• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Maillard Reaction Products Derived from Arginine-Glucose Model System on the State of Acrylamide

    2017-04-25 10:25:14XIANGLeiwenWANGHailinCHENWentaoRAOPingfanWANGShaoyun
    食品科學(xué) 2017年7期
    關(guān)鍵詞:精氨酸拉德丙烯酰胺

    XIANG Leiwen, WANG Hailin, CHEN Wentao, RAO Pingfan, WANG Shaoyun,*

    (1. School of Ocean Science and Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing 350300, China; 2. College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China)

    Effect of Maillard Reaction Products Derived from Arginine-Glucose Model System on the State of Acrylamide

    XIANG Leiwen1, WANG Hailin1, CHEN Wentao1, RAO Pingfan2, WANG Shaoyun2,*

    (1. School of Ocean Science and Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing 350300, China; 2. College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China)

    Maillard reaction products (MRPs) formed in foods during heating are found in a wide range of thermally processed foods. The effect of MRPs derived from arginine-glucose model system on the state of acrylamide was investigated in this study. The changes in the spectroscopic properties of MRPs with and without the addition of acrylamide were measured. With the addition of acrylamide, the ultra violet-visible (UV-Vis) spectrum of MRPs showed no signif i cant change, but the fl uorescence spectrum of MRPs showed a signif i cant change in excitation wavelength and emission wavelength. The absorbance of MRPs was 0.327 at 420 nm and the fluorescence intensity of MRPs at an excitation wavelength of 396 nm and an emission wavelength of 462 nm was 96.48. When acrylamide, arginine and glucose were kept in a boiling water bath for 60 min, the absorbance was 0.159 and the fl uorescence intensity was 50.75, indicating a reduction of 51.38% and 47.40%, respectively. The infrared spectroscopic results showed the characteristic absorption peaks of acrylamide at 2 356 and 2 065 cm-1, which disappeared with the addition of acrylamide. The effect of MRPs derived from arginine-glucose model system on the state of acrylamide suggests that the acrylamide may exist in a combined state in the food system, reducing the toxicity of free acrylamide molecules. This work may be helpful for evaluating the safety of acrylamide in food processing as well as providing new insight into the safety of acrylamide and similar materials.

    Maillard reaction products; acrylamide; ultra violet-visible spectroscopy; fl uorescence spectroscopym; infrared spectroscopy

    Acrylamide is a colorless, odorless, crystalline solid with a low molecular weight and is soluble in water. It has been used in the chemical industry since the 1950s in an intermediate step in the production of polyacrylamide[1]. Acrylamide was first discovered to exist in animal feed in 2000, where it is formed during the heating of the feed[2]. It was inferred that cooking of food results in the majority of acrylamide in human food, but this idea failed to attract the attention of the public. In 2002, acrylamide was found in certain foods that had been subjected to high temperatures[3], having been formed in concentrations on the order of l mg/kg during processing at temperatures above 120 ℃, such as cooking, frying, toasting, roasting or baking of foods that are rich in carbohydrates[4]. It was announced by the National Food Administration in Sweden that high levels of acrylamide were detected in widely consumed processed foods, especially starch-containing foods processed at with high temperature based on analyses that showed these foods containing up to 500 times the levels permitted in potable water by the World Health Organization[5-6]. This is primarily because acrylamide can be formed through pathways closely associated with the Maillard reaction between asparagine and reducing sugars such as glucose and fructose[3,7-8]. Foods that are rich in asparagine and reducing sugars become major sources of acrylamide when fried; such foods are primarily derived from products of plant origin, for example potato[9].

    Many studies have demonstrated neurological effects in humans who were exposed to environmental acrylamide[10]. Experimental animals exposed orally to acrylamide suffered cancer occurrences such as tumors of mammary glands in female rats, testicular tumors in male rats, and increased rates of tumors of the thyroid gland, central nervous system, uterus, clitoral gland and oral tissues[11-12]. Acrylamide has been classified as potential human carcinogen (ⅡA), showing reproductive toxicity, genotoxicity and severe neurotoxicity[13]. The content of acrylamide should lower than 0.5 μg/L in the drinking water[14].

    Many research studies on acrylamide in food focus on the various impact factors of its formation and the elimination[15-20]. However, the danger of acrylamide is based on the safety assessment of pure acrylamide; the actual existence of acrylamide in the complicated food systems is rarely reported. Acrylamide easily triggers a polymerization reaction at or above the melting point temperature, under oxidative conditions, and under the action of ultraviolet light[21]. Many nucleophilic ingredients in a food system, for example lysine and arginine, can react with acrylamide and inhibit the production of acrylamide[22]. During frying, baking, and other thermal processing of food, extremely complex Maillard reaction products (MRPs) are generated, and acrylamide is only one of them. The presence of a variety of MRPs in a food product may affect the state of acrylamide. The acrylamide may interact with other coexisting MRPs and affect the Maillard reaction process so that the physiological roles of acrylamide and MRPs be changed. The MRPs could neutralize the toxicological effects of acrylamide[23]. Reproducibility of studies on the effect of acrylamides in humans has so far been inconsistent, and the majority of available data on humans comes from prospective population-based epidemiological studies, which have primarily measured acrylamide consumption on the basis of food frequency questionnaires and conversion tables, although some have used the formation of adducts or both methods together[1,24].

    In view of the above, in order to better understand the state of dietary acrylamide, the objective of this study is to conduct a systematic observation on the effects of acrylamide on the spectroscopic properties of MRPs. This work investigates the effect of acrylamide on the spectroscopic properties of a model system of arginine-glucose, such as the fluorescence spectrum, ultra violet-visible (UV-Vis) spectrum, and infrared spectrum. The result is signif i cant in that it provides reference for the safety of acrylamide in real food system. This work may be helpful in evaluating the safety of acrylamide and similar materials during the thermal processing of foods.

    1 Materials and Methods

    1.1 Materials and Reagents

    Arginine, glucose, acrylamide, hydrochloric acid, and sodium hydroxide were purchased from Sinopharm Group Pharmaceutical Co. (Shanghai, China). All solvents used were of analytical grade except arginine which was a biochemical reagent. The super-purified water was obtained from the laboratory and was used in the preparation of all samples.

    1.2 Instrument and Equipment

    UV754N UV-Vis spectrophotometer Shanghai Yoke Instrument Co. Ltd.; 970CRT fl uorescence spectrophotometer Shanghai Precision Scientific Instrument Co. Ltd.; Nicolet 380 Fourier transform infrared spectrometer Thermo Fisher Scientif i c Inc..

    1.3 Methods

    1.3.1 UV-Vis spectral analysis of samples

    To obtain 60 mmol/L of MRPs solution, 10 mL of a solution including 0.6 mmol each of arginine, glucose respectively was added to a 25 mL glass test tube and shake well. The open end of the tubes was tightly wrapped with aluminum foil. The mixed solution was placed in boiling water bath for 60 min. And then the tubes were withdrawn and immediately cooled in an ice-water bath to stop the reaction. 0.6 mmol acrylamide was added to 10 mL of the MRPs solution in a 25 mL glass test tube. The open end of the tubes was tightly wrapped with aluminum foil. The mixed solution was placed in a boiling water bath for 60 min. Afterward, the tubes were withdrawn and immediately cooled in an ice-water bath to stop the reaction. 0.6 mmol acrylamide was added to 10 mL of the MRPs solution in a 25 mL glass test tube and was stored at room temperature (25 ℃) placed in a boiling water bath (100 ℃) for 60 min. All samples were prepared by diluting the solution 100-fold. The diluted samples were scanned by a UV-Vis spectrophotometer at wavelengths ranging from 200-800 nm.

    10 mL 60 mmol/L of group 1 (arginine), group 2 (glucose), group 3 (acrylamide), group 4 (arginine + glucose), group 5 (arginine + acrylamide), group 6 (glucose + acrylamide), group 7 (arginine + glucose + acrylamide) solution, respectively, were added to a 25 mL glass test tube. The open end of the tubes was tightly wrapped with aluminum foil. The mixed solution was placed in a boiling water bath for 60 min. Group 8 (MRPs + acrylamide) consisted of 10 mL of MRPs including 0.6 mmol acrylamide placed at room temperature (25 ℃) for 60 min. Afterwards, the tubes were withdrawn and immediately cooled in an icewater bath to stop the reaction. All samples were prepared by diluting the solution 100-fold. The spectral intensity of the diluted samples was determined by a UV-2000 UV-Vis spectrophotometer at 420 nm.

    1.3.2 Fluorescence spectral analysis of samples

    The fluorescence sample was prepared similar to the UV-Vis spectrophotometer sample. All samples were prepared after the solution was diluted 100-fold. The diluted samples were scanned at full wavelength or were determined at the excitation wavelength of 390 nm and emission wavelength of 451 nm by a 970CRT fluorescence spectrophotometer.

    1.3.3 Infrared spectral analysis of samples

    The infrared spectrum sample was prepared similar to the UV-Vis spectrophotometer sample. All samples were prepared after the solution was diluted 100-fold. The diluted samples were scanned by an infrared spectrophotometer from 400 to 4 000 cm-1.

    1.4 Data analysis

    All the experiments were performed in triplicate, and the data analysis was performed using SPSS 17.0 (SPSS, Chicago, IL, USA). Three data points were used to calculate the standard deviation, represented by error bars. Statistical signif i cance was determined by Duncan’s multiple range test (P < 0.05).

    2 Results and Analysis

    2.1 Effect of acrylamide on UV-Vis spectroscopic properties of MRPs

    Fig. 1 UV-Vis absorption spectra of samples

    As shown in Fig. 1A, surprisingly, the absorbance of the MRPs of arginine and glucose showed a continuous absorption spectrum in the ultraviolet-visible light range (200-800 nm). There is not a specif i c absorption peak. The absorbance spectrum results indicate that MRPs are a complex system with a series of compounds at different energy levels; those compounds have a continuous absorption in the ultraviolet-visible light ranges. When acrylamide was added to the MRPs solution with different methods, the similar spectra were obtained as shown in Fig. 1B-D. However, the intensity of absorbance has changed. The absorbance of the diluted solution was measured at 420 nm as the literature[25-26]. The detect results of the diluted samples are shown in Fig. 2.

    Fig. 2 Effects of various reactants on UV-Vis absorption intensity at 420 nm

    After the boiling water bath, the absorbance of the arginine solution, the glucose solution and the acrylamide solution did not make any change. The mixed solution of arginine and acrylamide, and the mixed solution of glucose and acrylamide did not make any change, either. As the reaction continued, the color of the arginine and glucose solution became darker and the reaction became deeper. The absorbance of the MRPs of arginine and glucose was 0.327. When acrylamide, arginine and glucose were placed in boiling water bath for 60 min, the absorbance of the mixed solution was 0.159 at the reduction of 51.38%. When acrylamide was added to the MRPs solution of arginine and glucose and the mixed solution was placed at room temperature (25 ℃) for 60 min, the absorbance of the mixed solution was 0.272 at the reduction of 16.82%. Therefore there is one possibility that an interaction has occurred between MRPs and acrylamide at 25 or 100 ℃. Because the absorbance of the mixed solution didn’t make any change at the co-exist state of either acrylamide and arginine or glucose.

    The above phenomenon indicates that the color and the absorbance of the system are closely related to the extent of the reaction, and acrylamide has a signif i cant inf l uence on the ultra violet-visible absorbance of MRPs.

    2.2 Effect of acrylamide on fluorescence spectroscopic properties of MRPs

    During the Maillard reaction, Strecker degradation of amines can produce some small molecules, so that the fluorescence properties of system change[27]. Under the physiological conditions, glycosylation reactions occur often, and some advanced glycation end products (AGEs) with fluorescent properties can be used as an indicator of Maillard reaction process[28], and as a characteristics molecular of biological study[29-31], even as molecular markers of diabetes (i.e. pentosidine), uremia and other diseases[32]. The fl uorescence scanning results of the diluted samples are presented in Fig. 3 from 200 to 800 nm.

    Fig. 3 Fluorescence spectra of samples

    As shown in Fig. 3A, the MRPs of arginine and glucose have fl uorescence with an excitation wavelength of 390 nm and emission wavelength of 451 nm. These results are similar to other Maillard reaction systems[33]. As shown in Fig. 3B-D, the fluorescence intensity of the solution with different added methods of acrylamide has significantly changed. And there was a distinct blue-shift in different degrees in the excitation wavelength and the emission wavelength in the sample with acrylamide. The fluorescence intensity of the diluted solution was measured at the excitation wavelength of 390 nm and the emission wavelength of 451 nm. The results are shown in Fig. 4.

    Fig. 4 Effect of various reactants on fl uorescence intensity

    After a boiling water bath, the fl uorescence intensity of the arginine solution, the glucose solution, and the acrylamide solution did not change. The mixed solution of arginine and acrylamide, and the mixed solution of glucose and acrylamide did not change either. The fluorescence intensity of the MRPs of arginine and glucose was 96.48. When acrylamide, arginine and glucose were placed in a boiling water bath for 60 min, the fl uorescence intensity of the mixed solution was 50.75 at the reduction of 47.40%. When acrylamide was added to the MRPs solution and placed at room temperature for 60 min, the fl uorescence intensity of the mixed solution was 80.03 at the reduction of 17.05%. The above phenomena indicate that acrylamide has a significant influence on the fl uorescence intensity of MRPs as impacting on the UV-Vis absorbance of MRPs. After adding antioxidants, for instance butylated hydroxyanisole, butylated hydroxytoluene, tertbutyl hydroquinone and ascorbic acid, the fluorescence intensity of the model Maillard reaction with asparagineglucose or glycine-glucose would be strengthened[34]. The fl uorescence intensity of the solution changed with time was shown in Fig. 5.

    Fig. 5 Fluorescence intensity over time of samples

    The fluorescence intensity of the MRPs solution migrates with time. When acrylamide was added to the MRPs solution and placed at room temperature (25 ℃) for 60 min, the fluorescence intensity of the mixed solution increased slowly. The results also indicated that there is an interaction between MRPs and acrylamide at 25 and 100 ℃.

    2.3 Effect of acrylamide on infrared spectroscopic properties of MRPs

    The infrared spectroscopic scanning results of the diluted samples are presented in Fig. 6 within the wavenumber range of 400 - 4 000 cm-1.

    Fig. 6 Infrared spectra of samples

    There is a water peak at about 3 400 cm-1because the samples were water-based solutions. As shown in Fig. 6A, the infrared spectroscopic scanning results of acrylamide have some characteristic peaks at 2 356, 2 065, 1 635 cm-1. As shown in Fig. 6B, the infrared spectroscopic scanning results of arginine have some characteristic peaks at 2 065, 1 635, 1 478, 1 406, 1 171 cm-1. As shown in Fig. 6C, the infrared spectroscopic scanning results of glucose have some peaks at 2 361, 2 087, 1 635, 1 419, 1 362, 1 079, 1 034 cm-1. Following a reaction of arginine and glucose, the infrared spectroscopic scanning results of MRPs are shown in Fig. 6D in which there are some peaks at 1 635 cm-1only. The results of MRPs with acrylamide were shown in Fig. 6E-F without the characteristic peaks of acrylamide at 2 356, 2 065 cm-1. The most probable reason was that some groups of arginine or glucose or acrylamide have taken part in the reaction and disappeared.

    Thus acrylamide concentration is not always constant. The content of acrylamide would have been changed because of the interaction between the acrylamide and the other compounds in those foods. The elimination of acrylamide has been proposed due to the interaction nucleophilic groups (—SH, —NH2) on amino acid side chains on the acrylamide[35].

    Food is a complex system. The acrylamide is only one of the MRPs generated by the Maillard reaction. The high content of acrylamide must be interaction to other MRPs molecules. Thereby, the biological activity of acrylamide and MRPs may be changed in vivo. Although the monomer of acrylamide is stable at room temperature, but acrylamide is a very active compound at or above the melting point temperature, depending on oxidation conditions and the effect of UV.

    Acrylamide is prone to the polymerization reaction, hydrolysis reaction, Hoffman reaction and Michaeltype addition reaction. Because the acrylamide molecule contains active amino group and double bond group. Some food nucleophilic reagents, such as lysine, arginine, serine, ascorbic acid and so on, can be combined with acrylamide as reported in prior literature[36].

    The experimental results show that acrylamide can inhibit the progress of the Maillard reaction and reduce the fluorescence intensity of MRPs and the characteristic peaks of acrylamide were disappeared after interacting with MRPs. Whether the presence of acrylamide in food can effects on the glycosylation reaction in the human physiological state, as aminoguanidine, carnosine, pyridoxamine, metformin, thiamine pyrophosphate as inhibitors or blockers of the formation of advanced glycation end products[37]needs further study.

    3 Conclusions

    The Maillard reaction products, formed in foods during heating, consumed by people in a wide range of thermally processed foods. The results show that the acrylamide signif i cantly affects the spectroscopic properties of Maillard reaction products and suggest that acrylamide may exist in a combined state due to interactions in the food system and impact on the toxicity of the free acrylamide molecules. This work may be helpful in evaluating the safety of acrylamide in processed foods and providing new insight into the safety of acrylamide and similar materials.

    References:

    [1] HOGERVORST J G, BARRS B J, SCHOUTEN L J, et al. The carcinogenicity of dietary acrylamide intake: a comparative discussion of epidemiological and experimental animal research[J]. Critical Reviews in Toxicology, 2010, 40(6): 485-512. DOI:10.3109/10408440903524254.

    [2] TAREKE E, RYDBERG P, KARLSSON P, et al. Acrylamide: a cooking carcinogen[J]. Chemical Research in Toxicology, 2000, 13(6): 517-522. DOI:10.1021/tx9901938.

    [3] STADLER R H, BLANK I, VARGA N, et al. Food chemistry: acrylamide from Maillard reaction products[J]. Nature, 2002, 419: 449-450. DOI:10.1038/419449a.

    [4] TAREKE E, RYDBERG P, KARLSSON P, et al. Analysis of acrylamide: a carcinogen formed in heated foodstuffs[J]. Journal of Agriculture and Food Chemistry, 2002, 50(17): 4998-5006. DOI:10.1021/jf020302f.

    [5] National Food Administration Sweden. Acrylamide in heat-processed foods[EB/OL]. (2002-05-06)[2016-03-13]. http://www.mindfully.org/ Food/Acrylamide-Heat-Processed-Foods26apr02.htm.

    [6] LOFSTEDT R E. Science communication and the Swedish acrylamide‘a(chǎn)larm’[J]. Journal of Health Communication, 2003, 8(5): 407-432. DOI:10.1080/713852123.

    [7] MOTTRAM D S, WEDZICHA B L, DODSON A T. Food chemistry: acrylamide is formed in the Maillard reaction[J]. Nature, 2002, 419: 448-449. DOI:10.1038/419448a.

    [8] ZYZAK D V, SANDERS R A, STOJANOVIC M, et al. Acrylamide formation mechanism in heated foods[J]. Journal of Agriculture and Food Chemistry, 2003, 51(16): 4782-4787. DOI:10.1021/jf034180i.

    [9] FRIEDMAN M, LEVIN C E. Review of methods for the reduction of dietary content and toxicity of acrylamide[J]. Journal of Agriculture and Food Chemistry, 2008, 56(15): 6113-6140. DOI:10.1021/ jf0730486.

    [10] CALLEMAN C J, WU Y, HE F, et al. Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide[J]. Toxicology and Applied Pharmacology, 1994, 126(2): 361-371. DOI:10.1006/taap.1994.1127.

    [11] FRIEDMAN M A, DULAK L H, STEDHAM M A. A lifetime oncogenicity study in rats with acrylamide[J]. Fundamental and Applied Toxicology, 1995, 27(1): 95-105. DOI:10.1093/ toxsci/27.1.95.

    [12] JOHNSON K A, GORZINSKI S J, BODNER K M, et al. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats[J]. Toxicology and Applied Pharmacology, 1986, 85(2): 154-168. DOI:10.1016/0041-008X(86)90109-2.

    [13] International Agency for Researrch on Cancer (IARC). Monographs on the evaluation of carcinogenic risks to humans: some industrial chemicals[R]. 1994: 60389-66433.

    [14] World Health Organization. Guidelines for drinking water quality[M]. 4th ed. Switzerland: World Health Organization (WHO), 2011: 307.

    [15] ANESE M, SUMAN M, NICOLI M C. Acrylamide removal from heated foods[J]. Food Chemistry, 2010, 119: 791-794. DOI:10.1016/ j.foodchem.2009.06.043.

    [16] URBANCIC S, KOLAR M H, DIMITRIJEVIC D, et al. Stabilisation of sunf l ower oil and reduction of acrylamide formation of potato with rosemary extract during deep-fat frying[J]. LWT-Food Science and Technology, 2014, 57(2): 671-678. DOI:10.1016/j.lwt.2013.11.002.

    [17] WEN Chao, WANG Zimeng, SHI Xingbo, et al. A review of acrylamide and 5-hydroxymethylfurfural in foods [J]. Food Science (in Chinese), 2015, 36(13): 257-263. DOI:10.7506/spkx1002-6630-201513048.

    [18] SALAZAR R, ARAMBULA-VILLA G, LUNA-BARCENAS G, et al. Effect of added calcium hydroxide during corn nixtamalization on acrylamide content in tortilla chips[J]. LWT-Food Science and Technology, 2014, 56(1): 87-92. DOI:10.1016/j.lwt.2013.10.046.

    [19] GüL AKILLIOGLU H, G?KMEN V. Mitigation of acrylamide and hydroxymethyl furfural in instant coffee by yeast fermentation[J]. Food Research International, 2014, 61: 252-256. DOI:10.1016/ j.foodres.2013.07.057.

    [20] ANESE M, NICOLI M C, VERARDO G, et al. Effect of vacuum roasting on acrylamide formation and reduction in coffee beans[J]. Food Chemistry, 2014, 145: 168-172. DOI:10.1016/ j.foodchem.2013.08.047.

    [21] HAN J Y, ZHANG C W. Research on the toxicology of acrylamide[J]. Journal of Hygiene Research, 2006, 35(4): 513-515.

    [22] ADAMS A, HAMDANI S, LANCKER F V, et al. Stability of acrylamide in model systems and its reactivity with selected nucleophiles[J]. Food Research International, 2010, 43(5): 1517-1522. DOI:10.1016/j.foodres.2010.04.033.

    [23] XIANG L W, HE A M, ZOU W T, et al. Effects of Maillard reaction products on the toxicity of acrylamide[J]. Journal of Chinese Institute of Food Science and Technology, 2015(12): 18-24.

    [24] PELUCCHI C, la VECCHIA C, BOSETTI C, et al. Exposure to acrylamide and human cancer-a review and meta-analysis of epidemiologic studies[J]. Annals of Oncology, 2011, 22(7): 1487-1499. DOI:10.1093/annonc/mdq610.

    [25] LI Y L, HUANG G Q, XIAO J X. Maillard reaction between chitosan and xylose in dry state[J]. Food Science (in Chinese), 2015, 36(12): 1-6. DOI:10.7506/spkx1002-6630-201512001.

    [26] XIAO J X, HUANG G Q, PEI X H, et al. Comparison on browning degrees and antioxidant activities of Maillard reaction products from different systems[J]. Food Science (in Chinese), 2011, 32(11): 52-55. DOI:10.7506/spkx1002-6630-201111052.

    [27] BAISIER W M, LABUZA T P. Maillard browning kinetics in a liquid model system[J]. Journal of Agricultural and Food Chemisty, 1992, 40(5): 707-713. DOI:10.1021/jf00017a001.

    [28] MATIACEVICH S B, BUERA M P. A critical evaluation of fluorescence as a potential marker for the Maillard reaction[J]. Food Chemistry, 2006, 95(3): 423-430. DOI:10.1016/ j.foodchem.2005.01.027.

    [29] BOSCH L, ALEGRIA A, FARRE R, et al. Fluorescence and color as marks for the Maillard reaction in milk-cereal based infant foods during storage[J]. Food Chemistry, 2007, 105(3): 1135-1143. DOI:10.1016/j.foodchem.2007.02.016.

    [30] GOPAL V R, INDIRA M. Investigations on the correlation of advanced glycated end products (AGE) associated fl uorescence with blood glucose and oxidative in ethanol-administered diabetic rats[J]. Experimental and Toxicologic Pathology, 2010, 62(2): 157-162. DOI:10.1016/j.etp.2009.03.004.

    [31] SCHMIT A, SCHMIT J, MUNCHC G, et al. Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics[J]. Analytical Biochemistry, 2005, 338(2): 201-215. DOI:10.1016/j.ab.2004.12.003.

    [32] SELL D R, NAGARA R H. Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging and uremia[J]. Diabetes-Metabolism Research and Reviews, 1991, 7(4): 239-251. DOI:10.1002/dmr.5610070404.

    [33] SUN L P, ZHUANG Y L, ZHANG L, et al. Spectroscopic studied on Maillard reaction of wheat protein hydrolysates and reducing sugars[J]. Analytical Chemistry (in Chinese), 2009, 37(9): 1359-1362.

    [34] LIU H, OU S Y, HUANG C H. Effects of antioxidants on fl uorescence of maillard reaction products[J]. Food Science and Technology (in Chinese), 2007, 32(7): 83-85.

    [35] RYDBERG P, ERIKSSON S, TAREKE E, et al. Investigations of factors that inf l uence the acrylamide content of heated foodstuffs[J]. Journal of Agricultural and Food Chemistry, 2003, 51(24): 7012-7018. DOI:10.1021/jf034649+.

    [36] ADAMS A, HAMDANI S, LANCKER F V, et al. Stability of acrylamide in model systems and its reactivity with selected nucleophiles[J]. Food Research International, 2010, 43(5): 1517-1522. DOI:10.1016/j.foodres.2010.04.033.

    [37] PAKASH R, AYSE B. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases[J]. Drug Discovery Today, 2006(11): 646-655. DOI:10.1016/j.drudis.2006.05.016.

    精氨酸/葡萄糖的模式美拉德反應(yīng)產(chǎn)物對(duì)丙烯酰胺狀態(tài)的影響

    項(xiàng)雷文1,王海林1,陳文韜1,饒平凡2,汪少蕓2,*
    (1.福建師范大學(xué)福清分校海洋與生化工程學(xué)院,福建 福清 350300;2.福州大學(xué)生物科學(xué)與工程學(xué)院,福建 福州 350108)

    本實(shí)驗(yàn)通過(guò)測(cè)量丙烯酰胺添加前后美拉德反應(yīng)產(chǎn)物的變化,來(lái)研究精氨酸/葡萄糖的模式美拉德反應(yīng)產(chǎn)物對(duì)丙烯酰胺狀態(tài)的影響。結(jié)果表明,添加丙烯酰胺后,美拉德反應(yīng)產(chǎn)物的紫外-可見(jiàn)吸收光譜沒(méi)有明顯變化,但其熒光光譜的吸收波長(zhǎng)和發(fā)射波長(zhǎng)都發(fā)生了明顯變化。美拉德反應(yīng)產(chǎn)物在420 nm波長(zhǎng)處的吸光度為0.327,在吸收波長(zhǎng)396 nm和發(fā)射波長(zhǎng)462 nm條件下,熒光強(qiáng)度為96.48;添加丙烯酰胺并和精氨酸、葡萄糖沸水浴1 h后,其可見(jiàn)光吸收強(qiáng)度為0.159,下降了51.38%,熒光強(qiáng)度為50.75,下降47.40%。紅外掃描結(jié)果表明,丙烯酰胺的特征吸收峰在2 356 cm-1和2 065 cm-1處,加入美拉德反應(yīng)產(chǎn)物溶液后,丙烯酰胺特征峰消失表明其狀態(tài)發(fā)生改變。模式美拉德反應(yīng)產(chǎn)物對(duì)丙烯酰胺的狀態(tài)表明食品中的丙烯酰胺以結(jié)合狀態(tài)存在并因此降低了丙烯酰胺的毒性,可為評(píng)估食品中丙烯酰胺的安全性提供一個(gè)新的視角。

    美拉德反應(yīng)產(chǎn)物;丙烯酰胺;紫外-可見(jiàn)光譜;熒光光譜;紅外光譜

    TS201

    A

    1002-6630(2017)07-0029-07

    2016-03-15

    國(guó)家自然科學(xué)基金面上項(xiàng)目(31571779);福建省區(qū)域科技重大項(xiàng)目(2014N3005);福建省教育廳A類(lèi)科技項(xiàng)目(JA10289)

    項(xiàng)雷文(1975—),男,教授,博士,主要從事天然產(chǎn)物綜合利用、生物大分子分離與表征、食品中美拉德反應(yīng)研究。E-mail:xiangleiwen@163.com

    10.7506/spkx1002-6630-201707006

    *通信作者:汪少蕓(1970—),女,教授,博士,主要從事食品化學(xué)、生物活性蛋白質(zhì)、酶和多肽及食品生物技術(shù)研究。E-mail:shywang@fzu.edu.cn

    XIANG Leiwen, WANG Hailin, CHEN Wentao, et al. Effect of Maillard reaction products derived from arginine-glucose model system on the state of acrylamide[J]. 食品科學(xué), 2017, 38(7): 29-35.

    10.7506/spkx1002-6630-201707006. http://www.spkx.net.cn

    XIANG Leiwen, WANG Hailin, CHEN Wentao, et al. Effect of Maillard reaction products derived from arginine-glucose model system on the state of acrylamide[J]. Food Science, 2017, 38(7): 29-35. (in English with Chinese abstract) DOI:10.7506/spkx1002-6630-201707006. http://www.spkx.net.cn

    猜你喜歡
    精氨酸拉德丙烯酰胺
    電位滴定法測(cè)定聚丙烯酰胺中氯化物
    云南化工(2021年11期)2022-01-12 06:06:18
    古斯塔夫·拉德布魯赫——法哲學(xué)家與政治家
    拉德布魯赫和康特洛維茨
    一口袋的吻(上)
    簡(jiǎn)論嘎拉德瑪之歌產(chǎn)生的思想根源
    食品中丙烯酰胺的測(cè)定及其含量控制方法
    低分子量丙烯酰胺對(duì)深部調(diào)驅(qū)采出液脫水的影響
    精氨酸聯(lián)合谷氨酰胺腸內(nèi)營(yíng)養(yǎng)對(duì)燒傷患者的支持作用
    精氨酸、可樂(lè)定、精氨酸聯(lián)合左旋多巴不同激發(fā)試驗(yàn)對(duì)GH分泌的影響
    鐵(Ⅲ)配合物催化雙氧水氧化降解聚丙烯酰胺
    蜜桃久久精品国产亚洲av| 看十八女毛片水多多多| 日本黄大片高清| 女同久久另类99精品国产91| 一个人看视频在线观看www免费| 性插视频无遮挡在线免费观看| 成人无遮挡网站| 一边摸一边抽搐一进一小说| 欧美激情在线99| 中国美女看黄片| 一个人免费在线观看电影| 国产午夜精品论理片| 精品一区二区三区av网在线观看| 尤物成人国产欧美一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 午夜久久久久精精品| 国产高清三级在线| 女人被狂操c到高潮| 给我免费播放毛片高清在线观看| 国产一区二区亚洲精品在线观看| 久久这里只有精品中国| 久久中文看片网| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影| 国产精品久久久久久久电影| 国内精品一区二区在线观看| 日韩大尺度精品在线看网址| 免费人成在线观看视频色| 亚洲性久久影院| 黄色日韩在线| 五月伊人婷婷丁香| 久久天躁狠狠躁夜夜2o2o| 蜜桃亚洲精品一区二区三区| 国产成人一区二区在线| 日韩人妻高清精品专区| 九九热线精品视视频播放| 国产人妻一区二区三区在| 精品一区二区三区av网在线观看| 国内精品美女久久久久久| 免费电影在线观看免费观看| 最近在线观看免费完整版| 国内久久婷婷六月综合欲色啪| 国产毛片a区久久久久| 国产精品一及| 一区二区三区四区激情视频 | 天天躁日日操中文字幕| 亚洲综合色惰| 成人国产一区最新在线观看| 九九在线视频观看精品| 亚洲国产精品合色在线| av福利片在线观看| 欧美日韩黄片免| 久久热精品热| 国产三级在线视频| 久久这里只有精品中国| 国产精品日韩av在线免费观看| 18禁在线播放成人免费| 国模一区二区三区四区视频| 国产在线精品亚洲第一网站| 日本黄色视频三级网站网址| 国产成人福利小说| 在线观看午夜福利视频| 国产真实乱freesex| 日韩高清综合在线| 国产黄a三级三级三级人| 久久香蕉精品热| 欧美三级亚洲精品| 亚洲av中文av极速乱 | 男女之事视频高清在线观看| 亚洲四区av| 欧美极品一区二区三区四区| 婷婷丁香在线五月| 极品教师在线免费播放| 少妇的逼好多水| 深爱激情五月婷婷| 欧美成人a在线观看| 日韩欧美免费精品| 国产亚洲av嫩草精品影院| 欧美色欧美亚洲另类二区| 久久精品国产鲁丝片午夜精品 | 一区福利在线观看| 男女边吃奶边做爰视频| 中国美女看黄片| 免费看av在线观看网站| 欧美最新免费一区二区三区| 亚洲内射少妇av| 简卡轻食公司| 国产精品人妻久久久久久| 久久精品人妻少妇| a级毛片免费高清观看在线播放| 久久天躁狠狠躁夜夜2o2o| 色播亚洲综合网| 国产精品福利在线免费观看| 自拍偷自拍亚洲精品老妇| 亚洲精品色激情综合| 免费大片18禁| 免费人成视频x8x8入口观看| 精品无人区乱码1区二区| 一本精品99久久精品77| 日韩精品中文字幕看吧| 小说图片视频综合网站| netflix在线观看网站| 久久香蕉精品热| 高清日韩中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 亚洲美女搞黄在线观看 | 久久久精品大字幕| 国内精品一区二区在线观看| 免费看a级黄色片| 亚洲国产欧洲综合997久久,| 久久午夜福利片| 日本三级黄在线观看| 搡老熟女国产l中国老女人| 色哟哟哟哟哟哟| 2021天堂中文幕一二区在线观| 色综合亚洲欧美另类图片| 国产国拍精品亚洲av在线观看| 亚洲黑人精品在线| 免费看日本二区| 亚洲av成人精品一区久久| 99久久九九国产精品国产免费| 日韩欧美 国产精品| 草草在线视频免费看| 听说在线观看完整版免费高清| 男人和女人高潮做爰伦理| 免费看日本二区| 看片在线看免费视频| 亚洲成人免费电影在线观看| 午夜福利欧美成人| 搡老妇女老女人老熟妇| 久久精品国产亚洲网站| 国产精品亚洲美女久久久| 国产真实伦视频高清在线观看 | 亚洲性久久影院| 精品人妻视频免费看| 亚洲av成人av| 18禁裸乳无遮挡免费网站照片| 老司机午夜福利在线观看视频| 国产伦一二天堂av在线观看| 国产一级毛片七仙女欲春2| 午夜a级毛片| 综合色av麻豆| 嫩草影院入口| 狂野欧美白嫩少妇大欣赏| 99久国产av精品| 日日摸夜夜添夜夜添小说| 精品福利观看| 国产精品久久久久久亚洲av鲁大| 日日干狠狠操夜夜爽| 男插女下体视频免费在线播放| 久久精品国产自在天天线| 日本色播在线视频| 99久久精品热视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲七黄色美女视频| 日韩亚洲欧美综合| 97超级碰碰碰精品色视频在线观看| 久久精品国产亚洲av天美| 中文字幕av在线有码专区| 在线天堂最新版资源| 国内揄拍国产精品人妻在线| 色综合站精品国产| 岛国在线免费视频观看| 午夜激情欧美在线| 床上黄色一级片| 毛片一级片免费看久久久久 | 免费观看在线日韩| 色综合婷婷激情| 成年女人看的毛片在线观看| 亚洲美女视频黄频| a级毛片a级免费在线| 两个人视频免费观看高清| 国内精品久久久久久久电影| 91精品国产九色| 国产探花在线观看一区二区| 最后的刺客免费高清国语| 1024手机看黄色片| 精品日产1卡2卡| 国产精品不卡视频一区二区| 国产视频一区二区在线看| 久久亚洲精品不卡| 最近中文字幕高清免费大全6 | 亚洲自拍偷在线| 亚洲av五月六月丁香网| av天堂在线播放| 国产精品久久久久久精品电影| 高清日韩中文字幕在线| 麻豆国产97在线/欧美| 一区二区三区免费毛片| 夜夜夜夜夜久久久久| 日本三级黄在线观看| 免费av观看视频| 婷婷亚洲欧美| 亚洲美女黄片视频| 女生性感内裤真人,穿戴方法视频| 中亚洲国语对白在线视频| 久久精品国产亚洲网站| 久久久久九九精品影院| 99九九线精品视频在线观看视频| 成年人黄色毛片网站| 亚洲avbb在线观看| 亚洲国产日韩欧美精品在线观看| 精品人妻一区二区三区麻豆 | 制服丝袜大香蕉在线| 日本欧美国产在线视频| 老师上课跳d突然被开到最大视频| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线| 亚洲五月天丁香| 人妻久久中文字幕网| 国产av麻豆久久久久久久| 亚洲精品亚洲一区二区| 天堂动漫精品| 亚洲黑人精品在线| 中文字幕精品亚洲无线码一区| 国产在线精品亚洲第一网站| 久久久久免费精品人妻一区二区| 成人国产麻豆网| 亚洲av免费高清在线观看| 真实男女啪啪啪动态图| 91狼人影院| 国产精品1区2区在线观看.| 国内精品一区二区在线观看| 亚洲性久久影院| 欧美日韩国产亚洲二区| 亚洲精品粉嫩美女一区| 国产乱人视频| 亚洲精品亚洲一区二区| 久久久久久九九精品二区国产| 夜夜看夜夜爽夜夜摸| 99视频精品全部免费 在线| 亚洲电影在线观看av| 国产熟女欧美一区二区| 亚洲人成网站在线播放欧美日韩| 国产精品1区2区在线观看.| 亚洲图色成人| 日韩欧美精品免费久久| 久久热精品热| av在线观看视频网站免费| 国产精品综合久久久久久久免费| 欧美潮喷喷水| 国产乱人伦免费视频| 嫩草影视91久久| 亚洲精品色激情综合| 精品久久久久久久末码| 如何舔出高潮| 久久久久久久久中文| 国产精品久久久久久亚洲av鲁大| 久久久久久国产a免费观看| 一本一本综合久久| 国产精品一区二区免费欧美| 中文资源天堂在线| 中出人妻视频一区二区| 欧美激情国产日韩精品一区| 亚洲国产精品sss在线观看| 偷拍熟女少妇极品色| 日本撒尿小便嘘嘘汇集6| 亚洲性久久影院| 精品久久久久久久久亚洲 | 精品一区二区三区av网在线观看| 国产高潮美女av| 成人特级av手机在线观看| 欧美丝袜亚洲另类 | or卡值多少钱| 欧美中文日本在线观看视频| 亚洲经典国产精华液单| 97超视频在线观看视频| 嫁个100分男人电影在线观看| 日韩一区二区视频免费看| 波野结衣二区三区在线| 中文字幕免费在线视频6| 91精品国产九色| 真人做人爱边吃奶动态| 国产黄片美女视频| 国产三级在线视频| 噜噜噜噜噜久久久久久91| 成人性生交大片免费视频hd| 国产精品电影一区二区三区| 自拍偷自拍亚洲精品老妇| 嫩草影院新地址| 人妻久久中文字幕网| 亚洲va日本ⅴa欧美va伊人久久| 成人三级黄色视频| 亚洲七黄色美女视频| 免费看av在线观看网站| 一个人看的www免费观看视频| 在线免费观看的www视频| 一进一出抽搐动态| 中国美白少妇内射xxxbb| 久久久成人免费电影| 国产精品一区二区三区四区久久| 99热只有精品国产| 男人和女人高潮做爰伦理| 天堂网av新在线| 夜夜看夜夜爽夜夜摸| 3wmmmm亚洲av在线观看| 亚洲成人精品中文字幕电影| 琪琪午夜伦伦电影理论片6080| 日本撒尿小便嘘嘘汇集6| 不卡视频在线观看欧美| av天堂在线播放| 一级黄色大片毛片| 他把我摸到了高潮在线观看| 最近在线观看免费完整版| 最近最新中文字幕大全电影3| 欧美不卡视频在线免费观看| 中文资源天堂在线| 亚洲精品亚洲一区二区| 美女xxoo啪啪120秒动态图| 免费看日本二区| 亚洲国产精品合色在线| 一区福利在线观看| 性色avwww在线观看| 联通29元200g的流量卡| 村上凉子中文字幕在线| 免费搜索国产男女视频| 精品久久久噜噜| 国产男靠女视频免费网站| 88av欧美| 免费搜索国产男女视频| 国产一区二区三区视频了| 亚洲国产精品合色在线| 三级国产精品欧美在线观看| 亚洲自拍偷在线| 国产精品,欧美在线| 成人特级av手机在线观看| 日本a在线网址| 国产精品嫩草影院av在线观看 | 免费观看人在逋| 国产精品久久视频播放| 中文字幕精品亚洲无线码一区| 欧美日韩中文字幕国产精品一区二区三区| 久久婷婷人人爽人人干人人爱| 听说在线观看完整版免费高清| 简卡轻食公司| 免费在线观看日本一区| 日本五十路高清| 一个人观看的视频www高清免费观看| 日韩亚洲欧美综合| 国产精品一区www在线观看 | 国产精品久久久久久亚洲av鲁大| 成年女人永久免费观看视频| 免费在线观看成人毛片| 国产av麻豆久久久久久久| 少妇人妻一区二区三区视频| 午夜免费激情av| 看黄色毛片网站| 久久国产乱子免费精品| 91久久精品国产一区二区成人| 国产高清三级在线| 老司机福利观看| 韩国av一区二区三区四区| 日本黄大片高清| 日本黄色视频三级网站网址| 久久人人爽人人爽人人片va| 国产美女午夜福利| 亚洲最大成人中文| 婷婷六月久久综合丁香| 好男人在线观看高清免费视频| 特级一级黄色大片| 五月玫瑰六月丁香| 中国美女看黄片| 日韩欧美精品免费久久| 亚洲在线观看片| 国产 一区精品| 高清毛片免费观看视频网站| 韩国av一区二区三区四区| 高清日韩中文字幕在线| 一进一出抽搐动态| 亚洲,欧美,日韩| 亚洲美女视频黄频| 亚洲国产色片| 中文资源天堂在线| 99久久精品热视频| 国产欧美日韩一区二区精品| 国产欧美日韩精品一区二区| 黄片wwwwww| 91av网一区二区| 日本a在线网址| 免费观看精品视频网站| 久久久午夜欧美精品| 性插视频无遮挡在线免费观看| 精品国内亚洲2022精品成人| 免费在线观看影片大全网站| 熟女电影av网| 久久久久久伊人网av| 欧美色欧美亚洲另类二区| 动漫黄色视频在线观看| 国产男人的电影天堂91| 他把我摸到了高潮在线观看| 精品人妻熟女av久视频| 国产精品1区2区在线观看.| 亚洲国产欧美人成| 草草在线视频免费看| 亚洲av第一区精品v没综合| 成熟少妇高潮喷水视频| 欧美日韩综合久久久久久 | 99久久中文字幕三级久久日本| 热99re8久久精品国产| 黄色配什么色好看| 色哟哟·www| 欧美极品一区二区三区四区| 国内少妇人妻偷人精品xxx网站| 国产精品av视频在线免费观看| 露出奶头的视频| 日本在线视频免费播放| 91午夜精品亚洲一区二区三区 | 午夜精品一区二区三区免费看| 国产真实伦视频高清在线观看 | 一进一出抽搐gif免费好疼| 天天躁日日操中文字幕| 在线观看舔阴道视频| 国产高清视频在线观看网站| 国产精品久久电影中文字幕| av中文乱码字幕在线| 1024手机看黄色片| 免费av不卡在线播放| 亚洲无线在线观看| 亚洲av第一区精品v没综合| 熟女人妻精品中文字幕| 色综合色国产| 亚洲av日韩精品久久久久久密| 亚洲人成伊人成综合网2020| 国产黄片美女视频| 琪琪午夜伦伦电影理论片6080| 午夜福利成人在线免费观看| 在线观看免费视频日本深夜| 亚洲内射少妇av| 精品久久久久久久久久久久久| 日本免费一区二区三区高清不卡| 国产黄色小视频在线观看| 九色国产91popny在线| 身体一侧抽搐| 超碰av人人做人人爽久久| 国产在视频线在精品| 亚洲专区国产一区二区| 成年女人看的毛片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 级片在线观看| 午夜福利18| 真人一进一出gif抽搐免费| 中国美白少妇内射xxxbb| 国产精品,欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品亚洲一区二区| 日本欧美国产在线视频| 免费av不卡在线播放| 亚洲七黄色美女视频| 18+在线观看网站| 国产国拍精品亚洲av在线观看| 午夜免费男女啪啪视频观看 | 有码 亚洲区| 成熟少妇高潮喷水视频| 毛片女人毛片| 亚洲专区中文字幕在线| 欧美日韩黄片免| 嫩草影院入口| av黄色大香蕉| 国产色爽女视频免费观看| 一区二区三区高清视频在线| 最近中文字幕高清免费大全6 | 国产av麻豆久久久久久久| 男女做爰动态图高潮gif福利片| 国产视频内射| 熟女电影av网| 日韩欧美三级三区| 校园春色视频在线观看| 精品久久久久久,| 简卡轻食公司| 精品不卡国产一区二区三区| 免费看美女性在线毛片视频| 天堂网av新在线| 国产不卡一卡二| 中文字幕精品亚洲无线码一区| 一进一出抽搐gif免费好疼| 三级国产精品欧美在线观看| 亚洲av第一区精品v没综合| 精品人妻一区二区三区麻豆 | 99精品在免费线老司机午夜| 久久中文看片网| 一本精品99久久精品77| 国产高清激情床上av| 免费黄网站久久成人精品| 91av网一区二区| 久久精品国产99精品国产亚洲性色| 欧美又色又爽又黄视频| 国产人妻一区二区三区在| 午夜福利在线观看免费完整高清在 | 欧美3d第一页| 人人妻人人澡欧美一区二区| 国产男靠女视频免费网站| 99久久精品国产国产毛片| 老熟妇乱子伦视频在线观看| 一个人免费在线观看电影| 日韩在线高清观看一区二区三区 | 丰满乱子伦码专区| 真实男女啪啪啪动态图| 婷婷色综合大香蕉| 非洲黑人性xxxx精品又粗又长| 波野结衣二区三区在线| 欧美黑人巨大hd| 成年版毛片免费区| 91久久精品国产一区二区成人| 国产精品亚洲美女久久久| av在线天堂中文字幕| 国产精品电影一区二区三区| 久久久久久久久大av| 久久精品国产亚洲av天美| avwww免费| 高清日韩中文字幕在线| 精品久久久久久久末码| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av| 美女高潮的动态| 国产男靠女视频免费网站| 亚洲人成伊人成综合网2020| 蜜桃亚洲精品一区二区三区| 久久久午夜欧美精品| 熟女人妻精品中文字幕| 国产高清视频在线播放一区| 午夜精品在线福利| 国产熟女欧美一区二区| 禁无遮挡网站| 成年女人看的毛片在线观看| 成年人黄色毛片网站| 国产高清视频在线播放一区| 美女 人体艺术 gogo| 日本五十路高清| 啦啦啦啦在线视频资源| 亚洲成人中文字幕在线播放| 色av中文字幕| 日韩欧美一区二区三区在线观看| 国产大屁股一区二区在线视频| 国产精品国产三级国产av玫瑰| 黄色欧美视频在线观看| 国国产精品蜜臀av免费| 韩国av一区二区三区四区| 天美传媒精品一区二区| 日本熟妇午夜| 日韩欧美精品免费久久| 国产精品一区二区性色av| 国产中年淑女户外野战色| av在线观看视频网站免费| 国产精品久久久久久久久免| 欧美激情久久久久久爽电影| 午夜福利欧美成人| 又爽又黄无遮挡网站| 国产一区二区三区av在线 | 国产精品人妻久久久久久| 国产三级中文精品| 色视频www国产| 亚洲成人中文字幕在线播放| 内地一区二区视频在线| 国产不卡一卡二| 99热这里只有精品一区| 一a级毛片在线观看| 在线播放国产精品三级| 天堂动漫精品| 午夜视频国产福利| 变态另类丝袜制服| 国产欧美日韩精品一区二区| 国产精品自产拍在线观看55亚洲| 午夜视频国产福利| 亚洲精品国产成人久久av| 亚洲,欧美,日韩| 观看美女的网站| 一级黄色大片毛片| 99精品久久久久人妻精品| 神马国产精品三级电影在线观看| 亚洲人成伊人成综合网2020| 少妇人妻一区二区三区视频| 岛国在线免费视频观看| 又黄又爽又免费观看的视频| 亚洲五月天丁香| 欧美人与善性xxx| 免费搜索国产男女视频| 动漫黄色视频在线观看| 精品久久久久久久人妻蜜臀av| 亚洲av二区三区四区| 免费大片18禁| 免费看光身美女| 最近最新免费中文字幕在线| 永久网站在线| 精品人妻熟女av久视频| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| 91av网一区二区| 久久精品国产亚洲av天美| 丰满的人妻完整版| 亚洲在线自拍视频| 精品久久国产蜜桃| 91在线观看av| 我要搜黄色片| 久久久久国产精品人妻aⅴ院| 日本爱情动作片www.在线观看 | 在线看三级毛片| 色在线成人网| 欧美国产日韩亚洲一区| 国产高清视频在线观看网站| 国产在线男女| 他把我摸到了高潮在线观看| 中亚洲国语对白在线视频| 国产激情偷乱视频一区二区| 91麻豆精品激情在线观看国产| 精品人妻一区二区三区麻豆 | 日日摸夜夜添夜夜添av毛片 | 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美+日韩+精品| 丝袜美腿在线中文| 久久香蕉精品热| 久久久国产成人免费| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 国产一区二区在线观看日韩|