• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lattice Boltzmann model for shallow water in curvilinear coordinate grid*

    2017-04-26 06:00:56ZhuangmingZhao趙莊明PingHuang黃平ShaotianLi李少鈿
    關(guān)鍵詞:黃平皺褶皮下脂肪

    Zhuang-ming Zhao (趙莊明), Ping Huang (黃平), Shao-tian Li (李少鈿)

    1.South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655, China, E-mail: zhaozhuangming@scies.org

    2.Department of Environmental Science, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    Lattice Boltzmann model for shallow water in curvilinear coordinate grid*

    Zhuang-ming Zhao (趙莊明)1, Ping Huang (黃平)2, Shao-tian Li (李少鈿)2

    1.South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655, China, E-mail: zhaozhuangming@scies.org

    2.Department of Environmental Science, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    In this study, a multi-relaxation time lattice Boltzmann model for shallow water in a curvilinear coordinate grid is developed using the generalized form of the interpolation supplemented lattice Boltzmann method. The Taylor-Colette flow tests show that the proposed model enjoys a second order accuracy in space. The proposed model is applied to three types of meandering channels withconsecutive bends. The numerical results demonstrate that the simulated results agree well with previous computational and experimental data. In addition, the model can achieve the acceptable accuracy in terms of the water depth and the depth-averaged velocities for shallow water flows in curved and meandering channels over a wide range of bend angles.

    Curvilinear coordinate, lattice Boltzmann method, meandering flow, multi-relaxation-time model, shallow water

    Introduction

    Shallow water flows are characterized by the hydrostatic pressure and the horizontal scale of motions, which is much greater than the vertical one. These flows are governed by shallow water equations (SWEs). They are common in ocean and hydraulic engineering problems, including the sub-critical flows in curved and meandering rivers and channels. For many practical problems, the shapes of natural rivers and channels are always influenced by the flows and may not be straight. Curved and meandering rivers/ channels are of interest as problems of hydrodynamics, sediment transport and erosion. For these problems, to improve the efficiency and fit the river/channel shape well, the curvilinear coordinate grid systems are usually adopted. They are frequently solved by the finite difference method (FDM) and the finite volume method (FVM).

    In recent years, the lattice Boltzmann equation (LBE) method emerges as a powerful technique in the computational fluid dynamics analysis. The LBE enjoys several attractive features: (1) effective timedependent fluid computations, (2) intrinsic parallelism of the algorithm, (3) simplicity of programming, and (4) second order accuracy in space. It has been applied successfully to the analysis of various complex physical phenomena, such as the turbulent flows, the advection and dispersion problems, the multi-component flows, the free surface flows[1,2]and the shallow water flows[3,4].

    One of the drawbacks of the conventional LBE is that it is confined to a special class of uniform and regular lattices, which limits the efficiency when there is a need for a high-resolution grid in some sharp gradient flow regions, or when a far-field boundary condition is present. To improve the numerical efficiency, the LBE is extended to nonuniform meshes in recent years, such as the interpolation-supplemented LBE (ISLBE) for nonuniform grids[5,6], the multiscale method, the multiblock method, the quadtree grid system method, and the multi-relaxation time (MRT) LBE for rendering the flow equations in curvilinear coordinates[7].

    The ISLBE scheme has proved to be an effective method for simulating incompressible flows on a nonuniform mesh. It was first proposed by He et al. for simulating a sudden expansion channel flow using a nonuniform rectangular mesh[5,6]. And it is found that the ISLBE can enhance the stability of the LBE[6]. In addition, the use of a second-order interpolation function is important for reducing the numerical dissipation[8]. More recently, the generalized form of the interpolation supplemented lattice Boltzmann method (GILBM) was proposed to simulate a steady flow in generalized coordinates[9].

    In the present study, a lattice Boltzmann model is developed for shallow water (LBSW) based on a curvilinear coordinate grid system to accurately deal with the flow problem in curved and meandering open channels. Based on the GILBM, an overall second-order approximation of the LBSW is developed and applied to a curvilinear coordinate grid system. An MRT model[10]is implemented to enhance the stability. A boundary-fitted coordinate system has the advantage of better describing the bathymetry, but the accuracy of the boundary conditions is also quite important, hence, we proposed the second order non-equilibrium extrapolation method[11]. The accuracy of the spatial convergence is examined for the proposed model by considering the Taylor-Couette flow. Three types of open channel flows are simulated withconsecutive bends. The results are compared with those obtained from the experimental data and the simulated results obtained by using the FVM in previous studies.

    1. Numerical method

    1.1Governing equations

    The SWEs can be written in the tensor notation as:

    Fig.1 Discrete lattice and the particle trajectories

    1.2Lattice Boltzmann model

    The MRT LBE is used to solve the governing equations. In the proposed model, the space is discretized into a square lattice, with nine discrete velocities, which are given by ( see Fig.1)

    Table1 The transformation matrix

    The MRT lattice Boltzmann method involves two steps, i.e., a collision step and a streaming step, which can be expressed as:

    Collison and forcing

    The definition of the velocity is modified according to the Guo-Zheng-Shi model. Thus, the velocityandthe water depthare defined in terms of the distribution function as

    Using the Chapman-Enskog procedure, Eqs.(1)-(2) can be recovered and the viscosity is

    The LBSW on curvilinear coordinates is developed using the GILBM[9], based on the idea of ISLBM[5,6]. The GILBM involves three steps: the relaxation, the advection, and the interpolation. The first two steps are exactly the same as those in the previous standard LBE models. The physical and computational planes are described asrespectively. The two-step Runge-Kutta method is used to integrate the particle velocity and the second-order upwind quadratic interpolation is used for the overall interpolation process to maintain the second order approximation.

    1.3Boundary conditions

    In this study, we use the non-equilibrium extrapolation method[11], which is of the second order accuracy, on the inflow, outflow, and wall boundaries

    The macroscopic velocities can be estimated using the neighboring fluid velocities at the slip wall and they are equal to zero at the non-slip wall.

    In the turbulent flows, a large flow gradient exists in the vicinity of a solid boundary due to the wall friction, which cannot be simulated correctly with no-slip or slip boundary conditions. Thus, semi-slip boundary conditions are needed. The wall shear stressmay be represented by

    2. Model accuracy

    The second order accuracy of the proposed model is examined based on the Taylor-Couette flow between two circular cylinders using a curvilinear coordinate grid. The inner cylinder of radiusrotates with a constant tangential velocityand the outer cylinder of radiusis kept stationary. The radius ratioand the initial water depthThe flows with different Reynolds numbersof 10, 20 and 30 are considered.

    The periodic condition is implemented on the open boundaries. Three different grid resolutions are tested with uniform meshes of 90×23, 140×36 andThe particle velocityin all cases andis the minimum grid size of each mesh. In this and the following sections, the criterion for the steady states is defined as

    Fig.2 Errors in the velocity fields for the Taylor-Couette flow with different Reynolds numbers

    With a different number of gridsin the direction, the trends in thenorm errors (calculated relative to the analytical solution[14]) for the velocity fields are quite similar in the three cases with differentnumbers (Fig.2). The asymptotical quadratic convergence is clearly seen, thereby it can be concluded that the proposed model has an overall second order accuracy in space. It should be noted that the second order boundary conditions are necessary during the simulations.

    Different radius ratios are also tested, where0.2, 0.35 and 0.65 with the meshes of 140×36, 140×26 and 140×14, respectively. Figure 3 compares the simulated results and the analytical solutions, and very good agreement is observed, thereby it is concluded that the proposed curvilinear coordinate LBSW can accurately simulate the flow in a curved channel.

    Fig.3 Velocity profiles of the Taylor-Couette flow for different radius ratios

    Fig.4 Computational mesh of 100×26 for thecurved channel

    3. Applications

    3.1Open channel flow with abend

    Fig.5 Comparison of the depth-averaged velocities across the section of

    Fig.6 Contours of the water depth for thecurved channel

    Fig.7 Water depths along the channel bend. The longitudinal distance from the inlet is normalized with the length at the centre of the bend and the water depth is normalized as

    To investigate the grid convergence, we employ two uniform meshes of 50×13 and 100×26 (Fig.4) withrespectively. The particle velocitySemi-slip boundary conditions are set at the channel bank where the roughness coefficient. Figure 5 shows that with the model, similar results are obtained with different meshes where the grid convergence index(GCI, as proposed by Roache[16]) of the velocities is 1.24% for the fine mesh. These results indicate that the fine mesh can be used without large numerical errors and thus it is employed in this test.

    Fig.8 Depth-averaged velocity distributions on different sections

    The water depth contours are illustrated in Fig.6, which are very similar to the simulated results obtained in the previous studies[17,18]. Figure 7 also compares the results obtained at the central line andof the outer bank and the inner bank. The maximum relative error at the inner bank is 2.9%. Compared with the simulated results obtained by Ye?s 3-D FVM[19], better agreement is obtained by Ye?s method. However, our 2-D scheme shows reasonable accuracy. In Fig.8, further comparisons between the predicted and measured depth-averaged velocities on six cross-sections show that the results obtained by the proposed model agree well with the experimental data, except for some discrepancies on the section with. In addition, the results obtained by the 3-D model are better than those obtained with the proposed 2-D model, which may have several possible explanations, as follows: (1) with the 3-D model, the secondary flow in the meandering channel can be simulated more accurately, (2) in Ye?s study, the turbulent viscosity is more accurate because theturbulence model is employed, or (3) with a low turbulence Reynolds number, the wall region is simulated correctly by the wall function method proposed by Ye. However, our proposed model is simple and efficient, with a reasonable accuracy.

    Fig.9 Computational mesh of 160×20 for two bends in themeandering channel

    3.2Open channel flow withconsecutive bends

    In this test, we consider the experimental channel studied by Tamai et al.[20], which involves 90° consecutive bends with a rectangular cross-section. Each bend is connected by a 0.3 m straight reach. The radius of the channel centerline is 0.6 m and the channel width. The inflow discharge is 0.002 m3/s and the constant water depth, as specifically at the outflow. The longitudinal bed slope is 1/1000 and the Manning’s roughness coefficient forthe channel is estimated to be 0.013. Thein this test.

    Fig.10 Comparison of the depth-averaged velocities across Section E

    Fig.11 Water depths in the meandering channel withbends

    Fig.12 Transverse profiles of the depth-averaged velocity components across three sections of the meandering channel withbends

    Fig.13 Contours of the water depths in the meandering channel withbends

    Two meshes of 80×10 and 16×20 (see Fig.9) withrespectively, are tested. The results obtained by using the two different mesh resolutions are shown in Fig.10.Compared with the coarse mesh (80×10), the GCI for the fine mesh (160×20) is only 0.3% in terms of the depth-averaged velocities, so the fine mesh can be used.

    Fig.14 Contours of the water depth in the meandering channel withbends

    Fig.15 Water depths in the meandering channel withbends

    The water depths and the depth-averaged velocity profiles on Sections E, F and G are plotted in Figs.11, 12, respectively. Good agreement is observed for the water depth, where the maximum relative error is 2.8%. There are some differences in the velocity distribution, but the numerical results for the longitudinal and lateral velocities agree well with the experimental data. Compared with the simulations reported by Zarrati et al.[21], obtained by using a 2-D depth-averaged FVM model with a nonorthogonal curvilinear coordinate system, it is found that our method gives very similar results (the maximum relative error in the water depth is 1.5% according to Zarrati et al). The overall agreement is good between the results obtained by using our proposed method and the solutions reported by Zarrati et al.. After reaching a steady state, the water depth increases from the inner bank to the outer bank and it becomes almost constant at the straight reach (see Fig.13), as in good agreement with the experimental results.

    Fig.16 Transverse profiles of the depth-averaged velocity components across three sections of the meandering channel withbends

    3.3Open channel flow withconsecutive bends

    In the final test, we consider awide meandering rectangular channel with an angle ofThere are 18 circular bends and each bend is connected by a 0.07 m straight reach. The radius of the channel centerline is 1.3 m. The discharge rate isand the average flow depth0.045 m. The Manning’s roughness coefficient and the longitudinal gradient of the channel are 0.008 and 1/1 000, respectively.

    A uniform 192×15 mesh is used to calculate four consecutive bends, whereThe roughness coefficientin the semi-slip boundary conditions is 1.1032.

    The water depth contours are plotted in Fig.14, and it is shown that the water depth increases from the inner bank to the outer bank due to the centripetal force. Figures 15, 16 show the water depths and the depth-averaged velocity profiles on Sections A, B and C along the reach where we take measurements, as shown in Fig.14. An excellent agreement is observed in terms of the water depth with the relative error less than 3.0%. The predicted velocities on these three sections also agree well with the experimental results. In general, good agreement is observed between the results obtained by using the proposed method and the solutions reported by Zarrati et al. (the maximum relative error of water depth is 2.0% according to Zarrati et al.), as shown in Figs.15, 16.

    4. Conclusions

    In this study, a second order LBSW is developed on a curvilinear coordinate grid, and the GILBM and MRT models are implemented. A non-equilibrium extrapolation method is used to handle the inflow, outflow and wall boundaries. It is demonstrated that the proposed model enjoys a second order accuracy in space. In general, the treatment of the wall boundaries is easier and more exact results are obtained for the meandering flows after applying the curvilinear coordinate grid. The proposed model is verified by considering the Taylor-Couette flow, where three meandering channel flows withconsecutive bends are tested. The results show that with the proposed model, reasonable depth-averaged hydrodynamic characteristics can be obtained for the shallow water flow in curved and meandering open channels over a wide range of bend angles.

    第七個月,‘皮膚上長滿毛毛,皮下脂肪少,皮膚皺褶,如果此時出生,能啼哭與吞咽,但生活力弱?!盵11]

    The proposed model can be used to solve more complex practical problems such as for curved and meandering rivers. The turbulent models and other boundary treatments such as the wall function method, can also be integrated to solve more complex flow problems. Moreover, the advection and anisotropic dispersion equations can be coupled to solve the advection-dispersion problems. These extensions and further applications will be considered in our future research.

    [1] Zhao Z., Huang P., Li Y. et al. A lattice Boltzmann method for viscous free surface waves in two dimensions [J].International Journal for Numerical Methods in Fluids, 2013, 71(2): 223-248.

    [2] Zhao Z. M., Huang P., Chen L. P. Lattice Boltzmann method for simulating viscous free surface waves in three dimensions [J].ChineseJournal of Hydrodynamics, 2013, 28(6): 708-716(in Chinese).

    [3] Li S., Huang P., Li J. A modified lattice Boltzmann model for shallow water flows over complex topography [J].International Journal for Numerical Methods in Fluids, 2014, 77(8): 441-458.

    [4] Zhang C. Z., Cheng Y. G., Wu J. Y. et al. Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations [J].Journal of Hydrodynamics, 2016, 28(3): 400-410.

    [5] He X., Luo L., Dembo M. Some progress in lattice Boltzmann method. Part I. Nonuniform mesh grids [J].Journal of Computational Physics, 1996, 129(2): 357-363.

    [6] He X., Luo L., Dembo M. Some progress in the lattice Boltzmann method: Reynolds number enhancement in simulations [J].Physical A, 1997, 239(1-3): 276-285.

    [7] Budinski L. MRT lattice Boltzmann method for 2D flows in curvilinear coordinates [J].Computers and Fluids, 2014, 96: 288-301.

    [8] He X., Doolen G. Lattice Boltzmann method on curvilinear coordinates system: Flow around a circular cylinder [J].Journal of Computational Physics, 1997, 134(2): 306-315.

    [9] Imamura T., Suzuki K., Nakamura T. et al. Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method [J].Journal of Computational Physics, 2005, 202(2): 645-663.

    [10] Tubbs K. Lattice Boltzmann modeling for shallow water equations using high performance computing [C]. Doctoral Thesis, Baton Rouge, USA: Louisiana State University, 2010.

    [11] Guo Z. L., Zheng C. G., Shi B. C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method [J].Chinese Physics, 2002, 11(4): 366-374.

    [12] Guo Z., Zheng C. Analysis of lattice Boltzmann equation for microscale gas flows: Relaxation times, boundary conditions and the Knudsen layer [J].International Journal of Computational Fluid Dynamics, 2008, 22(7): 465-473.

    [13] Du R., Shi B., Chen X. Multi-relaxation-time lattice Boltzmann model for incompressible flow [J].Physics Letters A, 2006, 359(6): 564-572.

    [14] Chen M. Fundamentals of viscous fluid dynamics [M]. Beijing, China: China Higher Education Press, 2002(in Chinese).

    [15] Vriend H. D. A mathematical model of steady flow in curved shallow channels [J].Journal of Hydraulic Research, 1977, 15(1): 37-54.

    [16] Roache P. Perspective: A method for uniform reporting of grid refinement studies [J].Journal of Fluids Engineering, 1994, 116(3): 405-413.

    [17] Duan J. G. Simulation of flow and mass dispersion in meandering channels [J].Journal of Hydraulic Engineering, ASCE, 2004, 130(10): 964-976.

    [18] Zhang M. L., Shen Y. M. Three-dimensional simulation of meandering river based on 3-D RNGturbulence model [J].Journal of Hydrodynamics, 2008, 20(4): 448-455.

    [19] Ye J., Mccorquodale J., Barron R. A three-dimensional hydrodynamic model in curvilinear co-ordinates with collocated [J].International Journal for Numerical Methods in Fluids, 1998, 28(7): 1109-1134.

    [20] Tamai N., Ikeuchi K., Yamazaki A. et al. Experimental analysis on the open channel flow in rectangular continuous bends [J].Journal of Hydroscience and Hydraulic Engineering, 1983, 1(2): 17-31.

    [21] Zarrati A., Tamai N., Jin Y. Mathematical modeling of meandering channels with a generalized depth averaged model [J].Journal of Hydraulic Engineering, ASCE, 2005, 131(6): 467-475.

    [22] Tarekul Islam G., Tamai N., Kobayashi K. Hydraulic characteristics of a doubly meandering compound channel [C].Proceedings of Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000. Minneapolis, USA: ASCE, 2000, 1-9.

    (Received January 12, 2015, Revised August 30, 2015)

    * Project supported by the Chinese Special Fund for Environmental Protection Research in the Public Interest (Grant No. 201309006).

    Biography: Zhuang-ming Zhao (1986-), Male, Ph. D.

    猜你喜歡
    黃平皺褶皮下脂肪
    世界上的月亮
    異處求解
    貴州黃平重安鎮(zhèn):食用菌種植帶動農(nóng)民持續(xù)增收
    基于PACS探討皮下脂肪含量與脂肪肝的相關(guān)性
    青山的起伏
    詩潮(2017年2期)2017-03-16 20:02:48
    患者皮下脂肪厚度與丙泊酚麻醉應(yīng)用劑量相關(guān)性的臨床觀察
    會陰體修復(fù)聯(lián)合陰道黏膜皺褶縫合陰道緊縮術(shù)的療效
    秋天
    One-piece coal mine mobile refuge chamber with safety structure and less sealing risk based on FEA
    日本推出新款皮下脂肪儀 檢測精度達毫米級
    家電科技(2014年5期)2014-04-16 03:11:28
    国产精品一二三区在线看| 国产女主播在线喷水免费视频网站| 国产成人精品一,二区| 超碰97精品在线观看| av女优亚洲男人天堂| 国产成人免费无遮挡视频| 9色porny在线观看| 亚洲天堂av无毛| 伊人亚洲综合成人网| 亚洲经典国产精华液单| 国产成人午夜福利电影在线观看| 97人妻天天添夜夜摸| 天美传媒精品一区二区| 一本色道久久久久久精品综合| 欧美日韩精品成人综合77777| 亚洲精品aⅴ在线观看| 午夜福利在线观看免费完整高清在| 日韩,欧美,国产一区二区三区| 秋霞伦理黄片| 亚洲国产毛片av蜜桃av| 天天躁夜夜躁狠狠躁躁| 在线观看www视频免费| 人妻少妇偷人精品九色| 亚洲精品国产av成人精品| 人人澡人人妻人| av一本久久久久| 亚洲av男天堂| 精品一区二区三区四区五区乱码 | 天天躁夜夜躁狠狠久久av| 亚洲美女搞黄在线观看| 在线免费观看不下载黄p国产| 久久午夜福利片| 亚洲高清免费不卡视频| 国精品久久久久久国模美| 黄色怎么调成土黄色| 久久综合国产亚洲精品| 青春草亚洲视频在线观看| 777米奇影视久久| 中文精品一卡2卡3卡4更新| 国产成人免费观看mmmm| 草草在线视频免费看| 亚洲欧洲国产日韩| 免费高清在线观看视频在线观看| 在线天堂最新版资源| 女性生殖器流出的白浆| 午夜福利,免费看| 赤兔流量卡办理| 在线观看一区二区三区激情| 欧美成人精品欧美一级黄| 欧美成人午夜精品| a 毛片基地| 欧美日韩国产mv在线观看视频| 亚洲成人手机| 高清不卡的av网站| 亚洲色图综合在线观看| 亚洲国产精品一区三区| 久久久久人妻精品一区果冻| av天堂久久9| 欧美精品av麻豆av| 国产亚洲最大av| 午夜激情久久久久久久| 日韩三级伦理在线观看| 精品一区二区免费观看| 国产熟女午夜一区二区三区| 欧美日韩视频精品一区| 婷婷色麻豆天堂久久| 亚洲一码二码三码区别大吗| 最近最新中文字幕大全免费视频 | 国产精品一区二区在线观看99| 亚洲av免费高清在线观看| 亚洲国产精品一区三区| 亚洲精品国产色婷婷电影| 成人影院久久| 黄片播放在线免费| 久久人人爽av亚洲精品天堂| 国产成人精品婷婷| 自拍欧美九色日韩亚洲蝌蚪91| 国产激情久久老熟女| 最近最新中文字幕免费大全7| 国产男人的电影天堂91| www.色视频.com| 极品人妻少妇av视频| 久久久久精品久久久久真实原创| 成人手机av| 两性夫妻黄色片 | 亚洲欧洲精品一区二区精品久久久 | av线在线观看网站| 婷婷成人精品国产| 激情视频va一区二区三区| 婷婷成人精品国产| 中文字幕制服av| 欧美成人午夜免费资源| 久久久久久久国产电影| 新久久久久国产一级毛片| 91成人精品电影| 久久精品国产a三级三级三级| 男人舔女人的私密视频| 狠狠精品人妻久久久久久综合| 国产午夜精品一二区理论片| 久久国产精品男人的天堂亚洲 | 满18在线观看网站| 男女下面插进去视频免费观看 | 国产在视频线精品| 最近的中文字幕免费完整| 免费看av在线观看网站| 乱人伦中国视频| 国产色爽女视频免费观看| 男人添女人高潮全过程视频| 青春草视频在线免费观看| 日韩,欧美,国产一区二区三区| 一级,二级,三级黄色视频| 蜜臀久久99精品久久宅男| 26uuu在线亚洲综合色| 最新中文字幕久久久久| www.色视频.com| 国产成人精品婷婷| 中文字幕最新亚洲高清| xxxhd国产人妻xxx| 国精品久久久久久国模美| 啦啦啦视频在线资源免费观看| 精品国产国语对白av| a级毛片黄视频| 日韩一区二区三区影片| 国产欧美日韩一区二区三区在线| 精品亚洲乱码少妇综合久久| 国产成人精品一,二区| 人妻 亚洲 视频| 欧美+日韩+精品| 国产免费现黄频在线看| 久久国产精品大桥未久av| 你懂的网址亚洲精品在线观看| 寂寞人妻少妇视频99o| 成人毛片60女人毛片免费| 在线看a的网站| 国产黄频视频在线观看| 精品国产一区二区久久| 美女国产视频在线观看| 一本色道久久久久久精品综合| 国产精品国产三级国产av玫瑰| 欧美精品av麻豆av| 一本久久精品| 久久久精品区二区三区| 亚洲精品国产av蜜桃| 国产免费又黄又爽又色| 欧美变态另类bdsm刘玥| 久久精品人人爽人人爽视色| 欧美精品一区二区大全| 制服诱惑二区| 亚洲精品乱久久久久久| 成人影院久久| 精品国产国语对白av| 51国产日韩欧美| 丝袜在线中文字幕| 涩涩av久久男人的天堂| 免费人成在线观看视频色| 国产成人一区二区在线| 五月开心婷婷网| 美女脱内裤让男人舔精品视频| 母亲3免费完整高清在线观看 | 老熟女久久久| 少妇的逼水好多| 日韩熟女老妇一区二区性免费视频| 国产女主播在线喷水免费视频网站| 制服诱惑二区| 日韩三级伦理在线观看| 欧美日韩视频高清一区二区三区二| 午夜91福利影院| 国产亚洲一区二区精品| 久久99一区二区三区| 亚洲第一区二区三区不卡| 两性夫妻黄色片 | 亚洲av综合色区一区| 老司机影院成人| 国产精品久久久久久av不卡| 亚洲人与动物交配视频| 最近2019中文字幕mv第一页| 国产一级毛片在线| 精品国产一区二区三区四区第35| 午夜福利,免费看| 国产熟女欧美一区二区| 汤姆久久久久久久影院中文字幕| 久久这里只有精品19| 伦理电影免费视频| 99久久综合免费| 性色av一级| 久久这里有精品视频免费| 90打野战视频偷拍视频| a级毛片在线看网站| 我的女老师完整版在线观看| 制服人妻中文乱码| 一区二区三区乱码不卡18| 久久精品久久久久久久性| 精品亚洲成a人片在线观看| 久久精品aⅴ一区二区三区四区 | av不卡在线播放| 国产一级毛片在线| 成年动漫av网址| 国产av码专区亚洲av| 欧美亚洲 丝袜 人妻 在线| 亚洲一级一片aⅴ在线观看| 9色porny在线观看| 久久久久精品性色| 亚洲国产成人一精品久久久| 少妇精品久久久久久久| 久久av网站| 国产成人精品无人区| 中文欧美无线码| 七月丁香在线播放| 校园人妻丝袜中文字幕| 一二三四在线观看免费中文在 | 女人久久www免费人成看片| 制服丝袜香蕉在线| 99香蕉大伊视频| 男女边吃奶边做爰视频| 一级毛片我不卡| 美女视频免费永久观看网站| 久久婷婷青草| 久久女婷五月综合色啪小说| 欧美精品一区二区免费开放| 亚洲一级一片aⅴ在线观看| 91精品伊人久久大香线蕉| 韩国av在线不卡| 新久久久久国产一级毛片| 久久这里有精品视频免费| 成人免费观看视频高清| 伊人亚洲综合成人网| 亚洲国产av新网站| 久久久久人妻精品一区果冻| 精品少妇内射三级| 老司机影院成人| 亚洲精品国产av蜜桃| 欧美97在线视频| 久久精品人人爽人人爽视色| 18在线观看网站| 十分钟在线观看高清视频www| 久久精品熟女亚洲av麻豆精品| 免费播放大片免费观看视频在线观看| 免费久久久久久久精品成人欧美视频 | 在线精品无人区一区二区三| 日韩熟女老妇一区二区性免费视频| 亚洲激情五月婷婷啪啪| 日韩中文字幕视频在线看片| 少妇猛男粗大的猛烈进出视频| 久久人人爽人人片av| 久久久久久久亚洲中文字幕| 国产白丝娇喘喷水9色精品| 男女边摸边吃奶| 日韩三级伦理在线观看| 日日爽夜夜爽网站| 国产精品久久久久久精品古装| 国产又爽黄色视频| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 中文字幕最新亚洲高清| 老司机亚洲免费影院| 九九爱精品视频在线观看| 欧美激情 高清一区二区三区| 亚洲欧美一区二区三区黑人 | 最黄视频免费看| 大片电影免费在线观看免费| 看免费成人av毛片| 久久人妻熟女aⅴ| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 久久这里有精品视频免费| 国产一区二区三区av在线| 久久99一区二区三区| 久久精品人人爽人人爽视色| 久久久久久久久久成人| 乱码一卡2卡4卡精品| 久久av网站| 你懂的网址亚洲精品在线观看| 男人添女人高潮全过程视频| 日本vs欧美在线观看视频| 国产国拍精品亚洲av在线观看| 免费观看无遮挡的男女| 女人精品久久久久毛片| freevideosex欧美| 91午夜精品亚洲一区二区三区| 亚洲精品自拍成人| 大香蕉久久成人网| 亚洲成国产人片在线观看| 在线免费观看不下载黄p国产| 久久久久国产网址| 久久午夜综合久久蜜桃| 亚洲三级黄色毛片| 免费不卡的大黄色大毛片视频在线观看| 激情视频va一区二区三区| 免费观看在线日韩| 久久午夜福利片| kizo精华| √禁漫天堂资源中文www| 亚洲av在线观看美女高潮| 久久久亚洲精品成人影院| 99九九在线精品视频| 丝袜喷水一区| 午夜福利乱码中文字幕| 精品亚洲成国产av| 午夜激情久久久久久久| 少妇被粗大猛烈的视频| 国产精品秋霞免费鲁丝片| 精品熟女少妇av免费看| 男女啪啪激烈高潮av片| 精品久久久久久电影网| 国产男女内射视频| 两个人看的免费小视频| 欧美成人午夜免费资源| 免费观看a级毛片全部| 欧美日韩av久久| videosex国产| 免费观看性生交大片5| 日韩欧美一区视频在线观看| 精品午夜福利在线看| 女的被弄到高潮叫床怎么办| av播播在线观看一区| 熟女人妻精品中文字幕| 在线看a的网站| 久久99热这里只频精品6学生| 欧美变态另类bdsm刘玥| 亚洲图色成人| 日韩制服丝袜自拍偷拍| 午夜免费男女啪啪视频观看| 国产午夜精品一二区理论片| 熟女电影av网| 中文欧美无线码| 成人亚洲精品一区在线观看| www.av在线官网国产| 久久女婷五月综合色啪小说| 成人毛片a级毛片在线播放| 99国产综合亚洲精品| 亚洲一码二码三码区别大吗| 99视频精品全部免费 在线| 飞空精品影院首页| 国产亚洲一区二区精品| 国产亚洲精品第一综合不卡 | 少妇的逼好多水| 男女高潮啪啪啪动态图| 一边亲一边摸免费视频| 777米奇影视久久| 男男h啪啪无遮挡| 麻豆乱淫一区二区| 精品亚洲成国产av| 国产一区二区三区综合在线观看 | 亚洲av综合色区一区| 亚洲精品日韩在线中文字幕| 国产 精品1| 中文字幕另类日韩欧美亚洲嫩草| 99九九在线精品视频| 成人免费观看视频高清| 国精品久久久久久国模美| 久久av网站| av天堂久久9| 成年动漫av网址| 一本—道久久a久久精品蜜桃钙片| 欧美亚洲日本最大视频资源| 国产精品无大码| 一级黄片播放器| 中文天堂在线官网| 免费高清在线观看视频在线观看| 国产精品99久久99久久久不卡 | 国产白丝娇喘喷水9色精品| 国产综合精华液| 少妇的逼水好多| 国产国拍精品亚洲av在线观看| 亚洲欧美色中文字幕在线| 亚洲国产精品专区欧美| 日本91视频免费播放| 精品一区二区三区四区五区乱码 | 欧美日韩视频精品一区| 免费看av在线观看网站| 69精品国产乱码久久久| 女的被弄到高潮叫床怎么办| 日韩伦理黄色片| 黄色 视频免费看| av播播在线观看一区| 国产精品一二三区在线看| 亚洲精品视频女| 欧美精品亚洲一区二区| 天天躁夜夜躁狠狠久久av| 精品一区二区三区视频在线| 纵有疾风起免费观看全集完整版| 美女国产高潮福利片在线看| 交换朋友夫妻互换小说| 国产成人aa在线观看| 日韩视频在线欧美| 亚洲经典国产精华液单| 永久网站在线| 国产麻豆69| 精品第一国产精品| 在线观看免费高清a一片| 国产精品久久久久久av不卡| 国产精品蜜桃在线观看| 国产伦理片在线播放av一区| 欧美亚洲 丝袜 人妻 在线| 午夜福利影视在线免费观看| 寂寞人妻少妇视频99o| 国内精品宾馆在线| 精品福利永久在线观看| 人妻少妇偷人精品九色| 亚洲av欧美aⅴ国产| 亚洲精品国产av成人精品| 亚洲在久久综合| 九色成人免费人妻av| 亚洲欧美清纯卡通| 大香蕉97超碰在线| 日本欧美视频一区| freevideosex欧美| 99久久综合免费| 在线观看免费视频网站a站| 日韩av不卡免费在线播放| 色吧在线观看| 有码 亚洲区| 日日啪夜夜爽| 国产精品成人在线| 亚洲精品国产av成人精品| 免费高清在线观看日韩| 视频中文字幕在线观看| 国产又爽黄色视频| freevideosex欧美| 高清欧美精品videossex| 欧美日本中文国产一区发布| 丰满乱子伦码专区| 亚洲国产精品国产精品| 蜜臀久久99精品久久宅男| 又黄又粗又硬又大视频| 亚洲成人av在线免费| 一本久久精品| 天天操日日干夜夜撸| 亚洲人与动物交配视频| 波多野结衣一区麻豆| 亚洲国产成人一精品久久久| 十分钟在线观看高清视频www| 国产高清三级在线| av一本久久久久| 免费在线观看完整版高清| 观看美女的网站| 90打野战视频偷拍视频| 2021少妇久久久久久久久久久| 伊人亚洲综合成人网| 99热6这里只有精品| 成人黄色视频免费在线看| 狠狠精品人妻久久久久久综合| 亚洲国产av新网站| 国产日韩欧美在线精品| 亚洲国产精品一区三区| 国产在线免费精品| 免费日韩欧美在线观看| 一区二区三区精品91| 黄色 视频免费看| 极品人妻少妇av视频| 亚洲国产毛片av蜜桃av| 欧美少妇被猛烈插入视频| 欧美激情国产日韩精品一区| 99九九在线精品视频| 亚洲精品aⅴ在线观看| 亚洲五月色婷婷综合| 日本av免费视频播放| 三上悠亚av全集在线观看| 亚洲伊人久久精品综合| 一区二区日韩欧美中文字幕 | 久久久久网色| 两性夫妻黄色片 | 波多野结衣一区麻豆| 老熟女久久久| 久久人人爽人人爽人人片va| 久久久久久久久久成人| 人妻人人澡人人爽人人| 母亲3免费完整高清在线观看 | 久久精品国产a三级三级三级| av播播在线观看一区| 免费看av在线观看网站| 亚洲av男天堂| 久久精品aⅴ一区二区三区四区 | 一本久久精品| 这个男人来自地球电影免费观看 | 一边摸一边做爽爽视频免费| 人人妻人人澡人人看| 丝袜喷水一区| 亚洲国产精品一区三区| 久久久久久久久久人人人人人人| 日韩 亚洲 欧美在线| 日本av免费视频播放| 亚洲少妇的诱惑av| 夫妻午夜视频| 久久鲁丝午夜福利片| 日韩欧美精品免费久久| 日韩人妻精品一区2区三区| 免费看av在线观看网站| 国产精品国产三级国产av玫瑰| 国产精品国产av在线观看| 看免费av毛片| av.在线天堂| 国产精品国产三级国产专区5o| 最黄视频免费看| 日本91视频免费播放| 欧美精品av麻豆av| 夫妻性生交免费视频一级片| 国产精品久久久久久精品电影小说| 超色免费av| 天天躁夜夜躁狠狠躁躁| 午夜久久久在线观看| 久久久久久久久久成人| 欧美人与性动交α欧美软件 | 丝瓜视频免费看黄片| 国产男女内射视频| 18禁国产床啪视频网站| 激情五月婷婷亚洲| 久久毛片免费看一区二区三区| 18+在线观看网站| 各种免费的搞黄视频| 亚洲美女搞黄在线观看| 香蕉国产在线看| 在线免费观看不下载黄p国产| 国产毛片在线视频| 欧美人与善性xxx| 大片电影免费在线观看免费| 天天影视国产精品| 亚洲精品久久久久久婷婷小说| 国产黄色视频一区二区在线观看| 中文天堂在线官网| 亚洲欧美清纯卡通| 日本-黄色视频高清免费观看| 人妻少妇偷人精品九色| 91国产中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 毛片一级片免费看久久久久| 91精品三级在线观看| 国产高清国产精品国产三级| 欧美97在线视频| 少妇的逼好多水| 久久av网站| 美女福利国产在线| 国产高清不卡午夜福利| 99九九在线精品视频| 少妇的逼水好多| 97在线视频观看| 日韩在线高清观看一区二区三区| 制服人妻中文乱码| 丁香六月天网| 亚洲欧洲国产日韩| 亚洲精品国产av蜜桃| 国产精品一国产av| 性色av一级| 69精品国产乱码久久久| 内地一区二区视频在线| 日韩制服骚丝袜av| 日本91视频免费播放| 五月玫瑰六月丁香| 成人综合一区亚洲| 免费av中文字幕在线| 久久精品国产亚洲av涩爱| 精品久久久精品久久久| 美女脱内裤让男人舔精品视频| 91在线精品国自产拍蜜月| 97超碰精品成人国产| 国产亚洲欧美精品永久| 欧美激情国产日韩精品一区| 黄色怎么调成土黄色| 亚洲成av片中文字幕在线观看 | 亚洲精品乱码久久久久久按摩| 侵犯人妻中文字幕一二三四区| 天天躁夜夜躁狠狠久久av| 日韩一区二区三区影片| 国产精品国产三级专区第一集| 国产乱来视频区| 2022亚洲国产成人精品| 免费黄色在线免费观看| 亚洲av中文av极速乱| 一边摸一边做爽爽视频免费| 成人手机av| 女的被弄到高潮叫床怎么办| 色婷婷av一区二区三区视频| 9191精品国产免费久久| 男女午夜视频在线观看 | 亚洲五月色婷婷综合| 久久99精品国语久久久| 国产69精品久久久久777片| 欧美日韩视频精品一区| 99久久人妻综合| 国产熟女欧美一区二区| 各种免费的搞黄视频| 久久久久久久亚洲中文字幕| 欧美精品国产亚洲| 欧美97在线视频| 国产片内射在线| 赤兔流量卡办理| 亚洲国产精品一区三区| 国产在线免费精品| 成人无遮挡网站| 制服丝袜香蕉在线| 日本欧美国产在线视频| 天天操日日干夜夜撸| 亚洲五月色婷婷综合| 制服诱惑二区| 狠狠精品人妻久久久久久综合| 精品一区二区三区四区五区乱码 | 久久 成人 亚洲| 免费av不卡在线播放| 国产免费一区二区三区四区乱码| 免费观看av网站的网址| 欧美国产精品va在线观看不卡| 美女大奶头黄色视频| 999精品在线视频| 精品久久久久久电影网| 精品一品国产午夜福利视频| 色视频在线一区二区三区| 黑丝袜美女国产一区| 欧美精品亚洲一区二区| 免费观看a级毛片全部| 乱码一卡2卡4卡精品| 免费观看性生交大片5| 国产黄色免费在线视频| av在线老鸭窝| 毛片一级片免费看久久久久| 香蕉国产在线看|