes [J].ConstructionandBuildingMaterials, 2011, 25(5) : 2619-2626.

    [10]Davenas A. Solid rocket propulsion Technology [M]. First English Edition, New York, Pergamon Press, 1993, Chapter 6.

    [11]Ferry J D. Viscoelastic properties of polymers [M]. 3rd Edition, John Willy and Sons, 1980.

    [12]Zheng Z, Zhang R. Implementation of viscoelastic material model to simulate relaxation in glass transition [C]∥Excerpt from the Proceedings of the 2014 COMSOL Conference in Boston, 2014.

    [13]Carlrton J M. SRM propellant and polymer materials structural test program. NASA Technical Paper 2821, 1988.

    [14]KGNC A, Burgoyne C J. Time-temperature superposition to determine the stress-rupture of aramid fibres [J].AppliedCompositeMaterials, July 2006, 13(4) : 249-264.

    [15]ROBERT F L. Viscoelastic properties of rubberlike composite propellants and filled elastomers [J].ARSJournal, 2015, 31(5): 599-608.

    猜你喜歡
    梁國(guó)北京航空航天大學(xué)宇航
    Effective dynamics for a spin-1/2 particle constrained to a curved layer with inhomogeneous thickness
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    農(nóng)民工梁國(guó)勝:讓自己成為最堅(jiān)實(shí)的樁
    Rules in Library
    梁國(guó)華先生藝術(shù)作品選登
    今日華人(2019年9期)2019-10-16 17:03:38
    我的宇航夢(mèng)
    我的宇航夢(mèng)
    亚洲人成网站在线播| 男的添女的下面高潮视频| 国产精品无大码| 九九热线精品视视频播放| 男女视频在线观看网站免费| 色综合色国产| av在线观看视频网站免费| 看非洲黑人一级黄片| 噜噜噜噜噜久久久久久91| 国产精品久久视频播放| 99热这里只有精品一区| 欧美激情极品国产一区二区三区 | 男女高潮啪啪啪动态图| 韩国av在线不卡| 精品一品国产午夜福利视频| 精品人妻偷拍中文字幕| 中文精品一卡2卡3卡4更新| 免费观看性生交大片5| 久久精品夜色国产| 日韩欧美一区视频在线观看| 亚洲精品亚洲一区二区| 在线观看国产h片| 欧美精品亚洲一区二区| 久久久欧美国产精品| 日本黄大片高清| 成人国产av品久久久| 欧美+日韩+精品| 亚洲精品亚洲一区二区| 久久综合国产亚洲精品| 亚洲欧美日韩另类电影网站| 欧美成人精品欧美一级黄| 热re99久久精品国产66热6| 18禁动态无遮挡网站| 成人二区视频| 亚洲经典国产精华液单| 九九久久精品国产亚洲av麻豆| 亚洲av福利一区| 搡老乐熟女国产| 日日爽夜夜爽网站| 少妇 在线观看| 久久婷婷青草| 这个男人来自地球电影免费观看 | 观看美女的网站| 最近2019中文字幕mv第一页| 欧美一级a爱片免费观看看| 免费大片黄手机在线观看| 满18在线观看网站| 啦啦啦在线观看免费高清www| 亚洲高清免费不卡视频| 亚洲精品456在线播放app| 欧美精品高潮呻吟av久久| 成年人免费黄色播放视频| 免费高清在线观看视频在线观看| 免费av中文字幕在线| 久久久久精品性色| 成人午夜精彩视频在线观看| 18在线观看网站| 伦理电影免费视频| 嘟嘟电影网在线观看| 亚洲精品一二三| 国产免费一级a男人的天堂| 黑人高潮一二区| 99久久综合免费| 亚洲av在线观看美女高潮| 人妻制服诱惑在线中文字幕| 99热网站在线观看| 777米奇影视久久| 免费观看无遮挡的男女| 18禁动态无遮挡网站| 午夜福利,免费看| 日产精品乱码卡一卡2卡三| 精品久久久久久久久av| 久久99热6这里只有精品| 日韩一区二区视频免费看| 久久免费观看电影| 综合色丁香网| 久久久久久久国产电影| 欧美日韩综合久久久久久| 免费播放大片免费观看视频在线观看| 午夜91福利影院| 高清在线视频一区二区三区| 国产av精品麻豆| 亚洲av男天堂| av不卡在线播放| 精品一区二区三卡| 这个男人来自地球电影免费观看 | 国产男女超爽视频在线观看| 七月丁香在线播放| 2021少妇久久久久久久久久久| 免费看av在线观看网站| 亚洲图色成人| 九色成人免费人妻av| 久久综合国产亚洲精品| 啦啦啦视频在线资源免费观看| 亚洲精品国产av成人精品| 国产日韩欧美视频二区| 99久久人妻综合| 三级国产精品片| 久久精品夜色国产| 妹子高潮喷水视频| 久久久精品免费免费高清| 看免费成人av毛片| 日产精品乱码卡一卡2卡三| 人人妻人人澡人人看| 国产国拍精品亚洲av在线观看| 最近中文字幕高清免费大全6| 91久久精品国产一区二区成人| 久久久久精品性色| 国产精品熟女久久久久浪| 亚洲国产欧美日韩在线播放| 久久久久久久久久久丰满| 久久久国产欧美日韩av| 欧美日本中文国产一区发布| 老司机影院毛片| 日韩一本色道免费dvd| 欧美精品一区二区免费开放| av一本久久久久| 精品久久久久久久久亚洲| 免费播放大片免费观看视频在线观看| 观看av在线不卡| 色哟哟·www| 成人漫画全彩无遮挡| 国产精品一区二区在线不卡| 91精品伊人久久大香线蕉| 国产在视频线精品| 国产精品国产三级国产专区5o| 久久久久久久国产电影| 青春草国产在线视频| 国产成人精品一,二区| 日韩视频在线欧美| 欧美激情 高清一区二区三区| 精品国产一区二区三区久久久樱花| 久久久久久久久久久久大奶| 久久免费观看电影| 日本猛色少妇xxxxx猛交久久| 18禁在线播放成人免费| 国产黄片视频在线免费观看| 日本欧美国产在线视频| 亚洲五月色婷婷综合| 国产一级毛片在线| 女的被弄到高潮叫床怎么办| 97在线人人人人妻| 看免费成人av毛片| 人体艺术视频欧美日本| 欧美精品一区二区大全| 少妇丰满av| 亚洲精品色激情综合| 美女xxoo啪啪120秒动态图| 老司机影院成人| 午夜激情av网站| 亚洲国产精品国产精品| kizo精华| 看免费成人av毛片| 九九在线视频观看精品| 22中文网久久字幕| 国产成人91sexporn| 五月玫瑰六月丁香| 色视频在线一区二区三区| 丝袜脚勾引网站| 久久精品久久久久久久性| 国产乱人偷精品视频| 国产精品不卡视频一区二区| 亚洲第一区二区三区不卡| 观看av在线不卡| 亚洲色图综合在线观看| 欧美日韩av久久| 蜜桃国产av成人99| 亚洲丝袜综合中文字幕| 亚洲精品美女久久av网站| 我的老师免费观看完整版| 日本vs欧美在线观看视频| 国产成人av激情在线播放 | 搡老乐熟女国产| 最近手机中文字幕大全| 99热全是精品| 啦啦啦啦在线视频资源| 丝瓜视频免费看黄片| 又黄又爽又刺激的免费视频.| 中文天堂在线官网| 天美传媒精品一区二区| 精品一品国产午夜福利视频| 最黄视频免费看| 国语对白做爰xxxⅹ性视频网站| 999精品在线视频| 欧美日韩一区二区视频在线观看视频在线| 成人漫画全彩无遮挡| 如何舔出高潮| 久久热精品热| 一区二区三区乱码不卡18| 精品一区二区三卡| 少妇被粗大猛烈的视频| 午夜激情福利司机影院| 中文字幕人妻丝袜制服| 久久99热这里只频精品6学生| 中文字幕免费在线视频6| 欧美xxⅹ黑人| 午夜激情久久久久久久| 99热6这里只有精品| 成人亚洲精品一区在线观看| 久久久国产一区二区| 丝袜脚勾引网站| 伦精品一区二区三区| 七月丁香在线播放| 建设人人有责人人尽责人人享有的| 久久久久久久久久久免费av| 少妇的逼好多水| 18禁观看日本| 国产黄频视频在线观看| 国产在视频线精品| 午夜福利,免费看| 18禁裸乳无遮挡动漫免费视频| 午夜激情福利司机影院| 久久精品人人爽人人爽视色| 欧美另类一区| 午夜精品国产一区二区电影| 亚洲精品自拍成人| 国模一区二区三区四区视频| 日本黄色日本黄色录像| 一边亲一边摸免费视频| 亚洲av不卡在线观看| 纵有疾风起免费观看全集完整版| 国产免费视频播放在线视频| 亚洲人成网站在线观看播放| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 人妻夜夜爽99麻豆av| 亚洲色图综合在线观看| 亚洲精华国产精华液的使用体验| 日韩制服骚丝袜av| 日韩一区二区三区影片| 99精国产麻豆久久婷婷| 国产高清有码在线观看视频| 热99久久久久精品小说推荐| 国产成人91sexporn| 51国产日韩欧美| 久久女婷五月综合色啪小说| 国产成人av激情在线播放 | 最新中文字幕久久久久| 久久精品夜色国产| av.在线天堂| 国产高清有码在线观看视频| 日韩欧美一区视频在线观看| 九九久久精品国产亚洲av麻豆| 青春草国产在线视频| 最近中文字幕2019免费版| 免费av中文字幕在线| 97在线人人人人妻| 美女大奶头黄色视频| 中文字幕av电影在线播放| av专区在线播放| 精品一区二区免费观看| 午夜精品国产一区二区电影| 国产 一区精品| 美女国产高潮福利片在线看| 久久久久久久久久人人人人人人| 欧美少妇被猛烈插入视频| 高清在线视频一区二区三区| av免费观看日本| av不卡在线播放| 精品少妇黑人巨大在线播放| 男女高潮啪啪啪动态图| h视频一区二区三区| 日本wwww免费看| 99热6这里只有精品| 肉色欧美久久久久久久蜜桃| 国产成人a∨麻豆精品| 成年女人在线观看亚洲视频| 少妇人妻 视频| 久久久精品区二区三区| 伊人亚洲综合成人网| 一区二区三区乱码不卡18| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 亚洲欧洲国产日韩| 婷婷色av中文字幕| 日韩一本色道免费dvd| 我要看黄色一级片免费的| 成年人免费黄色播放视频| 91久久精品国产一区二区三区| 国产色爽女视频免费观看| 五月伊人婷婷丁香| 欧美3d第一页| 免费人妻精品一区二区三区视频| 亚洲五月色婷婷综合| 寂寞人妻少妇视频99o| 免费观看性生交大片5| 在线观看免费视频网站a站| 精品久久久久久电影网| 婷婷成人精品国产| 只有这里有精品99| 五月天丁香电影| 高清视频免费观看一区二区| 国产亚洲午夜精品一区二区久久| 国产免费又黄又爽又色| 国产国语露脸激情在线看| 99热6这里只有精品| 久久99一区二区三区| 一区二区三区免费毛片| 成人免费观看视频高清| 久久韩国三级中文字幕| 伦精品一区二区三区| 欧美另类一区| 大又大粗又爽又黄少妇毛片口| 日本vs欧美在线观看视频| 在线亚洲精品国产二区图片欧美 | 欧美日韩亚洲高清精品| 欧美日韩成人在线一区二区| 少妇人妻精品综合一区二区| 高清黄色对白视频在线免费看| 精品卡一卡二卡四卡免费| 欧美激情国产日韩精品一区| 99九九线精品视频在线观看视频| 亚洲无线观看免费| 99九九线精品视频在线观看视频| 国产毛片在线视频| 在线观看国产h片| 久久这里有精品视频免费| 国产成人免费观看mmmm| 18禁观看日本| 亚洲av成人精品一二三区| 秋霞在线观看毛片| 男女啪啪激烈高潮av片| 午夜激情av网站| 久久99一区二区三区| 亚洲欧美清纯卡通| 在线天堂最新版资源| 亚洲高清免费不卡视频| 看十八女毛片水多多多| 大片免费播放器 马上看| 欧美激情国产日韩精品一区| 久久99热这里只频精品6学生| 欧美变态另类bdsm刘玥| 精品久久国产蜜桃| 国产av一区二区精品久久| 国产精品免费大片| 国产av一区二区精品久久| 国产精品免费大片| 少妇的逼水好多| 国产精品欧美亚洲77777| 天天影视国产精品| 一边亲一边摸免费视频| 国产精品麻豆人妻色哟哟久久| 国产成人91sexporn| 久久久久久久大尺度免费视频| 日产精品乱码卡一卡2卡三| 亚洲国产色片| 成人毛片a级毛片在线播放| 2021少妇久久久久久久久久久| 国产成人精品在线电影| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久人人人人人人| 丝袜美足系列| 精品国产露脸久久av麻豆| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频| 最后的刺客免费高清国语| 国产成人精品在线电影| 性色avwww在线观看| 国产高清不卡午夜福利| 最近手机中文字幕大全| 国产精品久久久久久久电影| 亚洲四区av| 肉色欧美久久久久久久蜜桃| 在线 av 中文字幕| 在线看a的网站| 五月天丁香电影| 欧美日韩一区二区视频在线观看视频在线| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久免费av| 毛片一级片免费看久久久久| 国产免费现黄频在线看| 精品卡一卡二卡四卡免费| 免费高清在线观看日韩| 99久久精品国产国产毛片| av.在线天堂| 大香蕉97超碰在线| 午夜福利在线观看免费完整高清在| 亚洲国产最新在线播放| 色网站视频免费| 亚洲高清免费不卡视频| 国产高清不卡午夜福利| 亚洲四区av| 国产成人精品无人区| 老司机影院成人| 日本-黄色视频高清免费观看| 中文字幕精品免费在线观看视频 | 国产成人精品婷婷| 国产淫语在线视频| 国产亚洲欧美精品永久| 成人午夜精彩视频在线观看| 91久久精品国产一区二区三区| 亚洲精华国产精华液的使用体验| 成人18禁高潮啪啪吃奶动态图 | 2018国产大陆天天弄谢| 午夜免费观看性视频| 国产男女内射视频| 国产又色又爽无遮挡免| 成人影院久久| 亚洲精品美女久久av网站| 黄色毛片三级朝国网站| 国产有黄有色有爽视频| 亚洲av免费高清在线观看| 纵有疾风起免费观看全集完整版| 国产日韩欧美视频二区| av福利片在线| 精品亚洲成国产av| 一边亲一边摸免费视频| 欧美变态另类bdsm刘玥| 亚洲av电影在线观看一区二区三区| 色5月婷婷丁香| 久久99热这里只频精品6学生| 十八禁网站网址无遮挡| 好男人视频免费观看在线| 久久女婷五月综合色啪小说| 日本欧美国产在线视频| 亚洲精品视频女| 国产黄色视频一区二区在线观看| 汤姆久久久久久久影院中文字幕| 晚上一个人看的免费电影| 美女主播在线视频| 成年av动漫网址| 少妇人妻 视频| 在线观看人妻少妇| xxx大片免费视频| 精品一区二区三卡| 丰满乱子伦码专区| 不卡视频在线观看欧美| 亚洲高清免费不卡视频| 日本免费在线观看一区| 99久国产av精品国产电影| av.在线天堂| 人妻少妇偷人精品九色| 国产精品无大码| 内地一区二区视频在线| 精品久久蜜臀av无| 插逼视频在线观看| 国内精品宾馆在线| 一级,二级,三级黄色视频| 在线观看www视频免费| 69精品国产乱码久久久| 97在线人人人人妻| 午夜久久久在线观看| 免费看不卡的av| 成人18禁高潮啪啪吃奶动态图 | 成人18禁高潮啪啪吃奶动态图 | 黑人欧美特级aaaaaa片| 女性生殖器流出的白浆| 国产精品嫩草影院av在线观看| 人妻夜夜爽99麻豆av| 亚洲精品成人av观看孕妇| 久久久午夜欧美精品| 91精品国产九色| 精品一区二区免费观看| 中文字幕久久专区| 99九九线精品视频在线观看视频| 亚洲成色77777| 亚洲综合精品二区| 亚洲欧洲国产日韩| 精品亚洲乱码少妇综合久久| 一本色道久久久久久精品综合| 成年女人在线观看亚洲视频| 日韩成人av中文字幕在线观看| 免费大片黄手机在线观看| 精品少妇内射三级| 我的老师免费观看完整版| 国产乱来视频区| 亚洲天堂av无毛| 国产在线一区二区三区精| 18禁裸乳无遮挡动漫免费视频| 国产av一区二区精品久久| xxxhd国产人妻xxx| 免费观看av网站的网址| 国产精品久久久久久精品电影小说| 18在线观看网站| 中文字幕亚洲精品专区| 最近最新中文字幕免费大全7| 日本欧美视频一区| 青青草视频在线视频观看| 欧美激情极品国产一区二区三区 | 日本欧美视频一区| 免费大片18禁| 国产熟女欧美一区二区| 亚洲精品成人av观看孕妇| 男人操女人黄网站| 久久久国产欧美日韩av| 在线观看国产h片| 亚洲av二区三区四区| 亚洲av免费高清在线观看| 欧美亚洲 丝袜 人妻 在线| 三上悠亚av全集在线观看| 国产精品人妻久久久影院| 国产精品不卡视频一区二区| 好男人视频免费观看在线| 国产成人精品久久久久久| 亚洲人与动物交配视频| 成人国产麻豆网| 久久狼人影院| 一区二区三区四区激情视频| 一级毛片黄色毛片免费观看视频| 亚洲欧美一区二区三区国产| 国产熟女午夜一区二区三区 | 久久ye,这里只有精品| 久久久久国产网址| 99久久精品国产国产毛片| 久久99精品国语久久久| 自线自在国产av| 精品久久久久久久久av| www.av在线官网国产| 丰满少妇做爰视频| 伊人亚洲综合成人网| 亚洲av不卡在线观看| 亚洲综合色惰| 在线播放无遮挡| 亚洲高清免费不卡视频| 欧美精品一区二区大全| 欧美亚洲日本最大视频资源| 精品久久蜜臀av无| 久久毛片免费看一区二区三区| 午夜福利视频精品| 欧美xxⅹ黑人| 丰满饥渴人妻一区二区三| 一区二区av电影网| 少妇被粗大的猛进出69影院 | 水蜜桃什么品种好| 日本午夜av视频| 亚洲不卡免费看| 国产男女内射视频| av有码第一页| 最近2019中文字幕mv第一页| 国产精品偷伦视频观看了| 亚洲不卡免费看| 欧美另类一区| 伦理电影大哥的女人| 人妻少妇偷人精品九色| 日韩不卡一区二区三区视频在线| 伊人久久国产一区二区| 日韩av免费高清视频| 91精品三级在线观看| 婷婷色综合www| 国产黄色免费在线视频| 国产欧美日韩一区二区三区在线 | 大又大粗又爽又黄少妇毛片口| 免费观看性生交大片5| 最近中文字幕2019免费版| 最近2019中文字幕mv第一页| av播播在线观看一区| 亚洲av在线观看美女高潮| 大片电影免费在线观看免费| 日韩成人伦理影院| 久久久久久久精品精品| 在线看a的网站| 特大巨黑吊av在线直播| 色哟哟·www| 亚洲av二区三区四区| 水蜜桃什么品种好| 日本午夜av视频| 亚洲第一av免费看| 亚洲精品av麻豆狂野| 免费观看在线日韩| 香蕉精品网在线| 国产成人精品婷婷| 亚洲久久久国产精品| 国产精品嫩草影院av在线观看| 日韩av在线免费看完整版不卡| 精品99又大又爽又粗少妇毛片| 亚洲av福利一区| 国产探花极品一区二区| 久久久久网色| 亚洲美女黄色视频免费看| 一个人免费看片子| 啦啦啦中文免费视频观看日本| 全区人妻精品视频| 亚洲精品中文字幕在线视频| 在线观看三级黄色| 性高湖久久久久久久久免费观看| 99热6这里只有精品| 中国三级夫妇交换| 欧美日本中文国产一区发布| 国产黄色视频一区二区在线观看| 免费观看a级毛片全部| 高清毛片免费看| 久久久久视频综合| 免费看光身美女| 亚洲综合精品二区| av播播在线观看一区| 丝袜喷水一区| 激情五月婷婷亚洲| 久久国产精品大桥未久av| 少妇 在线观看| 国产精品国产三级国产av玫瑰| 精品少妇黑人巨大在线播放| 在现免费观看毛片| 视频区图区小说| 国产成人午夜福利电影在线观看| av国产久精品久网站免费入址| 久久久午夜欧美精品| 午夜影院在线不卡| 一二三四中文在线观看免费高清| 日韩人妻高清精品专区| 91成人精品电影| 日本爱情动作片www.在线观看| 三级国产精品欧美在线观看| 欧美 日韩 精品 国产| 九色成人免费人妻av| 久久久久久久久久人人人人人人| 国产日韩欧美视频二区| 亚洲综合色网址| 免费高清在线观看日韩| 亚洲精品中文字幕在线视频| 男女边吃奶边做爰视频| 国产精品久久久久久久电影| 国产欧美日韩一区二区三区在线 | 波野结衣二区三区在线| 国产精品一二三区在线看|