• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于碳納米管的納機(jī)電系統(tǒng)的可控穩(wěn)定振動

    2017-04-28 00:47:54李健文劉念華
    關(guān)鍵詞:雙壁南昌大學(xué)工程學(xué)院

    李健文,劉念華

    (1.南昌大學(xué)材料科學(xué)與工程學(xué)院, 江西 南昌 330031; 2.南昌工程學(xué)院理學(xué)院,江西 南昌 330099;3.南昌大學(xué)高等研究院,江西 南昌 330031)

    ?

    基于碳納米管的納機(jī)電系統(tǒng)的可控穩(wěn)定振動

    李健文1, 2,劉念華3

    (1.南昌大學(xué)材料科學(xué)與工程學(xué)院, 江西 南昌 330031; 2.南昌工程學(xué)院理學(xué)院,江西 南昌 330099;3.南昌大學(xué)高等研究院,江西 南昌 330031)

    采用數(shù)值方法研究了基于雙壁碳納米管的納機(jī)電系統(tǒng)在周期性簡諧驅(qū)動力作用下實現(xiàn)穩(wěn)定振動的條件。確定了獲得持久穩(wěn)定的振動的系統(tǒng)和控制力參數(shù)。計算和分析了雙壁碳納米管的操作特性。結(jié)果表明,通過選擇合適的驅(qū)動振幅和頻率,能夠?qū)崿F(xiàn)雙壁碳納米管的持久穩(wěn)定振動。該方法對于進(jìn)一步研究基于碳納米管的納機(jī)電系統(tǒng)的設(shè)計有重要的參考價值。

    納機(jī)電系統(tǒng); 納米振子; 驅(qū)動頻率; 穩(wěn)定振動; 碳納米管

    1 Introduction

    Carbon nanotubes (CNTs) are seamless quasi-one-dimensional structures with exceptional mechanical properties, such as remarkably high strength couple with extreme flexibility and toughness[1-3]. CNTs have received growing attention due to their potential applications as the basis for mechanically based motion control[4]. Low-friction, low-wear multiwall CNT bearings, realized first by Cummings and Zettl[5], aroused considerable interest. When the core is partially pulled out of the outer tube and then released, the inner tube can easily slide or rotate due to the intertube van der Waals (vdW) interaction. Such devices were reported to have extremely low friction—at least two orders of magnitude smaller than the vdW force[6]. These results led to much research work in exploring its possibility in making nano-oscillators based on nanoelectromechanical systems (NEMS). Zheng et al. confirmed the frequency to be in the gigahertz range[7]. Kolmogorov and Crespi analyzed the tribological properties of multiwalled carbon nanotubes (MWCNTs) and predicted that incommensurate tubes would have very small shear strengths[8].

    The interaction between the tubes is dominated by physical vdW force, which makes the MWCNT oscillators can be studied by molecular dynamics simulations[9]and numerical calculations[6,10]. It was found that although a relatively smooth and low-frictional oscillator can be achieved by choosing an appropriate radius difference between inner and outer nanotubes (~0.34nm), friction-induced energy dissipation is still inevitable, resulting in damping oscillation[11]. The simulation showed that the time of the oscillation is within few nanoseconds. The short lifetime greatly limits its practical application because it brings difficulties for the energy supplement and signal detection. Thus how to sustain the CNT oscillatory motion in a controllable way over long periods of time remains a challenging problem. Different strategies have been proposed to study the oscillatory motion, e.g., by applying external magnetic fields with a conducting movable wall[12]and electrical fields in the case where ions are located inside the movable wall[13], by accelerating encapsulated charged elements located inside the inner tube[14], by thermal expansion of encapsulated gases which is enclosed between the walls of the nanotube[15], and by periodically applied thermal gradients[16], although it has been recognized that there are serious technological challenges[17].

    It is known that, for a harmonic oscillator, the natural frequency has nothing to do with the initial displacement. However, the natural frequency of anharmonic oscillator is strongly dependent on the initial displacement. In the present work, a numerical method to maintain and control the stable motion of double walled carbon nanotubes (DWCNTs) is proposed. Periodical harmonic driving force is applied to the nano-oscillator with equal and unequal lengths of the core and shell. We determine the controllable operating conditions for the stable oscillation by the parameters of the oscillators and the driving force, and investigate the relation of the stable oscillation with the amplitude and the initial phase of the periodical driving force. This is an attempt to model the motion characteristics of a sliding core/shell DWCNT-type oscillator driven under periodical harmonic forces. Our aim is to explore the feasibility of the proposed method for controlling the stable motion of the oscillation system.

    The rest of the paper is organized as follows. The model and the numerical methods in Section 2 are described briefly. In Section 3, we give the calculated results and demonstrate the possibility of controlling the stable oscillation of DWCNT systems. Conclusion is drawn in section 4.

    2 Model and Method

    We consider the DWCNT (4,4)@(9,9) with different lengths (5.99nm and 11.97nm) for the outer tubes and same length (5.99nm) for the inner tube as shown in Figure 1. Both ends of the inner and outer tubes are opened. The intertube distance is ~3.4, which coincides that between adjacent sheets of graphite. Since covalent bonds are much stiffer than vdW interaction, the DWNT can be modeled as a system of two rigid tubes moving coaxially. At the beginning of simulation, t=0, the inner tube is pulled out to a certain distancex(0) along their common axis, while the outer tube is fixed. After being released, the inner tube oscillates back and forth along the axial direction.

    The analysis of the controlled properties of a DWCNT oscillator is performed using empirical interatomic potentials. The vdW interaction between the inner and outer tube atoms was used by the Lennard-Jones (LJ) pair potential which has the formUij=4ε[(σ/rij)12-(σ/rij)6],wheretheenergyandlengthparametersaretakenasε=2.964meV,andσ=3.407?[18].ThepotentialprofilealongtheaxialdisplacementbetweenthecentersofthewallshasbeencalculatedandplottedinFig.1,whichisagreementwiththeresultscalculatedbyServantieandGaspard[18].TheLJapproachhasbeensuccessfullyusedformolecular-dynamicssimulationsofcarbonstructurestakingintoconsiderationitsrelativesimplicityandsatisfactoryresults[19-20].ItisindicatedthattheLJpotentialisveryeffectiveincalculatingtheoscillatoryfrequencyanddescribingthecharacteristicbehaviorofvariousCNToscillatorsystems[21-22].

    Theoscillatorunderconsiderationisadampingoscillator.Inordertosustainthestableoscillationoftheoscillators,wehavetosupplytheenergytotheoscillator.Weassumethatthedissipatedenergyiscompensatedbyanexternalappliedperiodicalharmonicforce.Atarelativelylowoscillationamplitude,thedynamicfrictionforceisproportionaltotheoscillatorvelocity.Thus,theoscillatordynamicscanbedescribedbytheone-dimensionalequationsofmotion

    dx/dt=y

    (1)

    μ(dy/dt)=-?U/?x-γy+Fmsin(ωt+φ)

    (2)

    whereμisthemassofthemovablecore,xis the displacement of the core with respect to the fixed shell,yis the relative velocity,Uis the LJ potential,Fmis the amplitude of driving force applied to the core with angular frequencyωand initial phaseφ, andγis the friction coefficient. Our model will impose constant values 6.1 amu/ps for the friction coefficient at a relatively low oscillation energy[18]. We suppose the initial velocity is always equal to zero. The eigenfrequency Ω of the oscillator is defined as the frequency of free oscillation without damping. Due to the anharmonic potential, Ω is dependent on the initial displacementx(0).

    Fig.1 Configuration of the gigahertz oscillator based on the (4,4) @ (9,9) DWCNT and potential profile along the axial displacement with (a) equal inner and outer tube lengths 5.99nm, and (b) unequal lengths of 11.97nm for the outer tube and 5.99nm for the inner tube

    In order to obtain stable oscillation, the states of the oscillator and the driving force must return to the original states after one periodT. The angular frequencyωof the driving force, therefore, has to be equal to integral multiple of the oscillator angular frequency Ω,ω=nΩ. Although these frequencies are only a small subset of total possible frequencies, the conditions are absolutely necessary. Limiting the solutions to this subset is not artificial. Outside this subset, the oscillatory system can not always fully restore in one period. Nevertheless this limitation is not essential for a harmonic potential because the natural frequency Ω is not dependent on the initial displacement.

    If the initial conditions are proper, the energy that the periodical driving force afford is equal to the dissipation of oscillation energy due to the frictional force in the periodT, that is

    (3)

    Thedisplacementattimetis dependent on many parameters, including the shape of the potential, the initial displacementx(0), the friction coefficient, and the frequency, amplitude and initial phase of the driving force, namelyx[t;Fm,ω,φ,γ,U(x),x(0)].Inordertosustainthestableoscillation,thedisplacementandthevelocitymustreturntotheinitialvaluesafteroneperiodT. This means

    x[t=T;Fm,ω,φ,γ,U(x),x(0)]=x(0)

    (4)

    y[t=T;Fm,ω,φ,γ,U(x),x(0)]=y(0)

    (5)

    Itisverydifficulttodeterminetheconditionsconcerningmultipleparametersoperationforsustainedoscillator.Ifthefrequencyoftheharmonicdrivingforcesatisfiesω=nΩ, then the conditions of the stable oscillation are determined by the initial phase and the amplitude of the controlled force. Each equation of the combination gives a curve in theφ-Fmplane. The cross point of the two curves solves the combination of Eqs. (4) and (5). Here the Verlet velocity algorithm and steepest descent method were used to solve them.

    3 Results and discussion

    3.1 Unequal inner and outer tube lengths

    In order to investigate the operating characteristics of the DWCNT oscillator controlled by the driving force, we firstly consider an oscillator of inner tube length 5.99nm and outer tube length 11.97nm. The frequency of free oscillation of the system depends on the initial extrusion of the inner tube for the anharmonic oscillator. For the initial displacementx(0)=5nm, it is found that the frequency of the oscillator in the case with the absence of the driving force and frictional force is Ω=0.1426. As demonstrated above, to sustain stable oscillation, the driving frequency must be equal to integral multiple of the oscillatory frequency once the inner tube is released from an initial displacement. For the driving frequencyω=3Ω andω=4Ω, the curves satisfying Eqs. (4) and (5) are shown in Fig.2. There are many solutions that satisfy Eq. (4) or (5), and one initial phaseφcorresponds to several amplitudesFm, same if vice versa. However, there is only several solutions within the range -2π~2π for the initial phaseφ. The cross points of the curves in theφ-Fmplane are (φ,Fm)=(-0.0227,0.0812)and(φ,Fm)=(0.3847,1.6540)forcase1andcase2,respectively.Asincreasingthedrivingfrequency,theamplitudeFmof the driving force needed to sustain the stable oscillation increases.

    In theφ-Fmplane, we can measure the deviation that the displacement and velocity relative to the initial value after one time period with Δ=[x(T)-x(0)]2+[v(T)-v(0)]2.ThosepointsdropintotheregionofΔ<10-4,correspondingtotheshadedparts,canbetreatasstableoscillationapproximately.Sowecanconvenientlychoosedifferentinitialphasesandamplitudesofdrivingforcetosustainstableoscillation.

    Fig.2 Sustainable oscillation amplitude and initial phase of unequal inner and outer tube lengths for (a) ω=3Ω and (b) ω=4Ω. The solid and dotted lines correspond to Eq. (4) and Eq. (5), respectively. A shaded part is shown in (a) to emphasize the possibility of obtaining more choices to sustain persistent oscillation

    Theanalysishasbeenperformedwithreferencetothephasespace,examplesofwhichareshowninFig.3correspondingtocasesofFig.2.Weconsiderthatthetrajectoriesofinterestarethosethatformaclosedloopinoneoscillationcycle,asthesewillshowthedesirableaspectforanydrivenoscillatorsystem.ItisfoundthateverysolutionforthecombinationofEqs. (4)and(5)correspondstoaclosedloop.Thesimulationresultsindicatethatthephasediagramofeachoscillatorisnotastandardellipse,butasmoothloop.Consequentlytheoscillatorisanharmonicvibrationperiodically.Interestingly,theoscillationamplitudeisequalforthedrivingfrequencyω=3Ω and unequal for the driving frequencyω=4Ω. Furthermore, the phase trajectories are asymmetric. So the choice of the driving frequency has great influence on the behavior of the considered oscillator.

    To understand the forces that contribute significantly to the oscillatory behavior, a typical result is shown in Fig.4 for case 1. It is indicated that the driving frequency is three times that of net force, velocity and displacement. Furthermore, we find similar results in the cases of both small and large initial displacements. As are explicitly plotted in Fig.3, the choice of the driving frequency has great influence on the behavior of the considered oscillator. Accordingly only if the driving frequency is equal to integral multiple of the oscillatory frequency and the initial phase and amplitude of the controlled force satisfy certain conditions which are determined by the combination of Eqs. (4) and (5), we can conveniently choose different initial displacements to sustain stable oscillation.

    Fig.3 Resulting phase space trajectories corresponding to cases of Fig.2

    Fig.4 (a) Driving force, (b) total force, (c) displacement, (d) velocity, and (e) total energy of the moving tube as a function of time for case 1. T and Tω are oscillation period and driving period, respectively

    The driving force applied on the inner tube is periodical, the net force is not exactly zero after a driving periodTω, as shown in Fig.4. With regard to the same initial displacement and different driving forces, the displacement may be positive or negative and the oscillator may even move backward att=Tω. This state is the initial condition of next driving period, which has great effect on the following movement. Furthermore, probably the maximums of the positive and negative displacement also are unequal. Consequently the conditions to sustain the stable oscillation of DWCNT are very rigorous.

    3.2 Equal inner and outer tube lengths

    A similar analysis has been performed on a fixed shell and mobile core of equal lengths. We find that, for the initial displacementx(0)=-2nm of inner and outer shell lengthsL1=L2=5.99nm, the frequencies of the oscillator in the case with the absence of the driving force and frictional force is Ω=0.2493. Fig.5 depicts the solid lines and the dotted lines satisfying Eq. (4) and Eq. (5), respectively. The cross points of the curves in theφ-Fmplaneare(φ,Fm)=(2.9045,0.0292)and(φ,Fm)=(2.9891,4.1697)forcase3andcase4,respectively.

    Fig.5 Sustainable oscillation amplitude and initial phase of equal inner and outer tube lengths for (a) ω=3Ω and (b)ω=4Ω

    Fig.6 Resulting phase space trajectories corresponding to cases of Fig.5

    ThecalculationresultsofthecontrolledstableoscillationsarepresentedinFig.6forequallengthDWCNToscillators.Comparingwiththecasesofunequallength,weobservedsimilarphenomena.Althoughtheoscillationbehaviorsaremorecomplicated,wecanrealizesustainedoscillationwithmanychoices.

    4 Conclusion

    In summary, we have performed numerical computations to understand the oscillatory characteristics and the stability of DWCNT-based oscillators driven by periodical harmonic force. We demonstrate that the use of proper driving force can be an effective approach to control and tune CNT-based oscillators. The parameters and characteristics corresponding to the controllable operating conditions for the stable oscillators are determined. If we choose the amplitude and the initial phase of the periodical harmonic driving force satisfying the conditions of the combination of Eqs. (4) and (5), we can realize stable oscillation of the DWCNT-type oscillator.

    Reference

    [1] S. Iijima, T. Ichihashi. Single-shell Carbon Nanotubes of 1-nm Diameter [J]. Nature (London), 1993, 363: 603~605.

    [2] H. J. Shen. Transverse and Axial Stiffness of Carbon-tube Nanosprings [J]. J. Mater Sci. Eng, 2007, 25(6): 814~817.

    [3] H. J. Shen, X. C. Mu. FE Analyses of Tensile “Y”-shaped, Bamboo-shaped and Straight Carbon Nanotubes [J]. J. Mater Sci. Eng., 2005, 23(3): 321~324.

    [4] E. H. Cook, M. J. Buehler, Z. S. Spakovszky. Mechanism of Friction in Rotating Carbon Nanotube Bearings [J]. J. Mech. Phys. Solids, 2013, 61(2): 652~673.

    [5] J. Cummings, A. Zettl. Low-friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes [J]. Science, 2000, 289(5479): 602~604.

    [6] J. L. Rivera, C. McCabe, P. T. Cummings. Oscillatory Behavior of Double-walled Nanotubes under Extension: a Simple Nanoscale Damped Sping [J]. Nano Lett., 2003, 3: 1001~1005.

    [7] Q. Zheng, Q. Jiang. Multiwalled Carbon Nanotubes as Gigahertz Oscillators [J]. Phys. Rev. Lett., 2002, 88(4): 045503~045505.

    [8] A. N. Kolmogorov, V. H. Crespi. Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes [J]. Phys. Rev. Lett., 2000, 85(22): 4727~4730.

    [9] M. V. D. Prasad, B. Bhattacharya. Molecular Dynamics Simulations of Carbon Nanotube-based Oscillators having Topological Defects [J]. Int. J. Nanosci., 2011, 10(1): 1~5.

    [10] A. Neild, T. W. Ng, Q. Zheng. Controlled Driven Oscillations of Double-walled Carbon Nanotubes [J]. EPL, 2009, 87: 16002~16006.

    [11] J. L. Rivera, C. McCabe, P. T. Cummings. The Oscillatory Damped Behaviour of Incommensurate Double-walled Carbon Nanotubes [J]. Nanotechnolog, 2005, 16: 186~198.

    [12] S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, D. S. Galvao. Gigahertz Nanomechanical Oscillators Based on Carbon Nanotubes [J]. Nanotechnology, 2004, 15: S184~S189.

    [13] J. W. Kang, H. J. Hwang. Gigahertz actuator of Multiwall Carbon Nanotube Encapsulating Metallic Ions: Molecular Dynamics Simulations [J]. J. Appl. Phys., 2004, 96(7): 3900~3905.

    [14] O. V. Ershova, Y. E. Lozovik, A. M. Popov, O. N. Bubel, E. F. Kislyakov, N. A. Poklonskii, I. V. Lebedeva. Control of the Motion of Nanoelectromechanical Systems Based on Carbon Nanotubes by Electric Fields [J]. J. Exp. Theor. Phys., 2008, 107(4): 653~661.

    [15] J. W. Kang, K. O. Song, O. K. Kwon, H. J. Hwang. Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases [J]. Nanotechnology, 2005, 16: 2670~2676.

    [16] V. R. Coluci, V. S. Timóteo, D. S. Galv?o. Thermophoretically driven carbon Nanotube Oscillators [J]. Appl. Phys. Lett., 2009, 95: 253103~253105.

    [17] L. Forró. Beyond Gedanken Experiments [J]. Science, 2000, 289(5479): 560~561.

    [18] J. Servantie, P. Gaspard. Translational Dynamics and Friction in Double-walled Carbon Nanotubes [J]. Phys. Rev. B, 2006, 73: 125428~125440.

    [19] J. P. Lu, W. Yang. Shape of Large Single- and Multiple-shell Fullerenes [J]. Phys. Rev. B., 1994, 49: 11421~11424.

    [20] C. H. Sun, G. Q. Lu, M. H. Cheng. Single-particle distribution functions in Nanoscale particles at finite temperature: some rigorous results [J]. Phys. Rev. B, 2006, 73(19): 195414~195418.

    [21] C. C. Ma, Y. Zhao, C. Y. Yam, G. Chen, Q. Jiang. A Tribological study of Double-walled and Triple-walled Carbon Nanotube Oscillators [J]. Nanotechnology, 2005, 16: 1253~1264.

    [22] T. A. Hilder, J. M. Hill. Oscillating Carbon Nanotori along Carbon Nanotubes [J]. Phys. Rev. B, 2007, 75: 125415~125422.

    LIU Nianhuan, E-mail: nhliu@ncu.edu.cn.

    Controlled Stable Oscillations of Carbon Nanotube-based NEMS

    LI Jianwen1,2, LIU Nianhua3

    (1.School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China;2.School of Science, Nanchang Institute of Technology, Nanchang 330099, China; 3.Institute for Advanced Study, Nanchang University, Nanchang 330031, China)

    A numerical method was used to investigate the conditions to sustain the stable motion of nanoelectromechanical systems (NEMS) based on carbon nanotubes under periodical harmonic driving force. We determined the parameters of the system and control force which allow obtaining the sustained stable oscillation at a constant frequency. The operating characteristics of the double-walled carbon nanotube oscillators were calculated and analyzed. It is shown that the sustained stable motion of the oscillators can be realized by properly choosing the amplitude and the initial phase of the periodical harmonic driving force. The method reported here is believed to have important implications in carbon nanotube-based NEMS design.

    NEMS; nano-oscillator; driving frequency; stable oscillation; carbon nanotube

    TB34 Document code:A

    1673-2812(2017)02-0203-06

    Foundation item:Supported by the National Basic Research Program of China (973 Program) (2013CB934200), the Key Program of the National Natural Science Foundation of China (10832005) and the National Natural Science Foundation of China (11264030)

    10.14136/j.cnki.issn 1673-2812.2017.02.007

    Received date:2015-10-20;Modified date:2016-04-11

    Biography:LI Jianwen, male, Ph.D. candidate, research direction: nanosurface science and engineering. E-mail: ljw624@126.com.

    猜你喜歡
    雙壁南昌大學(xué)工程學(xué)院
    福建工程學(xué)院
    《南昌大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《南昌大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    福建工程學(xué)院
    《南昌大學(xué)學(xué)報(醫(yī)學(xué)版)稿約》
    《南昌大學(xué)學(xué)報(醫(yī)學(xué)版)稿約》
    雙壁鋼圍堰水上拼裝與打撈復(fù)位技術(shù)研究
    福建工程學(xué)院
    淺談HDPE雙壁波紋管在市政雨污管施工中的應(yīng)用
    江西建材(2018年2期)2018-04-14 08:00:28
    福建工程學(xué)院
    国产精品九九99| 婷婷丁香在线五月| 欧美成人一区二区免费高清观看 | 久久久久久久久久黄片| 老司机在亚洲福利影院| 制服人妻中文乱码| 在线观看日韩欧美| 国产一区二区三区在线臀色熟女| 久久婷婷人人爽人人干人人爱| 午夜视频精品福利| 精品少妇一区二区三区视频日本电影| 欧美日本视频| 亚洲欧洲精品一区二区精品久久久| 两人在一起打扑克的视频| 亚洲一卡2卡3卡4卡5卡精品中文| videosex国产| 国产又色又爽无遮挡免费看| 色哟哟哟哟哟哟| 欧美激情久久久久久爽电影| 日韩大尺度精品在线看网址| 亚洲成a人片在线一区二区| 欧美成狂野欧美在线观看| 亚洲av第一区精品v没综合| 十八禁网站免费在线| 久久狼人影院| 欧美+亚洲+日韩+国产| 午夜激情av网站| 国产亚洲精品av在线| 成人一区二区视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| www.www免费av| 搡老妇女老女人老熟妇| 色综合站精品国产| 国产蜜桃级精品一区二区三区| 久久婷婷成人综合色麻豆| 曰老女人黄片| 可以在线观看毛片的网站| 欧美日韩一级在线毛片| 亚洲av成人不卡在线观看播放网| 午夜日韩欧美国产| 欧美日韩亚洲国产一区二区在线观看| av福利片在线| 成人手机av| 90打野战视频偷拍视频| 亚洲精品色激情综合| 人人妻人人澡欧美一区二区| 精品不卡国产一区二区三区| 亚洲av片天天在线观看| 国产aⅴ精品一区二区三区波| 色综合欧美亚洲国产小说| 久久这里只有精品19| 最近在线观看免费完整版| 亚洲av熟女| 国产av一区二区精品久久| 巨乳人妻的诱惑在线观看| 色哟哟哟哟哟哟| 亚洲国产高清在线一区二区三 | 亚洲 欧美 日韩 在线 免费| 女人爽到高潮嗷嗷叫在线视频| 午夜免费鲁丝| 最新美女视频免费是黄的| 亚洲欧洲精品一区二区精品久久久| 欧洲精品卡2卡3卡4卡5卡区| 老司机午夜福利在线观看视频| bbb黄色大片| 青草久久国产| 夜夜爽天天搞| or卡值多少钱| 亚洲av成人av| 亚洲成av片中文字幕在线观看| 欧美黑人精品巨大| 久久人人精品亚洲av| 老熟妇仑乱视频hdxx| av免费在线观看网站| 色婷婷久久久亚洲欧美| 国产亚洲精品综合一区在线观看 | 人人妻人人澡人人看| 亚洲精品久久国产高清桃花| 黑丝袜美女国产一区| videosex国产| av有码第一页| 亚洲精品粉嫩美女一区| 婷婷六月久久综合丁香| 国内揄拍国产精品人妻在线 | 国产亚洲欧美在线一区二区| 欧美激情 高清一区二区三区| 在线永久观看黄色视频| 久久国产乱子伦精品免费另类| 欧美+亚洲+日韩+国产| 久久久久久九九精品二区国产 | 午夜两性在线视频| 欧美不卡视频在线免费观看 | 国产久久久一区二区三区| 欧美中文日本在线观看视频| a在线观看视频网站| 免费观看人在逋| 搡老妇女老女人老熟妇| 日本免费a在线| 日韩视频一区二区在线观看| 岛国视频午夜一区免费看| 国产成年人精品一区二区| 国产av不卡久久| 在线免费观看的www视频| 女人高潮潮喷娇喘18禁视频| av中文乱码字幕在线| 12—13女人毛片做爰片一| 51午夜福利影视在线观看| 国产在线精品亚洲第一网站| av超薄肉色丝袜交足视频| 日韩av在线大香蕉| 在线观看一区二区三区| 欧美乱码精品一区二区三区| 亚洲精品粉嫩美女一区| 天天躁狠狠躁夜夜躁狠狠躁| 99久久久亚洲精品蜜臀av| www.自偷自拍.com| 精品人妻1区二区| 久久国产精品男人的天堂亚洲| 久久国产乱子伦精品免费另类| 国产精品1区2区在线观看.| 黄网站色视频无遮挡免费观看| 欧美亚洲日本最大视频资源| 精品电影一区二区在线| 午夜福利高清视频| 在线观看www视频免费| 麻豆久久精品国产亚洲av| 波多野结衣高清无吗| 亚洲 国产 在线| 日本五十路高清| 日韩成人在线观看一区二区三区| www日本黄色视频网| 国产精品久久久久久精品电影 | 国产av又大| 久99久视频精品免费| 国产单亲对白刺激| 老司机福利观看| 久久久久精品国产欧美久久久| 最近最新中文字幕大全电影3 | 黄色成人免费大全| 国产精品国产高清国产av| 国产亚洲av高清不卡| 午夜两性在线视频| 国产爱豆传媒在线观看 | 久久婷婷成人综合色麻豆| 美女大奶头视频| 91麻豆精品激情在线观看国产| 88av欧美| 亚洲无线在线观看| 亚洲av日韩精品久久久久久密| 狠狠狠狠99中文字幕| 久久精品91无色码中文字幕| www.www免费av| 午夜激情福利司机影院| 亚洲人成伊人成综合网2020| 老司机午夜福利在线观看视频| √禁漫天堂资源中文www| 最近最新中文字幕大全电影3 | 亚洲一区二区三区不卡视频| 国产成+人综合+亚洲专区| 亚洲午夜精品一区,二区,三区| 777久久人妻少妇嫩草av网站| 国产99白浆流出| 午夜视频精品福利| 午夜福利欧美成人| 一区二区日韩欧美中文字幕| 免费在线观看完整版高清| 久久久精品欧美日韩精品| 国产高清有码在线观看视频 | 色在线成人网| www日本黄色视频网| 国产私拍福利视频在线观看| 一二三四社区在线视频社区8| 天天添夜夜摸| 国产成人精品久久二区二区91| 欧美在线一区亚洲| 青草久久国产| 黄色片一级片一级黄色片| 亚洲第一欧美日韩一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区免费欧美| netflix在线观看网站| 国产熟女xx| 无限看片的www在线观看| 日韩国内少妇激情av| 曰老女人黄片| 免费在线观看影片大全网站| ponron亚洲| 国产精品久久久av美女十八| 午夜福利一区二区在线看| 在线天堂中文资源库| 国产高清有码在线观看视频 | 国产精品久久久人人做人人爽| 宅男免费午夜| 久久久精品欧美日韩精品| 午夜亚洲福利在线播放| 国产精华一区二区三区| 国内精品久久久久久久电影| 欧美中文日本在线观看视频| 日韩欧美国产在线观看| 成人亚洲精品av一区二区| 脱女人内裤的视频| 91麻豆av在线| 欧美中文综合在线视频| 看免费av毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 丰满的人妻完整版| 波多野结衣高清作品| 亚洲欧美一区二区三区黑人| 精品欧美国产一区二区三| 男人舔奶头视频| 日韩 欧美 亚洲 中文字幕| 51午夜福利影视在线观看| 精品国产乱码久久久久久男人| 亚洲国产欧美一区二区综合| 免费在线观看黄色视频的| 国产区一区二久久| 午夜久久久久精精品| 亚洲国产欧美网| 欧美日韩黄片免| 国产一区在线观看成人免费| 久久久久久九九精品二区国产 | 成人国产综合亚洲| 亚洲精品中文字幕在线视频| 亚洲国产毛片av蜜桃av| 久久中文看片网| 亚洲七黄色美女视频| 高清毛片免费观看视频网站| 桃色一区二区三区在线观看| 91老司机精品| 成年版毛片免费区| 久久精品人妻少妇| 精品一区二区三区四区五区乱码| 无人区码免费观看不卡| 国产片内射在线| 一本大道久久a久久精品| 麻豆久久精品国产亚洲av| 国产不卡一卡二| 日韩视频一区二区在线观看| 一级作爱视频免费观看| 成人18禁在线播放| 岛国在线观看网站| 18禁观看日本| 丰满的人妻完整版| 久久精品国产亚洲av高清一级| 日本撒尿小便嘘嘘汇集6| 欧美成人性av电影在线观看| 欧美人与性动交α欧美精品济南到| √禁漫天堂资源中文www| 国产精品乱码一区二三区的特点| 老司机靠b影院| 在线永久观看黄色视频| 男女之事视频高清在线观看| 久9热在线精品视频| 天堂影院成人在线观看| 国产伦在线观看视频一区| 日韩精品青青久久久久久| 国产91精品成人一区二区三区| 日日干狠狠操夜夜爽| 热99re8久久精品国产| 观看免费一级毛片| 婷婷亚洲欧美| 2021天堂中文幕一二区在线观 | 色av中文字幕| 91九色精品人成在线观看| 999久久久精品免费观看国产| 国产主播在线观看一区二区| 国产亚洲精品久久久久5区| 女警被强在线播放| 精品久久久久久久久久免费视频| 在线十欧美十亚洲十日本专区| 天天躁夜夜躁狠狠躁躁| av免费在线观看网站| 成年版毛片免费区| 欧美日本亚洲视频在线播放| 深夜精品福利| 日本a在线网址| 午夜激情福利司机影院| 亚洲人成网站高清观看| 久久国产精品影院| 亚洲国产看品久久| 90打野战视频偷拍视频| av在线天堂中文字幕| 可以在线观看的亚洲视频| 黑人欧美特级aaaaaa片| 美女扒开内裤让男人捅视频| 国产激情久久老熟女| 一本大道久久a久久精品| 午夜免费成人在线视频| 亚洲男人天堂网一区| 91国产中文字幕| 成年女人毛片免费观看观看9| 欧美乱色亚洲激情| 亚洲专区中文字幕在线| 免费高清视频大片| 亚洲人成77777在线视频| 禁无遮挡网站| 亚洲欧洲精品一区二区精品久久久| 亚洲国产日韩欧美精品在线观看 | 在线十欧美十亚洲十日本专区| 亚洲精品在线观看二区| 久久精品夜夜夜夜夜久久蜜豆 | 美女免费视频网站| 中文字幕另类日韩欧美亚洲嫩草| 国产成人一区二区三区免费视频网站| 国产99久久九九免费精品| 一区二区三区激情视频| 香蕉av资源在线| 国产精品久久视频播放| 日本在线视频免费播放| 激情在线观看视频在线高清| 日韩 欧美 亚洲 中文字幕| 90打野战视频偷拍视频| 99热6这里只有精品| netflix在线观看网站| 精品人妻1区二区| 侵犯人妻中文字幕一二三四区| 侵犯人妻中文字幕一二三四区| 欧美日本亚洲视频在线播放| 欧美激情高清一区二区三区| 国产色视频综合| svipshipincom国产片| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲avbb在线观看| 熟妇人妻久久中文字幕3abv| 男人舔奶头视频| 日韩视频一区二区在线观看| 久久久精品国产亚洲av高清涩受| 久久国产亚洲av麻豆专区| 国产爱豆传媒在线观看 | 国产一卡二卡三卡精品| 人成视频在线观看免费观看| 中出人妻视频一区二区| 国产伦一二天堂av在线观看| 男人舔女人的私密视频| 色综合亚洲欧美另类图片| 成人午夜高清在线视频 | 777久久人妻少妇嫩草av网站| 国产一区在线观看成人免费| 一夜夜www| 久久久国产成人免费| 成熟少妇高潮喷水视频| 曰老女人黄片| 午夜a级毛片| 制服丝袜大香蕉在线| 久久久久久亚洲精品国产蜜桃av| 91在线观看av| 无遮挡黄片免费观看| 久久中文字幕一级| 女人被狂操c到高潮| 少妇熟女aⅴ在线视频| 中文字幕人成人乱码亚洲影| 性色av乱码一区二区三区2| 成年免费大片在线观看| 无限看片的www在线观看| 巨乳人妻的诱惑在线观看| 亚洲精品中文字幕一二三四区| 色综合欧美亚洲国产小说| 99国产精品一区二区三区| 亚洲精品久久成人aⅴ小说| 国产高清有码在线观看视频 | 国产一区二区三区在线臀色熟女| 热99re8久久精品国产| 色播在线永久视频| av天堂在线播放| 91av网站免费观看| 十分钟在线观看高清视频www| 亚洲国产欧美网| 美女免费视频网站| 亚洲国产精品成人综合色| 精品日产1卡2卡| 国产精品99久久99久久久不卡| 国内揄拍国产精品人妻在线 | 国产精华一区二区三区| 久久久久久久久免费视频了| 亚洲成人免费电影在线观看| 日韩欧美三级三区| 别揉我奶头~嗯~啊~动态视频| 免费在线观看日本一区| 韩国精品一区二区三区| av有码第一页| 成人国语在线视频| 久久久久国产精品人妻aⅴ院| 日韩欧美一区视频在线观看| 午夜福利在线观看吧| 亚洲在线自拍视频| 亚洲av成人不卡在线观看播放网| 国产精品爽爽va在线观看网站 | 亚洲国产欧美网| 精品国产一区二区三区四区第35| 亚洲精品美女久久久久99蜜臀| 久久久久国内视频| 成人亚洲精品av一区二区| 我的亚洲天堂| 黄色 视频免费看| 91av网站免费观看| 国产av一区在线观看免费| 不卡一级毛片| 国产精品自产拍在线观看55亚洲| 校园春色视频在线观看| 激情在线观看视频在线高清| 一进一出好大好爽视频| 精品熟女少妇八av免费久了| 丁香六月欧美| 亚洲美女黄片视频| 国产成人精品久久二区二区91| 成人18禁高潮啪啪吃奶动态图| 国产一级毛片七仙女欲春2 | 精品无人区乱码1区二区| 国产精品亚洲美女久久久| 1024香蕉在线观看| 99精品久久久久人妻精品| 国产亚洲精品综合一区在线观看 | 亚洲国产欧美日韩在线播放| 欧美性猛交╳xxx乱大交人| 亚洲成国产人片在线观看| 国产黄片美女视频| 十八禁网站免费在线| 桃色一区二区三区在线观看| 老司机在亚洲福利影院| 黄片小视频在线播放| 久久久精品国产亚洲av高清涩受| 色老头精品视频在线观看| 久久久久久久久久黄片| 热99re8久久精品国产| 色老头精品视频在线观看| 天堂动漫精品| 十分钟在线观看高清视频www| 在线观看66精品国产| 国产亚洲欧美在线一区二区| 亚洲avbb在线观看| 丝袜在线中文字幕| 欧美日韩乱码在线| 亚洲天堂国产精品一区在线| 老熟妇仑乱视频hdxx| а√天堂www在线а√下载| 久久九九热精品免费| 极品教师在线免费播放| 天堂影院成人在线观看| 久久久久久九九精品二区国产 | 免费搜索国产男女视频| 亚洲欧洲精品一区二区精品久久久| 嫩草影视91久久| 丝袜人妻中文字幕| 一级毛片高清免费大全| 男女做爰动态图高潮gif福利片| 黄色片一级片一级黄色片| 久久久精品欧美日韩精品| 国产成人一区二区三区免费视频网站| 老熟妇乱子伦视频在线观看| 波多野结衣高清作品| 国产成人欧美在线观看| 欧美三级亚洲精品| 黄频高清免费视频| 国产99久久九九免费精品| 久久人人精品亚洲av| 男人的好看免费观看在线视频 | 久久天躁狠狠躁夜夜2o2o| 99国产精品99久久久久| 宅男免费午夜| 后天国语完整版免费观看| 在线观看舔阴道视频| 精品无人区乱码1区二区| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美网| 亚洲无线在线观看| 亚洲欧美日韩无卡精品| 欧美日韩黄片免| 777久久人妻少妇嫩草av网站| 级片在线观看| 亚洲人成网站高清观看| 99热这里只有精品一区 | 精品午夜福利视频在线观看一区| 国内少妇人妻偷人精品xxx网站 | 亚洲一卡2卡3卡4卡5卡精品中文| 伦理电影免费视频| 波多野结衣高清无吗| 麻豆成人午夜福利视频| 国产精品免费视频内射| 国产精品自产拍在线观看55亚洲| 别揉我奶头~嗯~啊~动态视频| 免费看美女性在线毛片视频| 最好的美女福利视频网| 国产av一区二区精品久久| 国产一区二区三区在线臀色熟女| 久久精品91无色码中文字幕| aaaaa片日本免费| 在线观看日韩欧美| 久久久国产成人精品二区| 成人欧美大片| 欧美激情久久久久久爽电影| 身体一侧抽搐| 美女免费视频网站| 国产精品av久久久久免费| 中亚洲国语对白在线视频| 老司机福利观看| 成年版毛片免费区| 999久久久国产精品视频| 欧美激情 高清一区二区三区| 少妇被粗大的猛进出69影院| 天堂动漫精品| 亚洲七黄色美女视频| 国产国语露脸激情在线看| 精品第一国产精品| 又黄又爽又免费观看的视频| 搡老熟女国产l中国老女人| 亚洲自偷自拍图片 自拍| 欧美性长视频在线观看| 身体一侧抽搐| 国产又色又爽无遮挡免费看| 国产一区二区激情短视频| 国产成人影院久久av| 一级a爱视频在线免费观看| 国产一区二区三区在线臀色熟女| 99国产精品99久久久久| 极品教师在线免费播放| 男男h啪啪无遮挡| www.999成人在线观看| 久久国产亚洲av麻豆专区| 美女高潮喷水抽搐中文字幕| 啦啦啦韩国在线观看视频| 久久亚洲精品不卡| 国产单亲对白刺激| av在线播放免费不卡| 97超级碰碰碰精品色视频在线观看| 美女午夜性视频免费| 欧美黑人欧美精品刺激| 丝袜美腿诱惑在线| 亚洲激情在线av| 久久亚洲精品不卡| 亚洲欧美精品综合久久99| 亚洲自偷自拍图片 自拍| 他把我摸到了高潮在线观看| 大型av网站在线播放| 中文字幕最新亚洲高清| www日本在线高清视频| 18禁国产床啪视频网站| 久久亚洲真实| 午夜激情福利司机影院| 成人一区二区视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产成年人精品一区二区| 久久天躁狠狠躁夜夜2o2o| 日本一区二区免费在线视频| 日韩欧美国产在线观看| 精品电影一区二区在线| 亚洲精品色激情综合| 高清毛片免费观看视频网站| 日韩欧美在线二视频| av欧美777| 国产aⅴ精品一区二区三区波| 久久天堂一区二区三区四区| 国产1区2区3区精品| 日韩三级视频一区二区三区| 超碰成人久久| 这个男人来自地球电影免费观看| 又黄又爽又免费观看的视频| 久久香蕉激情| 久久国产精品男人的天堂亚洲| 免费在线观看成人毛片| 亚洲自拍偷在线| 99精品久久久久人妻精品| 美女免费视频网站| 99热这里只有精品一区 | av在线播放免费不卡| 亚洲欧美精品综合久久99| 一二三四社区在线视频社区8| 夜夜躁狠狠躁天天躁| 叶爱在线成人免费视频播放| 亚洲国产欧美网| 国产成人影院久久av| 91成人精品电影| 在线av久久热| 99热只有精品国产| 日韩欧美在线二视频| 国产蜜桃级精品一区二区三区| netflix在线观看网站| or卡值多少钱| 一级黄色大片毛片| 中文字幕人妻熟女乱码| 999久久久国产精品视频| 日本撒尿小便嘘嘘汇集6| 此物有八面人人有两片| 在线观看午夜福利视频| 久久香蕉精品热| 国产精品亚洲av一区麻豆| 日韩欧美三级三区| 天天一区二区日本电影三级| 中国美女看黄片| 色在线成人网| 看免费av毛片| 国产一区二区激情短视频| 变态另类成人亚洲欧美熟女| 99riav亚洲国产免费| 亚洲精品在线观看二区| 级片在线观看| 黄色视频不卡| 国语自产精品视频在线第100页| 免费搜索国产男女视频| 人人妻,人人澡人人爽秒播| www国产在线视频色| 一二三四社区在线视频社区8| 真人做人爱边吃奶动态| 麻豆av在线久日| 色综合婷婷激情| a级毛片a级免费在线| 亚洲国产欧美网| 两性夫妻黄色片| 国产精品亚洲美女久久久| 制服诱惑二区| 熟妇人妻久久中文字幕3abv| 天天添夜夜摸| 禁无遮挡网站| 欧美中文日本在线观看视频| 老熟妇乱子伦视频在线观看| 久久天堂一区二区三区四区|