• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    構(gòu)建AP-HTPB固體推進(jìn)劑松弛模量主曲線的不同方法

    2017-05-07 01:26:33WalidAdel梁國(guó)柱
    含能材料 2017年10期
    關(guān)鍵詞:梁國(guó)北京航空航天大學(xué)宇航

    Walid M Adel, 梁國(guó)柱

    (北京航空航天大學(xué)宇航學(xué)院, 北京100083 )

    1 Introduction

    The solid propellant exhibits very complicated viscoelastic behavior and its mechanical properties (the relationship between tension and stress) and failure mechanisms are really sensible at the time of application loads, and temperature change. Relaxation modulus is one of the most important mechanical properties of viscoelastic materials which can be used to simulate the viscoelastic material behavior[1]. The master curve of the relaxation modulus is defined as the relationship between the relaxation modulus and the reduced loading time and it is constructed based on a selected reference temperature of interest to which all data must be shifted using shift factors. The shift factor is defined as a unique parameter which takes into account both the temperature and strain rate effects of the temperature of interest relative to the reference temperature[2]. Depending on a master curve, the mechanical properties and the behavior of composite solid propellant can be predicted at different times and temperatures based on a limited set of experimental data. This anticipation is often performed through basic time-temperature superposition (TTS) principle.

    The related publications in the extant literature, primarily concentrate on the application of TTS principle of solid propellant under different loading conditions. Chyuan analyzed numerically the structural integrity of HTPB solid propellant grains subjected to temperature loading[3], ignition pressurization loading[4], and Poisson′s ratio varies under ignition pressure loading[5], using a constitutive model based on the relaxation testing that employed the TTS and reduced integration by using WLF method. B. K. Bihari et al.[6]used both method WLF and Arrhenius to determine the activation energy of composite solid propellant to predict the useful lifetime of solid propellant. Marimuthu et al.[7]simulated the structural integrity of the solid propellant grains under gravity loading and inner pressure using relaxation tests and the TTS to specify the effective Poisson′s ratio and Young′s modulus. Moreover, Xu[8]proposed a new method to get the relaxation modulus of HTPB propellants using the TTS in the temperature range of -50 ℃ to +35 ℃. John Kim et al.[1]estimated the master curve of the relaxation modulus for solid propellant according to the basic TTS method and WLF method, but without comparison between the two methods. Some studies have been focused on comparing different TTS methods and methods to generate the relaxation modulus master curve, but using different materials for example Allex E. Alvarez et al.[9]evaluated various methods and examples that can be satisfactorily applied to get the relaxation modulus master curves of hot-mix asphalt (HMA) by using three methods WLF, Arrhenius, and an optimization technique with the sum of square error (SSE) method. However, there is still limited information available about the difference between the methods that usually used to generate the relaxation modulus master curves of solid propellant, therefore, further researches should be performed to demonstrate the differences between these methods.

    In this work, the specimen preparation and the stress relaxation tests at different temperatures are conducted.The three methods of generating the relaxation modulus master curves are discussed. Then the best fit model for the experimental data are presented.

    2 Material and Experiment

    2.1 Material and Specimens Preparation

    The solid propellant used in this research is a heterogeneous propellant which consists of solid oxidizer particles ammonium perchlorate (AP) 67%, and metallic fuel particle aluminum powder (Al) 18%, dispersing in polymeric binder matrix (HTPB) forming the rest percentage. These gradients were mixed together, and then the propellant slurry was cast in special molds under vibration and vacuum with internal dimensions of 200 mm× 150 mm× 150 mm. Then the molds are placed in a large curing oven with temperature controlled at 60 ℃, for a total curing time of 240 h. After curing the molds are cut into sheets with a uniform thickness. And so the test specimens (shown in Fig.1) are produced using special cut press according to Joint Army-Navy-NASA-Air Force Propulsion Committee (JANNAF) standard[10], and the dimensions of the test specimens are illustrated in Fig. 2. The actual thickness of the specimens is 11.04 mm less than the standard one due to some limitation of the sheet cutting machine. As a quality control step, the produced specimens are checked by a non-destructive method for voids like air bubbles or micro cracks by X-Ray to ensure the result of experimental data. After that, the accepted specimens were stored in desiccators at ambient temperature and relative humidity RH≤30%. The mechanical and physical prosperities of the selected solid propellant (measured at room temperature) are listed in Table 1.

    Fig.1 HTPB solid propellant test specimen

    Fig.2 Standard dimensions of the specimen(unit: mm)

    Table 1 The mechanical and physical prosperities of the HTPB solid propellant

    Young′smodulus/MPamax.stress/MPamax.strain/%density/kg·m-3glasstransitiontemperature/℃3.400.72434.51760-60

    2.2 Stress Relaxation Test

    To define the behavioral characteristics of a viscoelastic solid propellant accurately, its responses to an applied load or displacement must be determined as a function of strain rate, time, and temperature. These characteristics may be specified by means of creep or stress relaxation tests. The viscous nature of the mechanical behavior of a HTPB solid propellant is demonstrated by relaxation test which consists in subjecting a specimen to a constant elongation and measuring the evolution of the forceF(t) versus time, so the stress relaxation describes the time-dependent change in force due to applied displacement[11].The experiments were conducted using a computer controlled universal test machine (UTM) Zwick Z050 at different temperatures -40,+20 ℃ and +76 ℃ for 1380 s by maintaining constant strain level 10% during the whole time test and the initial tension rate was 10 mm.min-1. Normally the researchers test the solid propellant specimens from -40 ℃ to +50 ℃, but we select the high test temperature as +76 ℃ according to some engineering applications. Before the experimental tests the specimens are conditioned in an external environment chamber for three hours to ensure the thermal equilibrium, and also the relaxation tests were conducted in a digital control environmental temperature chamber with tolerance ±0.1 ℃ of the set temperature point. The stress relaxation test shall also be repeated to check the result of the deflection superposition during the stress relaxation phenomena[12]. In order to ensure the consistency of the measured data, every experimental test was carried out on three specimens in the same conditions and the mean values of these results were taken as the final result. From the measured data, the stress relaxation modulus is calculated as indicated in Eq. (1).

    (1)

    whereER(t) is the time-dependent stress relaxation modulus, MPa;F(t) is the measured time-dependent load, N;Ais the cross section area of the specimen (A=104.88 mm2) andεis the applied constant loading strain. The actual value of the applied strain is 0.098, a little less than 0.1, due to crosshead speed accuracy of the UTM.

    Fig. 3 shows that the trend of the relaxation modulus decreases as time increases under various temperatures. The major change of the stress relaxation occurs in the first 120 s of the relaxation time after that the stress relaxation is still decreasing but with very slow rate. Also, it can be observed that the high effect of the low temperature and time on the stress relaxation curves for the composite solid propellant especially at the initial values, but this effect decreases as the relaxation time increases. For example, att=0 s and at a constant strain level the difference percentage value between the relaxation modulus at -40℃ and +20 ℃ is 155.7%, while this value att=1380 s is approximately 9.5%. These results totally represent that the current HTPB propellant is a viscoelastic material and exhibits the dependence of time-temperature behavior.

    Fig.3 Relaxation modulus at different temperatures and constant strain levelε=10%

    3 Methods for Generating the Master Curve

    TTS principle has been used to get the master curves for several mechanical properties such as stress, strain, creep compliance and relaxation modulus against time or dynamic modulus against frequency[13]. The various methods and models for producing the relaxation modulus master curves are discussed and evaluated in this section. These methods include the basic TTS method, the WLF method, and the Arrhenius method. The major difference between these methods is basically in the computation of the temperature shift factors. It should be emphasized here that the shift factor is the main driving force in the generation of any master-curve[9].

    3.1 Basic Time-Temperature Superposition Method

    To generate themaster curve of the relaxation modulus using the basic TTS method, it is necessary to plot the log relaxation modulus versus log time at different temperatures to obtain the shift factors of each time-temperature as shown in Fig. 4. The relationship between time and temperature can be written as the following equations[1]:

    ER(t0,T0)=ER(t1,T1)=ER(t2,T2)

    (2)

    (3)

    (4)

    Fig.4 logERvs. logt

    Table 2 Shift factors at different temperatures

    T/℃logaT76-0.354200-400.477

    Fig.5 Shifting process using the basic TTS method

    A sole curve can be obtained from the above results called the master curve, which gives the values of the relaxation modulusERagainst the values of the reduced timeξ=t/aTfor various temperatures as shown in Fig. 6.

    Fig.6 Master curve using basic TTS method

    3.2 The Williams-Landel-Ferry (WLF) Method

    The WLF equation is an empirical equation that can be used to predict the behavior of the viscoelastic properties of the polymer at a wide range of temperatures. The WLF method is based on a free volume theory which is related to the macroscopic motion of the bulk material, and it is verified at temperatures above the glass transition temperature. The WLF TTS method for calculating the shift factor is shown in Eq.5[1, 2, 9]

    (5)

    whereC1andC2are the material constants which are non-universal values, although they vary with the nature of the polymer system[14]. In order to calculate the shift factor at other temperatures, the material constants must be calculated by the following method. The linearized WLF equation can be rewritten as shown in Eq.6[1, 15].

    (6)

    According to Eq.6, if we plot 1/logaTas a function of 1/(T-T0) we can extractC2/C1from the resulting slope of the straight line and 1/C1from the point of intersection withY-axis.

    Fig. 7 shows the linear relationship between 1/logaTand 1/(T-T0), from Fig. 7 we can find 1/C1=-0.185 and hence

    Fig.7 Linearized WLF equation

    C1=-5.4, and also we can findC2/C1=-142.5, soC2=770.27. Then the shift factor, according to WLF can be calculated at different temperatures according to the Eq. 4. Fig. 8 shows the TTS using WLF method, and Fig. 9 shows the master curve of the relaxation modulus using the same method.

    Fig.8 Shifting process using WLF method

    Fig.9 Masster curve using WLF method

    3.3 The Arrhenius Method

    The Arrhenius relationship is verified at temperatures under the glass transition temperature of the material, and the Arrhenius TTS method for shift factor calculation is shown in Eq.7[2, 9].

    (7)

    whereCais the material constant that is a function of the activation energy (Ea) and the universal gas constant (R),Ca=Ea/2.303R).Tis the test temperature in K, andT0is the reference temperature (293 K). To obtain the material constant we must plot logaTverses (1/T-1/T0) and then the slop of the resulting line will be represent the material constant as shown in Fig.10, soCa=572.4. Now, the shift factors at different temperatures can be obtained as shown in Fig.11, and by using Eq.6 the master curve of the relaxation modulus according to Arrhenius method can be plotted as shown in Fig.12.

    Fig.10 Linearized Arrhenius equation

    Fig.11 Shifting process using Arrhenius method

    Fig.12 Master curve using Arrhenius method

    4 Results and Analysis

    The master curves generated based on the basic TTS method, the WLF method, and the Arrhenius method using the same experimental relaxation test data presented in Fig. 3 are plotted in Fig.13. The plots are for relaxation modulus as a function of reduced time in the log-log scale. All the curves are very similar, and this is an indication of the suitability of these methods for generating the relaxation modulus master curves of solid propellant. However, it should be stressed here that generation of satisfactory master curves and its accuracy is mostly dependent on the following factors:

    Experimental test data consistency, which is a function of different variables, including both the parameters and the set-up of the relaxation test, machine vibrations or noises, specimen homogeneity and uniformity, specimen fabrication for example the dimensions and parallelism of end surfaces of the specimen, and the variation of humidity conditions.

    (2)The behavior of the shift factor variation with temperature.

    (3)The condition of the polymeric material state.

    (4)The heating rate applied to arrive to the desired temperature.

    However, the analysis of the results demonstrated that the basic method for TTS has the highest accuracy of the relaxation modulus curve fitting given determination coefficient (R2=0.9992), and this is not surprising because this method uses only the experimental data. Likewise, both the empirical methods can get acceptable results if appropriate material constants are used in these methods. Table 3 demonstrates the main statistical factors obtained during calculation of material constants, and then we can note the effect of these results on the accuracy of fitting curves. The sum of squared error (SSE), is a preliminary statistical calculation that leads to other data values. It is useful to be able to find how closely related those values are. The root mean squared error(RMSE) is the distance, on average, of a data point from the fitted line,measuring along a vertical line. It seems that the data meet WLF method givenR2coefficient (R2=0.9984), while the data meet the Arrhenius method givenR2coefficient (R2=0.9974), less than the WLF one. Compared to the other two methods, the major advantage of the basic method is that it revolves around the actual experimental data without introducing any external constant when generation the master curve, while the WLF and Arrhenius methods use already existing empirical formulas which are dependent on externally determined material constants. Table 4 is a summary of the analysis and the calculated shift factors at different temperatures when generating the master curves of solid propellant. In Fig. 14, another type of master curve can be obtained from the previous calculation shows the relation between the shift factors corresponding to each temperature. It can be observed that the data meet WLF method given higherR2coefficient, and also given lower error than the data meet the Arrhenius method. In order to simulate the nonlinear viscoelastic behavior of the composite solid propellant under different loads and conditions using various commercial finite element codes (Ansys, Abaqus, Mark, etc.), one of the time-temperature dependent shift functions must be used, and the material constants such asC1,C2, andCamust be entered as determined by the shift function specified and selected by the user in the code.

    Fig.13 Master curve of AP-HTPB solid propellant obtained using the three methods

    Table 3 Statistics of analysis and material constant calculation for HTPB solid propellant

    parameterWLFmethodC1=-5.4 C2=770.27ArrheniusmethodCa=572.4SSE0.00052470.002355R20.99890.9932RMSE0.001560.03431

    Table 4 List of analysis and calculated parameters of master curves for HTPB solid propellant

    parameterbasicmethodWLFmethodArrheniusmethodaT-40℃0.4419060.4312510.485892aT+20℃111aT+76℃3.0021472.8518463.184198R20.99920.99840.9974

    Fig.14 Shift factors corresponding to each temperature

    5 Conclusions

    In this paper,a series of conventional relaxation tests have been performed using a universal test machine at a broad range of temperatures (-40, +20, +76 ℃) to evaluate and get the master curves of the relaxation modulus for AP-HTPB composite solid propellant as a purpose of reduced time and at a reference temperature of 20 ℃. These master curves were generated according to three different methods (the basic, WLF, and Arrhenius) by using the TTS principle, and then comparative study was conducted to show the level of accuracy for each method. The following conclusions can be drawn:

    (1)The basic method is the best method for generating a fit function for the relaxation modulus master curve followed by the WLF method and lastly, the Arrhenius method.

    (2)The results presented here can be used as a reference for selecting the appropriate methods for generating the relaxation modulus master curve of AP-HTPB solid propellant.

    (3)Most of the finite element software′s need some material constants to define the time-temperature dependent material method, so the basic method cannot be used alone and some material constants must be calculated using empirical formulas like WLF or Arrhenius methods, and between these two methods, the WLF method would be recommended.

    [1]Bohwi S, Jaehoon K. Estimation of master curves of relaxation modulus and tensile properties for solid propellant [J].AdvancedMaterialsResearch, 2014, 871: 247-252.

    [2]Salvador N, Antonio M. New method for estimating shift factors in time-temperature superposition models [J].JournalofThermalAnalysisandCalorimetry, 2013, 113: 453-460.

    [3]Chyuan S. Nonlinear thermoviscoelastic analysis of solid propellant grains subjected to temperature loading [J].FiniteElementsinAnalysisandDesign, 2002, 38(7): 613-630.

    [4]Chyuan S. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading [J].JournalofSoundandVibration, 2003, 268(3): 465-483.

    [5]Chyuan S. Studies of Poisson′s ratio variation for solid propellant grains under ignition pressure loading [J].InternationalJournalofPressureVesselsandPiping, 2003, 80(12): 871-877.

    [6]Bihari B K, Waniet V S, Rao N P N, et al. Determination of activation energy of relaxation events in composite solid propellants by dynamic mechanical analysis [J].DefenseScienceJournal, 2014, 64(2): 173-178.

    [7]Marimuthu R, Nageswara B. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains [J].InternationalJournalofPressureVesselsandPiping, 2013, 111: 131-145.

    [8]Xu J, Ju Y, Han B. et al. Research on relaxation modulus of viscoelastic materials under unsteady temperature states based on TTSP [J].MechanicsofTime-DependentMaterials, 2013, 17(4) : 543-556.

    [9]Lubinda F, Allex E, Geoffrey S. Evaluating and comparing different methods and models for generating relaxation modulus master-curves for asphalt mixes [J].ConstructionandBuildingMaterials, 2011, 25(5) : 2619-2626.

    [10]Davenas A. Solid rocket propulsion Technology [M]. First English Edition, New York, Pergamon Press, 1993, Chapter 6.

    [11]Ferry J D. Viscoelastic properties of polymers [M]. 3rd Edition, John Willy and Sons, 1980.

    [12]Zheng Z, Zhang R. Implementation of viscoelastic material model to simulate relaxation in glass transition [C]∥Excerpt from the Proceedings of the 2014 COMSOL Conference in Boston, 2014.

    [13]Carlrton J M. SRM propellant and polymer materials structural test program. NASA Technical Paper 2821, 1988.

    [14]KGNC A, Burgoyne C J. Time-temperature superposition to determine the stress-rupture of aramid fibres [J].AppliedCompositeMaterials, July 2006, 13(4) : 249-264.

    [15]ROBERT F L. Viscoelastic properties of rubberlike composite propellants and filled elastomers [J].ARSJournal, 2015, 31(5): 599-608.

    猜你喜歡
    梁國(guó)北京航空航天大學(xué)宇航
    Effective dynamics for a spin-1/2 particle constrained to a curved layer with inhomogeneous thickness
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    農(nóng)民工梁國(guó)勝:讓自己成為最堅(jiān)實(shí)的樁
    Rules in Library
    梁國(guó)華先生藝術(shù)作品選登
    今日華人(2019年9期)2019-10-16 17:03:38
    我的宇航夢(mèng)
    我的宇航夢(mèng)
    黄色欧美视频在线观看| 久久久成人免费电影| 精品酒店卫生间| 夜夜爽夜夜爽视频| 国产综合精华液| 国产精品女同一区二区软件| 欧美另类一区| 一边亲一边摸免费视频| 少妇被粗大猛烈的视频| 美女国产视频在线观看| 18禁裸乳无遮挡动漫免费视频 | 亚州av有码| 国产精品av视频在线免费观看| 草草在线视频免费看| 亚洲伊人久久精品综合| av国产免费在线观看| 国产精品福利在线免费观看| 免费观看在线日韩| av在线老鸭窝| 老女人水多毛片| 国产 一区 欧美 日韩| 亚洲国产成人一精品久久久| 建设人人有责人人尽责人人享有的 | 麻豆乱淫一区二区| 国产在视频线精品| 国产黄色视频一区二区在线观看| 国产亚洲最大av| 国产精品久久久久久精品电影| 黄片wwwwww| 日日撸夜夜添| 亚洲欧美成人综合另类久久久| 少妇丰满av| 国产精品一及| 国产精品人妻久久久影院| 国产亚洲91精品色在线| 九九久久精品国产亚洲av麻豆| 日本免费在线观看一区| 午夜免费观看性视频| 久久精品久久久久久久性| 嫩草影院入口| 狂野欧美激情性xxxx在线观看| xxx大片免费视频| 亚洲国产精品专区欧美| 免费电影在线观看免费观看| 亚洲一级一片aⅴ在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 97人妻精品一区二区三区麻豆| www.色视频.com| 免费看光身美女| 午夜免费观看性视频| 亚洲欧美成人精品一区二区| 不卡视频在线观看欧美| av.在线天堂| 久热这里只有精品99| 国产淫语在线视频| 午夜视频国产福利| 国产成人午夜福利电影在线观看| 亚洲欧美成人精品一区二区| www.av在线官网国产| 久久精品人妻少妇| 婷婷色综合大香蕉| 国产男女内射视频| 国产一区二区亚洲精品在线观看| 我要看日韩黄色一级片| 禁无遮挡网站| 免费在线观看成人毛片| 最近最新中文字幕大全电影3| 欧美日本视频| 国产有黄有色有爽视频| 久久99精品国语久久久| 国产亚洲91精品色在线| 久久韩国三级中文字幕| 国产美女午夜福利| av黄色大香蕉| 色综合色国产| 日本午夜av视频| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜爱| 国产中年淑女户外野战色| 久久久久久久大尺度免费视频| 成人午夜精彩视频在线观看| 国产熟女欧美一区二区| 少妇被粗大猛烈的视频| 深爱激情五月婷婷| 欧美xxxx性猛交bbbb| 国产色爽女视频免费观看| 久久久久久久久久久免费av| 日本与韩国留学比较| 日韩强制内射视频| 精品一区二区三区视频在线| 性色av一级| 99热这里只有是精品50| 亚洲国产日韩一区二区| 久久99蜜桃精品久久| 自拍欧美九色日韩亚洲蝌蚪91 | 国产日韩欧美亚洲二区| 成人高潮视频无遮挡免费网站| 22中文网久久字幕| 亚洲自偷自拍三级| 97热精品久久久久久| 久久久久久久大尺度免费视频| 精品人妻一区二区三区麻豆| 十八禁网站网址无遮挡 | 国产av国产精品国产| 99久国产av精品国产电影| 亚洲国产成人一精品久久久| 青春草视频在线免费观看| 全区人妻精品视频| 欧美xxⅹ黑人| 亚洲成色77777| 久久久午夜欧美精品| 久久久成人免费电影| 欧美zozozo另类| 亚洲欧美日韩另类电影网站 | 日韩中字成人| 国产一区亚洲一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜爱爱视频在线播放| 一级av片app| 国产探花在线观看一区二区| 日韩成人伦理影院| 精品酒店卫生间| 边亲边吃奶的免费视频| 国产91av在线免费观看| 国产高清三级在线| av天堂中文字幕网| 国产女主播在线喷水免费视频网站| 少妇人妻一区二区三区视频| 99热网站在线观看| 精品久久久久久电影网| 各种免费的搞黄视频| 成人特级av手机在线观看| 青春草亚洲视频在线观看| 日本av手机在线免费观看| 少妇裸体淫交视频免费看高清| 国产视频首页在线观看| 成人特级av手机在线观看| 国产一区二区亚洲精品在线观看| 九色成人免费人妻av| 国产亚洲91精品色在线| 亚洲内射少妇av| 国产成人福利小说| av一本久久久久| 欧美一区二区亚洲| 亚洲最大成人av| 一级二级三级毛片免费看| 哪个播放器可以免费观看大片| 国产一区二区三区av在线| 国产精品一及| 少妇的逼好多水| 欧美少妇被猛烈插入视频| 听说在线观看完整版免费高清| 女人十人毛片免费观看3o分钟| 亚洲精品影视一区二区三区av| 成人无遮挡网站| 热99国产精品久久久久久7| 午夜激情福利司机影院| 成年免费大片在线观看| 啦啦啦啦在线视频资源| 久久久久久久大尺度免费视频| 亚洲精品乱码久久久v下载方式| 成人综合一区亚洲| 欧美变态另类bdsm刘玥| 免费大片黄手机在线观看| 在线天堂最新版资源| 亚洲精品亚洲一区二区| 亚洲精品久久久久久婷婷小说| 久久久久久九九精品二区国产| 91久久精品电影网| 纵有疾风起免费观看全集完整版| 日本黄大片高清| 国产av码专区亚洲av| 亚洲av欧美aⅴ国产| 午夜福利在线在线| 国产真实伦视频高清在线观看| 一区二区三区精品91| 蜜臀久久99精品久久宅男| 久久久久久久午夜电影| 美女内射精品一级片tv| 麻豆乱淫一区二区| 精品视频人人做人人爽| 日本-黄色视频高清免费观看| 99久久精品热视频| 国国产精品蜜臀av免费| 午夜免费鲁丝| 狂野欧美白嫩少妇大欣赏| 直男gayav资源| 午夜精品一区二区三区免费看| 国产毛片a区久久久久| 制服丝袜香蕉在线| 亚洲精品自拍成人| 精品一区二区免费观看| 国产亚洲午夜精品一区二区久久 | 国产爽快片一区二区三区| 国产免费又黄又爽又色| 久久久久国产网址| 永久免费av网站大全| 免费播放大片免费观看视频在线观看| 国产av不卡久久| 国产免费视频播放在线视频| 成年人午夜在线观看视频| 特大巨黑吊av在线直播| 啦啦啦啦在线视频资源| 亚洲人成网站高清观看| 大陆偷拍与自拍| 少妇人妻久久综合中文| 日日摸夜夜添夜夜爱| 国产乱来视频区| 亚洲精品一区蜜桃| 中文字幕久久专区| 欧美激情国产日韩精品一区| www.av在线官网国产| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美日韩另类电影网站 | 亚洲欧美清纯卡通| 秋霞在线观看毛片| 联通29元200g的流量卡| 国产免费福利视频在线观看| 91aial.com中文字幕在线观看| 丰满人妻一区二区三区视频av| 青春草亚洲视频在线观看| 免费观看的影片在线观看| 成人二区视频| a级一级毛片免费在线观看| 在线a可以看的网站| freevideosex欧美| 97超视频在线观看视频| 深爱激情五月婷婷| 亚洲精品国产av成人精品| 老司机影院成人| 成年av动漫网址| 国产成人一区二区在线| 简卡轻食公司| 国产一区二区亚洲精品在线观看| videossex国产| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 亚洲av福利一区| 国产成人免费无遮挡视频| 日韩强制内射视频| 亚洲四区av| 国产欧美日韩精品一区二区| av网站免费在线观看视频| 亚洲国产欧美在线一区| av在线天堂中文字幕| 亚洲欧美中文字幕日韩二区| 男女边摸边吃奶| 精品久久久久久久久亚洲| 午夜激情久久久久久久| 最后的刺客免费高清国语| 又爽又黄a免费视频| 黄色日韩在线| 久久99精品国语久久久| 亚洲精品国产色婷婷电影| 简卡轻食公司| 伊人久久国产一区二区| 国产人妻一区二区三区在| 夜夜爽夜夜爽视频| 天堂中文最新版在线下载 | 青青草视频在线视频观看| 韩国高清视频一区二区三区| 伦精品一区二区三区| av国产免费在线观看| 日韩欧美精品免费久久| 精品久久久噜噜| 身体一侧抽搐| 国产精品三级大全| 99热6这里只有精品| 成人免费观看视频高清| 一区二区三区精品91| 国产免费视频播放在线视频| 国产一区有黄有色的免费视频| 制服丝袜香蕉在线| 国产黄a三级三级三级人| 人妻系列 视频| 日韩在线高清观看一区二区三区| 国产乱人视频| 久久久久久久精品精品| 亚洲精品一区蜜桃| 午夜福利在线观看免费完整高清在| 午夜激情久久久久久久| 亚洲人与动物交配视频| 国产成人一区二区在线| 97人妻精品一区二区三区麻豆| 天天躁日日操中文字幕| 欧美性猛交╳xxx乱大交人| 国产成人免费无遮挡视频| 极品少妇高潮喷水抽搐| 99视频精品全部免费 在线| 最近最新中文字幕免费大全7| 国产精品一区www在线观看| 成年女人在线观看亚洲视频 | 亚洲婷婷狠狠爱综合网| 成人亚洲精品av一区二区| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| 午夜爱爱视频在线播放| 国产午夜精品一二区理论片| 欧美亚洲 丝袜 人妻 在线| 亚洲av一区综合| 九九爱精品视频在线观看| 免费看不卡的av| 观看免费一级毛片| 欧美激情久久久久久爽电影| 寂寞人妻少妇视频99o| 久久久久久九九精品二区国产| 日韩不卡一区二区三区视频在线| 九色成人免费人妻av| 国产美女午夜福利| 国产一区二区三区综合在线观看 | 成人午夜精彩视频在线观看| 亚洲激情五月婷婷啪啪| 国产亚洲午夜精品一区二区久久 | 搡女人真爽免费视频火全软件| 午夜福利视频1000在线观看| 久久这里有精品视频免费| 黄片wwwwww| 亚洲av一区综合| 又爽又黄a免费视频| 夫妻性生交免费视频一级片| 视频区图区小说| 亚洲精品日本国产第一区| 麻豆成人av视频| 丰满人妻一区二区三区视频av| 乱系列少妇在线播放| 天天一区二区日本电影三级| 久久久久久久久大av| 韩国av在线不卡| www.av在线官网国产| 亚州av有码| 美女高潮的动态| 精品国产一区二区三区久久久樱花 | 在线观看一区二区三区激情| 亚洲精品视频女| 精品少妇久久久久久888优播| 丝袜喷水一区| 亚洲精品久久久久久婷婷小说| 国产成人免费无遮挡视频| 国产日韩欧美在线精品| 久久久久久九九精品二区国产| 国产高清国产精品国产三级 | 性色av一级| 日韩国内少妇激情av| 亚洲熟女精品中文字幕| 大片免费播放器 马上看| 国产一区有黄有色的免费视频| 国产男女超爽视频在线观看| 高清日韩中文字幕在线| 色婷婷久久久亚洲欧美| 亚洲丝袜综合中文字幕| 久久久亚洲精品成人影院| av在线播放精品| 成人一区二区视频在线观看| 久久精品国产自在天天线| 麻豆成人午夜福利视频| 不卡视频在线观看欧美| 亚洲伊人久久精品综合| 下体分泌物呈黄色| 亚洲,欧美,日韩| 免费高清在线观看视频在线观看| 久久97久久精品| 新久久久久国产一级毛片| 身体一侧抽搐| 成人漫画全彩无遮挡| tube8黄色片| 寂寞人妻少妇视频99o| 亚洲av电影在线观看一区二区三区 | 高清在线视频一区二区三区| 久久99精品国语久久久| 久久国内精品自在自线图片| 日韩一区二区三区影片| 免费黄频网站在线观看国产| 欧美日本视频| 成人国产麻豆网| 国产片特级美女逼逼视频| 成人午夜精彩视频在线观看| 亚洲成人中文字幕在线播放| 丝袜脚勾引网站| 国产有黄有色有爽视频| 一级毛片久久久久久久久女| 久久久a久久爽久久v久久| 久久精品国产自在天天线| a级毛色黄片| 日本免费在线观看一区| 亚洲最大成人av| 日韩视频在线欧美| 黄片wwwwww| 乱系列少妇在线播放| 国产精品一区二区三区四区免费观看| 日本午夜av视频| 久久久色成人| 色5月婷婷丁香| 啦啦啦在线观看免费高清www| 国产精品久久久久久久久免| 高清午夜精品一区二区三区| 校园人妻丝袜中文字幕| 丝袜喷水一区| 自拍偷自拍亚洲精品老妇| 性插视频无遮挡在线免费观看| 日韩一区二区视频免费看| www.色视频.com| 女的被弄到高潮叫床怎么办| 亚洲精品亚洲一区二区| 男人和女人高潮做爰伦理| 中国美白少妇内射xxxbb| 亚洲综合色惰| 国产精品久久久久久久久免| 久久精品人妻少妇| 色播亚洲综合网| 亚洲av中文字字幕乱码综合| 亚洲怡红院男人天堂| 国产精品国产三级国产专区5o| 久久久久久久久久人人人人人人| 少妇的逼好多水| 国产中年淑女户外野战色| 天堂中文最新版在线下载 | 六月丁香七月| 国产精品不卡视频一区二区| av免费在线看不卡| 国产成人a∨麻豆精品| 国产 一区 欧美 日韩| 中文天堂在线官网| 亚洲精品影视一区二区三区av| 中文字幕人妻熟人妻熟丝袜美| 国产真实伦视频高清在线观看| 色婷婷久久久亚洲欧美| 内射极品少妇av片p| 色吧在线观看| 人妻系列 视频| 亚洲av二区三区四区| 欧美日韩视频高清一区二区三区二| 蜜桃亚洲精品一区二区三区| 日韩成人伦理影院| 人人妻人人看人人澡| 亚洲欧美精品专区久久| 国产精品嫩草影院av在线观看| h日本视频在线播放| 亚洲最大成人av| 联通29元200g的流量卡| 亚洲伊人久久精品综合| 久久久久久久大尺度免费视频| 日韩一本色道免费dvd| 下体分泌物呈黄色| 免费观看在线日韩| 日韩欧美精品免费久久| 久久鲁丝午夜福利片| 丰满乱子伦码专区| 99热这里只有是精品50| 国产成人91sexporn| 精品亚洲乱码少妇综合久久| 少妇丰满av| 少妇熟女欧美另类| 麻豆久久精品国产亚洲av| 最后的刺客免费高清国语| 亚洲av二区三区四区| 最近中文字幕高清免费大全6| 小蜜桃在线观看免费完整版高清| 日韩大片免费观看网站| 极品教师在线视频| 亚洲精品亚洲一区二区| 国产精品嫩草影院av在线观看| 久久久久久久久久久免费av| xxx大片免费视频| 亚洲久久久久久中文字幕| 日产精品乱码卡一卡2卡三| 欧美xxxx黑人xx丫x性爽| 高清视频免费观看一区二区| 精品少妇久久久久久888优播| 色5月婷婷丁香| 国内揄拍国产精品人妻在线| 亚洲国产色片| 成人亚洲精品一区在线观看 | 80岁老熟妇乱子伦牲交| 国国产精品蜜臀av免费| 国产又色又爽无遮挡免| 各种免费的搞黄视频| 亚洲精品一区蜜桃| 成人国产麻豆网| 欧美成人午夜免费资源| 久久久久久九九精品二区国产| 好男人视频免费观看在线| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 蜜桃久久精品国产亚洲av| 亚洲精品日韩在线中文字幕| 国产亚洲精品久久久com| 黄色一级大片看看| 99九九线精品视频在线观看视频| 成人欧美大片| 精品午夜福利在线看| 国产成人a区在线观看| 高清日韩中文字幕在线| 成年av动漫网址| 美女主播在线视频| 亚洲国产色片| 国产女主播在线喷水免费视频网站| 国内精品宾馆在线| 夫妻性生交免费视频一级片| 69av精品久久久久久| 大香蕉久久网| 国产视频首页在线观看| 亚洲三级黄色毛片| 狂野欧美激情性bbbbbb| 纵有疾风起免费观看全集完整版| 在线观看免费高清a一片| 在线精品无人区一区二区三 | 久久久久久久精品精品| 亚洲人成网站在线观看播放| av一本久久久久| 男女无遮挡免费网站观看| 国产成年人精品一区二区| 天堂网av新在线| 黑人高潮一二区| 国产免费又黄又爽又色| 亚洲av福利一区| 精品久久久噜噜| 日韩av免费高清视频| 高清在线视频一区二区三区| 蜜臀久久99精品久久宅男| 少妇人妻精品综合一区二区| 日韩av在线免费看完整版不卡| 国产成人aa在线观看| 中文字幕av成人在线电影| 五月天丁香电影| 亚洲av中文av极速乱| 国产黄色视频一区二区在线观看| 2022亚洲国产成人精品| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 国产精品一二三区在线看| 久久99精品国语久久久| 成人二区视频| 哪个播放器可以免费观看大片| 中文字幕制服av| 又大又黄又爽视频免费| 亚洲av不卡在线观看| 99热国产这里只有精品6| 中文字幕制服av| 一区二区av电影网| 晚上一个人看的免费电影| 男女下面进入的视频免费午夜| 在线亚洲精品国产二区图片欧美 | 亚洲av免费高清在线观看| 国产av码专区亚洲av| 69av精品久久久久久| 特级一级黄色大片| 久久精品久久精品一区二区三区| 国产黄片美女视频| 最近手机中文字幕大全| 欧美精品一区二区大全| 韩国av在线不卡| 精品国产乱码久久久久久小说| 久热久热在线精品观看| 一区二区av电影网| 国产日韩欧美在线精品| 大片电影免费在线观看免费| 免费av观看视频| 国产av国产精品国产| 久久亚洲国产成人精品v| 一二三四中文在线观看免费高清| 成年版毛片免费区| 好男人视频免费观看在线| 制服丝袜香蕉在线| 人妻少妇偷人精品九色| 国产黄色免费在线视频| 成人二区视频| 亚洲天堂av无毛| 欧美成人午夜免费资源| xxx大片免费视频| 国产在线男女| 校园人妻丝袜中文字幕| 在线a可以看的网站| 色婷婷久久久亚洲欧美| 免费看a级黄色片| 熟妇人妻不卡中文字幕| 大码成人一级视频| 赤兔流量卡办理| 啦啦啦中文免费视频观看日本| 大陆偷拍与自拍| 国产人妻一区二区三区在| 91aial.com中文字幕在线观看| 亚洲人成网站在线播| 亚洲精品色激情综合| 国产探花在线观看一区二区| 国产高清国产精品国产三级 | 免费黄网站久久成人精品| 国产精品av视频在线免费观看| 夜夜爽夜夜爽视频| 嫩草影院精品99| 99久久九九国产精品国产免费| 99久久精品国产国产毛片| 亚洲av中文av极速乱| 在线亚洲精品国产二区图片欧美 | 五月天丁香电影| av播播在线观看一区| 中文字幕免费在线视频6| 免费不卡的大黄色大毛片视频在线观看| 80岁老熟妇乱子伦牲交| 少妇裸体淫交视频免费看高清| 老司机影院毛片| 亚洲av免费高清在线观看| 一区二区三区精品91| 内地一区二区视频在线| 在线观看三级黄色| 少妇的逼水好多| 少妇裸体淫交视频免费看高清| 亚洲av二区三区四区| 日韩亚洲欧美综合| 中文字幕av成人在线电影| 在线亚洲精品国产二区图片欧美 | 国产片特级美女逼逼视频| 中文欧美无线码| videos熟女内射| 美女xxoo啪啪120秒动态图| 精品酒店卫生间|