• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    構(gòu)建AP-HTPB固體推進(jìn)劑松弛模量主曲線的不同方法

    2017-05-07 01:26:33WalidAdel梁國(guó)柱
    含能材料 2017年10期
    關(guān)鍵詞:梁國(guó)北京航空航天大學(xué)宇航

    Walid M Adel, 梁國(guó)柱

    (北京航空航天大學(xué)宇航學(xué)院, 北京100083 )

    1 Introduction

    The solid propellant exhibits very complicated viscoelastic behavior and its mechanical properties (the relationship between tension and stress) and failure mechanisms are really sensible at the time of application loads, and temperature change. Relaxation modulus is one of the most important mechanical properties of viscoelastic materials which can be used to simulate the viscoelastic material behavior[1]. The master curve of the relaxation modulus is defined as the relationship between the relaxation modulus and the reduced loading time and it is constructed based on a selected reference temperature of interest to which all data must be shifted using shift factors. The shift factor is defined as a unique parameter which takes into account both the temperature and strain rate effects of the temperature of interest relative to the reference temperature[2]. Depending on a master curve, the mechanical properties and the behavior of composite solid propellant can be predicted at different times and temperatures based on a limited set of experimental data. This anticipation is often performed through basic time-temperature superposition (TTS) principle.

    The related publications in the extant literature, primarily concentrate on the application of TTS principle of solid propellant under different loading conditions. Chyuan analyzed numerically the structural integrity of HTPB solid propellant grains subjected to temperature loading[3], ignition pressurization loading[4], and Poisson′s ratio varies under ignition pressure loading[5], using a constitutive model based on the relaxation testing that employed the TTS and reduced integration by using WLF method. B. K. Bihari et al.[6]used both method WLF and Arrhenius to determine the activation energy of composite solid propellant to predict the useful lifetime of solid propellant. Marimuthu et al.[7]simulated the structural integrity of the solid propellant grains under gravity loading and inner pressure using relaxation tests and the TTS to specify the effective Poisson′s ratio and Young′s modulus. Moreover, Xu[8]proposed a new method to get the relaxation modulus of HTPB propellants using the TTS in the temperature range of -50 ℃ to +35 ℃. John Kim et al.[1]estimated the master curve of the relaxation modulus for solid propellant according to the basic TTS method and WLF method, but without comparison between the two methods. Some studies have been focused on comparing different TTS methods and methods to generate the relaxation modulus master curve, but using different materials for example Allex E. Alvarez et al.[9]evaluated various methods and examples that can be satisfactorily applied to get the relaxation modulus master curves of hot-mix asphalt (HMA) by using three methods WLF, Arrhenius, and an optimization technique with the sum of square error (SSE) method. However, there is still limited information available about the difference between the methods that usually used to generate the relaxation modulus master curves of solid propellant, therefore, further researches should be performed to demonstrate the differences between these methods.

    In this work, the specimen preparation and the stress relaxation tests at different temperatures are conducted.The three methods of generating the relaxation modulus master curves are discussed. Then the best fit model for the experimental data are presented.

    2 Material and Experiment

    2.1 Material and Specimens Preparation

    The solid propellant used in this research is a heterogeneous propellant which consists of solid oxidizer particles ammonium perchlorate (AP) 67%, and metallic fuel particle aluminum powder (Al) 18%, dispersing in polymeric binder matrix (HTPB) forming the rest percentage. These gradients were mixed together, and then the propellant slurry was cast in special molds under vibration and vacuum with internal dimensions of 200 mm× 150 mm× 150 mm. Then the molds are placed in a large curing oven with temperature controlled at 60 ℃, for a total curing time of 240 h. After curing the molds are cut into sheets with a uniform thickness. And so the test specimens (shown in Fig.1) are produced using special cut press according to Joint Army-Navy-NASA-Air Force Propulsion Committee (JANNAF) standard[10], and the dimensions of the test specimens are illustrated in Fig. 2. The actual thickness of the specimens is 11.04 mm less than the standard one due to some limitation of the sheet cutting machine. As a quality control step, the produced specimens are checked by a non-destructive method for voids like air bubbles or micro cracks by X-Ray to ensure the result of experimental data. After that, the accepted specimens were stored in desiccators at ambient temperature and relative humidity RH≤30%. The mechanical and physical prosperities of the selected solid propellant (measured at room temperature) are listed in Table 1.

    Fig.1 HTPB solid propellant test specimen

    Fig.2 Standard dimensions of the specimen(unit: mm)

    Table 1 The mechanical and physical prosperities of the HTPB solid propellant

    Young′smodulus/MPamax.stress/MPamax.strain/%density/kg·m-3glasstransitiontemperature/℃3.400.72434.51760-60

    2.2 Stress Relaxation Test

    To define the behavioral characteristics of a viscoelastic solid propellant accurately, its responses to an applied load or displacement must be determined as a function of strain rate, time, and temperature. These characteristics may be specified by means of creep or stress relaxation tests. The viscous nature of the mechanical behavior of a HTPB solid propellant is demonstrated by relaxation test which consists in subjecting a specimen to a constant elongation and measuring the evolution of the forceF(t) versus time, so the stress relaxation describes the time-dependent change in force due to applied displacement[11].The experiments were conducted using a computer controlled universal test machine (UTM) Zwick Z050 at different temperatures -40,+20 ℃ and +76 ℃ for 1380 s by maintaining constant strain level 10% during the whole time test and the initial tension rate was 10 mm.min-1. Normally the researchers test the solid propellant specimens from -40 ℃ to +50 ℃, but we select the high test temperature as +76 ℃ according to some engineering applications. Before the experimental tests the specimens are conditioned in an external environment chamber for three hours to ensure the thermal equilibrium, and also the relaxation tests were conducted in a digital control environmental temperature chamber with tolerance ±0.1 ℃ of the set temperature point. The stress relaxation test shall also be repeated to check the result of the deflection superposition during the stress relaxation phenomena[12]. In order to ensure the consistency of the measured data, every experimental test was carried out on three specimens in the same conditions and the mean values of these results were taken as the final result. From the measured data, the stress relaxation modulus is calculated as indicated in Eq. (1).

    (1)

    whereER(t) is the time-dependent stress relaxation modulus, MPa;F(t) is the measured time-dependent load, N;Ais the cross section area of the specimen (A=104.88 mm2) andεis the applied constant loading strain. The actual value of the applied strain is 0.098, a little less than 0.1, due to crosshead speed accuracy of the UTM.

    Fig. 3 shows that the trend of the relaxation modulus decreases as time increases under various temperatures. The major change of the stress relaxation occurs in the first 120 s of the relaxation time after that the stress relaxation is still decreasing but with very slow rate. Also, it can be observed that the high effect of the low temperature and time on the stress relaxation curves for the composite solid propellant especially at the initial values, but this effect decreases as the relaxation time increases. For example, att=0 s and at a constant strain level the difference percentage value between the relaxation modulus at -40℃ and +20 ℃ is 155.7%, while this value att=1380 s is approximately 9.5%. These results totally represent that the current HTPB propellant is a viscoelastic material and exhibits the dependence of time-temperature behavior.

    Fig.3 Relaxation modulus at different temperatures and constant strain levelε=10%

    3 Methods for Generating the Master Curve

    TTS principle has been used to get the master curves for several mechanical properties such as stress, strain, creep compliance and relaxation modulus against time or dynamic modulus against frequency[13]. The various methods and models for producing the relaxation modulus master curves are discussed and evaluated in this section. These methods include the basic TTS method, the WLF method, and the Arrhenius method. The major difference between these methods is basically in the computation of the temperature shift factors. It should be emphasized here that the shift factor is the main driving force in the generation of any master-curve[9].

    3.1 Basic Time-Temperature Superposition Method

    To generate themaster curve of the relaxation modulus using the basic TTS method, it is necessary to plot the log relaxation modulus versus log time at different temperatures to obtain the shift factors of each time-temperature as shown in Fig. 4. The relationship between time and temperature can be written as the following equations[1]:

    ER(t0,T0)=ER(t1,T1)=ER(t2,T2)

    (2)

    (3)

    (4)

    Fig.4 logERvs. logt

    Table 2 Shift factors at different temperatures

    T/℃logaT76-0.354200-400.477

    Fig.5 Shifting process using the basic TTS method

    A sole curve can be obtained from the above results called the master curve, which gives the values of the relaxation modulusERagainst the values of the reduced timeξ=t/aTfor various temperatures as shown in Fig. 6.

    Fig.6 Master curve using basic TTS method

    3.2 The Williams-Landel-Ferry (WLF) Method

    The WLF equation is an empirical equation that can be used to predict the behavior of the viscoelastic properties of the polymer at a wide range of temperatures. The WLF method is based on a free volume theory which is related to the macroscopic motion of the bulk material, and it is verified at temperatures above the glass transition temperature. The WLF TTS method for calculating the shift factor is shown in Eq.5[1, 2, 9]

    (5)

    whereC1andC2are the material constants which are non-universal values, although they vary with the nature of the polymer system[14]. In order to calculate the shift factor at other temperatures, the material constants must be calculated by the following method. The linearized WLF equation can be rewritten as shown in Eq.6[1, 15].

    (6)

    According to Eq.6, if we plot 1/logaTas a function of 1/(T-T0) we can extractC2/C1from the resulting slope of the straight line and 1/C1from the point of intersection withY-axis.

    Fig. 7 shows the linear relationship between 1/logaTand 1/(T-T0), from Fig. 7 we can find 1/C1=-0.185 and hence

    Fig.7 Linearized WLF equation

    C1=-5.4, and also we can findC2/C1=-142.5, soC2=770.27. Then the shift factor, according to WLF can be calculated at different temperatures according to the Eq. 4. Fig. 8 shows the TTS using WLF method, and Fig. 9 shows the master curve of the relaxation modulus using the same method.

    Fig.8 Shifting process using WLF method

    Fig.9 Masster curve using WLF method

    3.3 The Arrhenius Method

    The Arrhenius relationship is verified at temperatures under the glass transition temperature of the material, and the Arrhenius TTS method for shift factor calculation is shown in Eq.7[2, 9].

    (7)

    whereCais the material constant that is a function of the activation energy (Ea) and the universal gas constant (R),Ca=Ea/2.303R).Tis the test temperature in K, andT0is the reference temperature (293 K). To obtain the material constant we must plot logaTverses (1/T-1/T0) and then the slop of the resulting line will be represent the material constant as shown in Fig.10, soCa=572.4. Now, the shift factors at different temperatures can be obtained as shown in Fig.11, and by using Eq.6 the master curve of the relaxation modulus according to Arrhenius method can be plotted as shown in Fig.12.

    Fig.10 Linearized Arrhenius equation

    Fig.11 Shifting process using Arrhenius method

    Fig.12 Master curve using Arrhenius method

    4 Results and Analysis

    The master curves generated based on the basic TTS method, the WLF method, and the Arrhenius method using the same experimental relaxation test data presented in Fig. 3 are plotted in Fig.13. The plots are for relaxation modulus as a function of reduced time in the log-log scale. All the curves are very similar, and this is an indication of the suitability of these methods for generating the relaxation modulus master curves of solid propellant. However, it should be stressed here that generation of satisfactory master curves and its accuracy is mostly dependent on the following factors:

    Experimental test data consistency, which is a function of different variables, including both the parameters and the set-up of the relaxation test, machine vibrations or noises, specimen homogeneity and uniformity, specimen fabrication for example the dimensions and parallelism of end surfaces of the specimen, and the variation of humidity conditions.

    (2)The behavior of the shift factor variation with temperature.

    (3)The condition of the polymeric material state.

    (4)The heating rate applied to arrive to the desired temperature.

    However, the analysis of the results demonstrated that the basic method for TTS has the highest accuracy of the relaxation modulus curve fitting given determination coefficient (R2=0.9992), and this is not surprising because this method uses only the experimental data. Likewise, both the empirical methods can get acceptable results if appropriate material constants are used in these methods. Table 3 demonstrates the main statistical factors obtained during calculation of material constants, and then we can note the effect of these results on the accuracy of fitting curves. The sum of squared error (SSE), is a preliminary statistical calculation that leads to other data values. It is useful to be able to find how closely related those values are. The root mean squared error(RMSE) is the distance, on average, of a data point from the fitted line,measuring along a vertical line. It seems that the data meet WLF method givenR2coefficient (R2=0.9984), while the data meet the Arrhenius method givenR2coefficient (R2=0.9974), less than the WLF one. Compared to the other two methods, the major advantage of the basic method is that it revolves around the actual experimental data without introducing any external constant when generation the master curve, while the WLF and Arrhenius methods use already existing empirical formulas which are dependent on externally determined material constants. Table 4 is a summary of the analysis and the calculated shift factors at different temperatures when generating the master curves of solid propellant. In Fig. 14, another type of master curve can be obtained from the previous calculation shows the relation between the shift factors corresponding to each temperature. It can be observed that the data meet WLF method given higherR2coefficient, and also given lower error than the data meet the Arrhenius method. In order to simulate the nonlinear viscoelastic behavior of the composite solid propellant under different loads and conditions using various commercial finite element codes (Ansys, Abaqus, Mark, etc.), one of the time-temperature dependent shift functions must be used, and the material constants such asC1,C2, andCamust be entered as determined by the shift function specified and selected by the user in the code.

    Fig.13 Master curve of AP-HTPB solid propellant obtained using the three methods

    Table 3 Statistics of analysis and material constant calculation for HTPB solid propellant

    parameterWLFmethodC1=-5.4 C2=770.27ArrheniusmethodCa=572.4SSE0.00052470.002355R20.99890.9932RMSE0.001560.03431

    Table 4 List of analysis and calculated parameters of master curves for HTPB solid propellant

    parameterbasicmethodWLFmethodArrheniusmethodaT-40℃0.4419060.4312510.485892aT+20℃111aT+76℃3.0021472.8518463.184198R20.99920.99840.9974

    Fig.14 Shift factors corresponding to each temperature

    5 Conclusions

    In this paper,a series of conventional relaxation tests have been performed using a universal test machine at a broad range of temperatures (-40, +20, +76 ℃) to evaluate and get the master curves of the relaxation modulus for AP-HTPB composite solid propellant as a purpose of reduced time and at a reference temperature of 20 ℃. These master curves were generated according to three different methods (the basic, WLF, and Arrhenius) by using the TTS principle, and then comparative study was conducted to show the level of accuracy for each method. The following conclusions can be drawn:

    (1)The basic method is the best method for generating a fit function for the relaxation modulus master curve followed by the WLF method and lastly, the Arrhenius method.

    (2)The results presented here can be used as a reference for selecting the appropriate methods for generating the relaxation modulus master curve of AP-HTPB solid propellant.

    (3)Most of the finite element software′s need some material constants to define the time-temperature dependent material method, so the basic method cannot be used alone and some material constants must be calculated using empirical formulas like WLF or Arrhenius methods, and between these two methods, the WLF method would be recommended.

    [1]Bohwi S, Jaehoon K. Estimation of master curves of relaxation modulus and tensile properties for solid propellant [J].AdvancedMaterialsResearch, 2014, 871: 247-252.

    [2]Salvador N, Antonio M. New method for estimating shift factors in time-temperature superposition models [J].JournalofThermalAnalysisandCalorimetry, 2013, 113: 453-460.

    [3]Chyuan S. Nonlinear thermoviscoelastic analysis of solid propellant grains subjected to temperature loading [J].FiniteElementsinAnalysisandDesign, 2002, 38(7): 613-630.

    [4]Chyuan S. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading [J].JournalofSoundandVibration, 2003, 268(3): 465-483.

    [5]Chyuan S. Studies of Poisson′s ratio variation for solid propellant grains under ignition pressure loading [J].InternationalJournalofPressureVesselsandPiping, 2003, 80(12): 871-877.

    [6]Bihari B K, Waniet V S, Rao N P N, et al. Determination of activation energy of relaxation events in composite solid propellants by dynamic mechanical analysis [J].DefenseScienceJournal, 2014, 64(2): 173-178.

    [7]Marimuthu R, Nageswara B. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains [J].InternationalJournalofPressureVesselsandPiping, 2013, 111: 131-145.

    [8]Xu J, Ju Y, Han B. et al. Research on relaxation modulus of viscoelastic materials under unsteady temperature states based on TTSP [J].MechanicsofTime-DependentMaterials, 2013, 17(4) : 543-556.

    [9]Lubinda F, Allex E, Geoffrey S. Evaluating and comparing different methods and models for generating relaxation modulus master-curves for asphalt mixes [J].ConstructionandBuildingMaterials, 2011, 25(5) : 2619-2626.

    [10]Davenas A. Solid rocket propulsion Technology [M]. First English Edition, New York, Pergamon Press, 1993, Chapter 6.

    [11]Ferry J D. Viscoelastic properties of polymers [M]. 3rd Edition, John Willy and Sons, 1980.

    [12]Zheng Z, Zhang R. Implementation of viscoelastic material model to simulate relaxation in glass transition [C]∥Excerpt from the Proceedings of the 2014 COMSOL Conference in Boston, 2014.

    [13]Carlrton J M. SRM propellant and polymer materials structural test program. NASA Technical Paper 2821, 1988.

    [14]KGNC A, Burgoyne C J. Time-temperature superposition to determine the stress-rupture of aramid fibres [J].AppliedCompositeMaterials, July 2006, 13(4) : 249-264.

    [15]ROBERT F L. Viscoelastic properties of rubberlike composite propellants and filled elastomers [J].ARSJournal, 2015, 31(5): 599-608.

    猜你喜歡
    梁國(guó)北京航空航天大學(xué)宇航
    Effective dynamics for a spin-1/2 particle constrained to a curved layer with inhomogeneous thickness
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    農(nóng)民工梁國(guó)勝:讓自己成為最堅(jiān)實(shí)的樁
    Rules in Library
    梁國(guó)華先生藝術(shù)作品選登
    今日華人(2019年9期)2019-10-16 17:03:38
    我的宇航夢(mèng)
    我的宇航夢(mèng)
    三级国产精品欧美在线观看| 在线看a的网站| 国产高清不卡午夜福利| 亚洲精品aⅴ在线观看| 九九久久精品国产亚洲av麻豆| a级毛片免费高清观看在线播放| 一区二区三区免费毛片| 中文字幕免费在线视频6| 在线观看一区二区三区激情| 精品国产一区二区三区久久久樱花| 欧美人与性动交α欧美精品济南到 | 日韩中文字幕视频在线看片| 校园人妻丝袜中文字幕| 在线免费观看不下载黄p国产| 丝瓜视频免费看黄片| 在线精品无人区一区二区三| 街头女战士在线观看网站| 精品久久国产蜜桃| 国产免费又黄又爽又色| 两个人免费观看高清视频| 国产男女超爽视频在线观看| 少妇人妻 视频| 在线观看美女被高潮喷水网站| 狂野欧美激情性bbbbbb| 国产av一区二区精品久久| 永久网站在线| 久久久久久久久大av| 国产av国产精品国产| 一边摸一边做爽爽视频免费| 欧美老熟妇乱子伦牲交| 成人毛片60女人毛片免费| 七月丁香在线播放| 男女国产视频网站| 2021少妇久久久久久久久久久| 乱人伦中国视频| 国产在线免费精品| 亚洲美女视频黄频| 午夜91福利影院| 蜜桃久久精品国产亚洲av| 国产在线视频一区二区| 欧美日韩视频精品一区| 一区二区三区四区激情视频| 欧美日韩亚洲高清精品| 精品少妇黑人巨大在线播放| 在线观看免费日韩欧美大片 | 欧美+日韩+精品| 亚洲av国产av综合av卡| 免费大片18禁| 飞空精品影院首页| 岛国毛片在线播放| 精品一区二区免费观看| 日韩免费高清中文字幕av| 日日啪夜夜爽| 人妻夜夜爽99麻豆av| 97超视频在线观看视频| 成年人午夜在线观看视频| 天天影视国产精品| 久久免费观看电影| 欧美日韩视频高清一区二区三区二| 久久久精品区二区三区| 在线精品无人区一区二区三| 一区二区av电影网| 一区二区三区免费毛片| 精品一区二区三卡| 寂寞人妻少妇视频99o| 各种免费的搞黄视频| 精品国产国语对白av| 自线自在国产av| 国产精品.久久久| 国产欧美日韩综合在线一区二区| 一本久久精品| 亚洲精品久久成人aⅴ小说 | 免费观看的影片在线观看| 亚洲少妇的诱惑av| 男女免费视频国产| 久久人人爽人人爽人人片va| 麻豆乱淫一区二区| 午夜福利,免费看| 国产精品无大码| 黄片播放在线免费| 亚洲美女搞黄在线观看| 亚洲成人av在线免费| 亚洲av.av天堂| 一本久久精品| 欧美97在线视频| 人妻夜夜爽99麻豆av| 国产精品免费大片| 亚洲av综合色区一区| 亚洲久久久国产精品| 亚洲av国产av综合av卡| 高清不卡的av网站| av在线老鸭窝| 日韩av在线免费看完整版不卡| 91久久精品国产一区二区三区| 51国产日韩欧美| 国产午夜精品一二区理论片| 久久99精品国语久久久| 黄片播放在线免费| 97在线人人人人妻| 国产永久视频网站| 一级二级三级毛片免费看| 久久精品久久久久久久性| 欧美激情国产日韩精品一区| 日本wwww免费看| av国产久精品久网站免费入址| 日日啪夜夜爽| 男女啪啪激烈高潮av片| 国产精品秋霞免费鲁丝片| 午夜免费鲁丝| 老熟女久久久| 久久久久久久久久久免费av| 99热网站在线观看| 99久久精品国产国产毛片| 一个人免费看片子| 亚洲精品久久久久久婷婷小说| 丰满迷人的少妇在线观看| 国产一级毛片在线| 亚洲经典国产精华液单| 日本猛色少妇xxxxx猛交久久| 精品人妻熟女av久视频| 国产在线视频一区二区| 日韩中文字幕视频在线看片| 少妇 在线观看| a级片在线免费高清观看视频| 欧美精品一区二区免费开放| 日韩欧美精品免费久久| 又黄又爽又刺激的免费视频.| 男女免费视频国产| 日本av手机在线免费观看| 狠狠精品人妻久久久久久综合| 久久精品人人爽人人爽视色| 精品久久久久久久久av| a级毛色黄片| 国产探花极品一区二区| 亚洲欧美成人综合另类久久久| 91久久精品国产一区二区成人| 99久久人妻综合| 日本免费在线观看一区| 男女国产视频网站| 乱人伦中国视频| 欧美xxⅹ黑人| 视频中文字幕在线观看| 日日啪夜夜爽| 91午夜精品亚洲一区二区三区| 久久久久人妻精品一区果冻| 99久久人妻综合| 在线看a的网站| 成人影院久久| 中文字幕制服av| 美女脱内裤让男人舔精品视频| 一级片'在线观看视频| 51国产日韩欧美| 2018国产大陆天天弄谢| 韩国高清视频一区二区三区| 高清午夜精品一区二区三区| 制服人妻中文乱码| 丝瓜视频免费看黄片| 亚洲欧美精品自产自拍| av天堂久久9| 久热久热在线精品观看| 免费高清在线观看日韩| 国产成人精品婷婷| 国产精品国产三级国产专区5o| 国产一区二区三区综合在线观看 | 少妇猛男粗大的猛烈进出视频| 久久精品国产a三级三级三级| 免费观看av网站的网址| 久久ye,这里只有精品| 亚洲精品中文字幕在线视频| 久久99一区二区三区| 国产片内射在线| 18禁动态无遮挡网站| 黑丝袜美女国产一区| 欧美精品国产亚洲| 久久久久久久大尺度免费视频| 国产高清不卡午夜福利| 国产精品欧美亚洲77777| 性色av一级| 亚洲成色77777| 又粗又硬又长又爽又黄的视频| 国产视频内射| 久久人妻熟女aⅴ| 伦理电影免费视频| 纯流量卡能插随身wifi吗| 九九在线视频观看精品| 久久人人爽av亚洲精品天堂| 国产日韩欧美在线精品| 最新中文字幕久久久久| 韩国av在线不卡| 国产成人精品在线电影| 在线观看国产h片| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 国产精品一区二区在线不卡| 午夜福利视频在线观看免费| av免费观看日本| 免费观看的影片在线观看| 日韩成人伦理影院| 搡女人真爽免费视频火全软件| 免费日韩欧美在线观看| videosex国产| 久久影院123| 97在线人人人人妻| 男人操女人黄网站| 国内精品宾馆在线| 日本黄色日本黄色录像| 爱豆传媒免费全集在线观看| 国产爽快片一区二区三区| 三级国产精品欧美在线观看| 亚洲精品久久午夜乱码| 亚洲丝袜综合中文字幕| 国产色爽女视频免费观看| 中文字幕制服av| av.在线天堂| 欧美性感艳星| 少妇精品久久久久久久| 一区在线观看完整版| 老司机亚洲免费影院| 91精品三级在线观看| 日韩大片免费观看网站| 亚洲av不卡在线观看| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 中文字幕久久专区| 日韩制服骚丝袜av| 婷婷成人精品国产| 日韩人妻高清精品专区| 日韩免费高清中文字幕av| 午夜福利,免费看| 18禁裸乳无遮挡动漫免费视频| 国产乱来视频区| 国产高清不卡午夜福利| 啦啦啦中文免费视频观看日本| 久久久久久久亚洲中文字幕| 国产伦精品一区二区三区视频9| 久久精品夜色国产| 日本黄大片高清| 精品少妇久久久久久888优播| 黄色欧美视频在线观看| 久久久久久久久大av| 建设人人有责人人尽责人人享有的| 99国产综合亚洲精品| 青春草亚洲视频在线观看| 伊人久久国产一区二区| 五月伊人婷婷丁香| 国产精品国产三级国产专区5o| 全区人妻精品视频| 黄片播放在线免费| 少妇的逼水好多| 亚洲av男天堂| 国产爽快片一区二区三区| 日韩av在线免费看完整版不卡| 精品国产国语对白av| 亚洲精华国产精华液的使用体验| 一级片'在线观看视频| 内地一区二区视频在线| 免费观看a级毛片全部| 丝袜脚勾引网站| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 久久婷婷青草| 亚洲伊人久久精品综合| 午夜精品国产一区二区电影| 免费人妻精品一区二区三区视频| 曰老女人黄片| 日本-黄色视频高清免费观看| av在线播放精品| 午夜免费观看性视频| 搡女人真爽免费视频火全软件| 韩国av在线不卡| 午夜福利在线观看免费完整高清在| 亚洲色图综合在线观看| 国产精品99久久久久久久久| 免费av中文字幕在线| 新久久久久国产一级毛片| 午夜av观看不卡| 熟女人妻精品中文字幕| 寂寞人妻少妇视频99o| 91精品伊人久久大香线蕉| 日韩在线高清观看一区二区三区| 亚洲欧洲日产国产| 久久久国产欧美日韩av| 亚洲美女视频黄频| 狠狠精品人妻久久久久久综合| 国产黄色免费在线视频| 日韩 亚洲 欧美在线| 99国产综合亚洲精品| 91在线精品国自产拍蜜月| 80岁老熟妇乱子伦牲交| 少妇的逼好多水| 成人毛片60女人毛片免费| 大片免费播放器 马上看| 伦精品一区二区三区| √禁漫天堂资源中文www| 精品人妻一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 在线观看www视频免费| 18禁在线无遮挡免费观看视频| 建设人人有责人人尽责人人享有的| 成年美女黄网站色视频大全免费 | 高清午夜精品一区二区三区| 日日摸夜夜添夜夜爱| 免费看不卡的av| 大码成人一级视频| 丁香六月天网| av免费在线看不卡| 国产乱人偷精品视频| 哪个播放器可以免费观看大片| 在线免费观看不下载黄p国产| 欧美xxⅹ黑人| 99久国产av精品国产电影| 亚洲成色77777| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 黑人猛操日本美女一级片| 午夜影院在线不卡| 一本色道久久久久久精品综合| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 水蜜桃什么品种好| 永久免费av网站大全| 夜夜骑夜夜射夜夜干| 九草在线视频观看| 少妇被粗大的猛进出69影院 | 九色成人免费人妻av| 日本91视频免费播放| 99热国产这里只有精品6| 成人二区视频| 亚洲精品日韩av片在线观看| 91精品国产九色| 国产黄色免费在线视频| 99热全是精品| 久久久午夜欧美精品| 美女国产高潮福利片在线看| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| 色94色欧美一区二区| 91在线精品国自产拍蜜月| 高清视频免费观看一区二区| 国产精品女同一区二区软件| 欧美激情 高清一区二区三区| 午夜久久久在线观看| 国产色爽女视频免费观看| 日本vs欧美在线观看视频| 狠狠精品人妻久久久久久综合| 午夜av观看不卡| 韩国高清视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 国产黄色视频一区二区在线观看| 久久热精品热| 最近2019中文字幕mv第一页| 男女啪啪激烈高潮av片| 韩国av在线不卡| 亚洲精品亚洲一区二区| 日韩一区二区三区影片| 国产精品偷伦视频观看了| 国产日韩欧美视频二区| 超色免费av| 少妇人妻精品综合一区二区| 蜜臀久久99精品久久宅男| 免费黄色在线免费观看| 这个男人来自地球电影免费观看 | 少妇被粗大猛烈的视频| 亚洲精品国产av蜜桃| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看| 99热网站在线观看| 亚洲欧美色中文字幕在线| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美亚洲二区| 国产一区亚洲一区在线观看| 精品视频人人做人人爽| av一本久久久久| 两个人免费观看高清视频| 男女边吃奶边做爰视频| 18+在线观看网站| 成人影院久久| 欧美+日韩+精品| 天美传媒精品一区二区| 亚洲中文av在线| 久久国产亚洲av麻豆专区| 女人久久www免费人成看片| 高清不卡的av网站| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 中文字幕人妻丝袜制服| 在线观看三级黄色| 国产在线一区二区三区精| 又大又黄又爽视频免费| 亚洲精品一区蜜桃| 一级毛片 在线播放| 丝袜喷水一区| 一级a做视频免费观看| 人妻 亚洲 视频| 国产亚洲午夜精品一区二区久久| 免费看不卡的av| 中国国产av一级| 国产成人午夜福利电影在线观看| 在线观看美女被高潮喷水网站| 欧美+日韩+精品| 国产黄片视频在线免费观看| 成人免费观看视频高清| 人妻人人澡人人爽人人| 在线看a的网站| 简卡轻食公司| 亚洲精品,欧美精品| 亚洲成人一二三区av| 五月伊人婷婷丁香| 国产乱人偷精品视频| 中国三级夫妇交换| h视频一区二区三区| 男女边吃奶边做爰视频| 亚洲无线观看免费| 久久精品久久精品一区二区三区| 色94色欧美一区二区| 一级毛片我不卡| 肉色欧美久久久久久久蜜桃| 老司机影院成人| av网站免费在线观看视频| 51国产日韩欧美| 亚洲精品日韩在线中文字幕| 婷婷色av中文字幕| 亚洲国产av新网站| 在线观看一区二区三区激情| a级毛片免费高清观看在线播放| 亚洲精华国产精华液的使用体验| 免费观看性生交大片5| 女人久久www免费人成看片| 精品国产国语对白av| 狠狠婷婷综合久久久久久88av| 国产精品熟女久久久久浪| 久久热精品热| 亚洲av综合色区一区| 99热国产这里只有精品6| 伊人久久国产一区二区| 久久久国产一区二区| 国产成人午夜福利电影在线观看| 一区二区三区四区激情视频| 国产有黄有色有爽视频| 精品人妻熟女av久视频| 国产精品成人在线| 99热这里只有精品一区| 大码成人一级视频| 97超碰精品成人国产| 日韩成人av中文字幕在线观看| 在线观看国产h片| 久久精品熟女亚洲av麻豆精品| 免费av中文字幕在线| 人妻一区二区av| 亚洲色图综合在线观看| 人体艺术视频欧美日本| 午夜激情av网站| 一区二区三区精品91| 三上悠亚av全集在线观看| 久久久久久久久大av| 精品一区二区三卡| 国产片内射在线| 伊人久久精品亚洲午夜| 插阴视频在线观看视频| 22中文网久久字幕| 美女视频免费永久观看网站| 七月丁香在线播放| 人妻 亚洲 视频| 综合色丁香网| 国产av精品麻豆| 在线 av 中文字幕| 亚洲精品,欧美精品| 久久免费观看电影| 久久综合国产亚洲精品| 成年人免费黄色播放视频| 美女福利国产在线| 我的老师免费观看完整版| 最近的中文字幕免费完整| 欧美日韩视频精品一区| 乱码一卡2卡4卡精品| 亚洲欧洲国产日韩| 乱码一卡2卡4卡精品| 国国产精品蜜臀av免费| 国产一区二区三区综合在线观看 | 中文字幕制服av| 成人国语在线视频| 18+在线观看网站| 高清不卡的av网站| 日本黄大片高清| 国产视频内射| 国产成人91sexporn| av专区在线播放| 久久久久久久精品精品| 精品国产一区二区三区久久久樱花| 曰老女人黄片| 美女主播在线视频| 免费少妇av软件| 一级二级三级毛片免费看| 成人亚洲精品一区在线观看| 简卡轻食公司| 久久精品国产自在天天线| 国产色爽女视频免费观看| 亚洲精品国产色婷婷电影| 久久鲁丝午夜福利片| 午夜福利影视在线免费观看| 午夜日本视频在线| 久久久久久人妻| 啦啦啦在线观看免费高清www| 色5月婷婷丁香| 午夜91福利影院| 日韩av不卡免费在线播放| 国产精品久久久久久久久免| 精品久久蜜臀av无| 中国美白少妇内射xxxbb| 毛片一级片免费看久久久久| 母亲3免费完整高清在线观看 | 免费观看性生交大片5| 在线天堂最新版资源| 免费黄色在线免费观看| 亚洲美女视频黄频| 久久久精品免费免费高清| 啦啦啦视频在线资源免费观看| 国产成人精品久久久久久| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 美女中出高潮动态图| 人人妻人人添人人爽欧美一区卜| 高清午夜精品一区二区三区| 久久99热6这里只有精品| 国产成人91sexporn| 午夜免费男女啪啪视频观看| 精品卡一卡二卡四卡免费| 天天躁夜夜躁狠狠久久av| 中文字幕亚洲精品专区| 大片电影免费在线观看免费| 成年人免费黄色播放视频| 老司机亚洲免费影院| 亚洲色图 男人天堂 中文字幕 | 亚洲精品一二三| 一区二区三区免费毛片| 最新的欧美精品一区二区| 黑人巨大精品欧美一区二区蜜桃 | 亚洲人与动物交配视频| 最新中文字幕久久久久| 秋霞伦理黄片| 黄色毛片三级朝国网站| 伊人亚洲综合成人网| 99热这里只有精品一区| 七月丁香在线播放| 男人添女人高潮全过程视频| 免费av中文字幕在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品一区蜜桃| 97超视频在线观看视频| av视频免费观看在线观看| 午夜免费鲁丝| 色94色欧美一区二区| 久久国内精品自在自线图片| 国产成人精品无人区| 国产精品一二三区在线看| 久久久久精品久久久久真实原创| 特大巨黑吊av在线直播| av免费在线看不卡| 亚洲丝袜综合中文字幕| 中国国产av一级| 看十八女毛片水多多多| 春色校园在线视频观看| 亚洲激情五月婷婷啪啪| 黄色视频在线播放观看不卡| 亚洲精品乱码久久久久久按摩| 热re99久久精品国产66热6| 亚洲欧洲国产日韩| 国产一区有黄有色的免费视频| 国国产精品蜜臀av免费| 国产毛片在线视频| 中文字幕av电影在线播放| 久久女婷五月综合色啪小说| 一本久久精品| 中文天堂在线官网| 国产精品一二三区在线看| 十八禁高潮呻吟视频| 22中文网久久字幕| 制服人妻中文乱码| 欧美+日韩+精品| 国产高清有码在线观看视频| 99精国产麻豆久久婷婷| 一区二区三区免费毛片| 欧美最新免费一区二区三区| 简卡轻食公司| 亚洲激情五月婷婷啪啪| 性色av一级| 国产极品粉嫩免费观看在线 | 黑人巨大精品欧美一区二区蜜桃 | 最近中文字幕高清免费大全6| 欧美日本中文国产一区发布| 亚洲国产最新在线播放| 男的添女的下面高潮视频| 亚洲成人一二三区av| 久久精品久久久久久噜噜老黄| 精品亚洲成国产av| 免费久久久久久久精品成人欧美视频 | 国产成人aa在线观看| 欧美日韩成人在线一区二区| 在线亚洲精品国产二区图片欧美 | 成人免费观看视频高清| 国产乱来视频区| 精品午夜福利在线看| 精品人妻熟女毛片av久久网站| 国产老妇伦熟女老妇高清| 人人妻人人澡人人看| 在线天堂最新版资源| 欧美丝袜亚洲另类| 免费久久久久久久精品成人欧美视频 | 午夜免费男女啪啪视频观看| 春色校园在线视频观看| 久久精品国产自在天天线| 亚洲人成网站在线观看播放| 欧美 亚洲 国产 日韩一| 精品久久久久久久久亚洲| 国产又色又爽无遮挡免|