管月清,章鵬飛
(1.臺(tái)州職業(yè)技術(shù)學(xué)院 醫(yī)學(xué)與制藥工程學(xué)院,浙江 臺(tái)州 318000; 2.杭州師范大學(xué) 材料與化學(xué)化工學(xué)院,浙江 杭州 310036)
利塞膦酸鈉關(guān)鍵中間體3-乙酰基吡啶的合成
管月清1*,章鵬飛2
(1.臺(tái)州職業(yè)技術(shù)學(xué)院 醫(yī)學(xué)與制藥工程學(xué)院,浙江 臺(tái)州 318000; 2.杭州師范大學(xué) 材料與化學(xué)化工學(xué)院,浙江 杭州 310036)
3-乙?;拎な呛铣衫⑺徕c的關(guān)鍵中間體. 室溫下,以3-乙炔基吡啶在CF3SO3H/CF3CH2OH(n(CF3SO3H)/n(CF3CH2OH)=20%)催化體系中順利進(jìn)行馬氏水合反應(yīng),反應(yīng)收率較高,環(huán)境友好,該方法同時(shí)具有原料易得、反應(yīng)條件溫和、操作簡(jiǎn)便、適合工業(yè)化生產(chǎn)等優(yōu)點(diǎn).
利塞膦酸鈉;關(guān)鍵中間體;3-乙?;拎ぃ缓铣?;環(huán)境友好
骨質(zhì)疏松癥(Osteoporosis,OP) 是一種以骨量低下,骨微結(jié)構(gòu)破壞,導(dǎo)致骨脆性增加,易發(fā)生骨折為特征的全身性骨病[1]. 根據(jù)病因,可分為原發(fā)性和繼發(fā)性兩種. 其中,原發(fā)性骨質(zhì)疏松癥多發(fā)于老年人群及絕經(jīng)后婦女,是隨著年齡的增長(zhǎng)必然發(fā)生的一種生理退行性病變,嚴(yán)重威脅老年人的健康和生活質(zhì)量,也給家庭和社會(huì)帶來(lái)沉重的負(fù)擔(dān). 隨著人類壽命延長(zhǎng)和老齡化社會(huì)的到來(lái),骨質(zhì)疏松癥已成為全人類的重要健康問(wèn)題,中國(guó)也不例外. 2006年中國(guó)50歲以上的骨質(zhì)疏松患者約為6 944萬(wàn)人,目前有8 400萬(wàn)人患有不同程度的骨質(zhì)疏松癥,預(yù)計(jì)到2020年將增至2.866億人,到2050年上升至5.333億人[2].
目前,治療和預(yù)防骨質(zhì)疏松癥主要依靠補(bǔ)充鈣劑和維生素D類產(chǎn)品,但骨質(zhì)疏松癥是鈣的沉積和流失不平衡所致,單純補(bǔ)鈣并不能有效治療和預(yù)防骨質(zhì)疏松癥,因此,需要應(yīng)用一些防止鈣流失的藥物進(jìn)行治療. 雙膦酸鹽類藥物是迄今為止臨床上應(yīng)用時(shí)間最長(zhǎng)的抗骨吸收藥物,其療效確切,且可根據(jù)患者依從性選擇不同的類型. 其中,利塞膦酸鈉(Risedronate sodium,圖1)是新一代雙膦酸鹽類藥物的杰出代表,由美國(guó)寶潔(Procter & Gamble)公司開(kāi)發(fā),于1998年同時(shí)在美國(guó)和歐洲上市,屬于第三代雙膦酸鹽. 與其他同類藥相比,利塞膦酸鈉抗吸收作用增強(qiáng)且毒副作用小,已成為目前防治骨質(zhì)疏松癥最主要藥物之一[3-4].
圖1 利塞膦酸鈉的結(jié)構(gòu)式Fig.1 Chemical structure of risedronate sodium
3-乙?;拎な呛铣衫⑺徕c的重要中間體,其合成工藝已有文獻(xiàn)報(bào)道[5-9](圖 2),但現(xiàn)有工藝大多存在催化劑昂貴、反應(yīng)條件苛刻、反應(yīng)時(shí)間長(zhǎng)、試劑毒性大、收率低、環(huán)境污染嚴(yán)重等問(wèn)題. 因此,開(kāi)發(fā)一種高效、易于工業(yè)化合成3-乙?;拎さ男路椒ㄒ殉蔀楫?dāng)前研究的重點(diǎn)課題之一.
近些年來(lái),炔烴水合反應(yīng)在現(xiàn)代大規(guī)模化工生產(chǎn)和精細(xì)化學(xué)品制備中備受關(guān)注[10-15]. 炔烴水合制備羰基化合物的原子經(jīng)濟(jì)性可達(dá)100%,且炔烴原料易得,產(chǎn)物附加值較高是該反應(yīng)的顯著優(yōu)勢(shì),但與此同時(shí)該反應(yīng)也存在一些不足:如傳統(tǒng)的炔烴水合反應(yīng)多采用劇毒Hg鹽和過(guò)量的硫酸為催化劑環(huán)境污染嚴(yán)重;后續(xù)開(kāi)發(fā)的低毒過(guò)渡金屬及金屬/Bronsted acid共組催化劑催化水合反應(yīng)時(shí)存在反應(yīng)溫度高、催化劑昂貴、三廢量大等不足. 本文在前人研究的基礎(chǔ)上[16],首次將無(wú)過(guò)渡金屬參與的CF3SO3H/CF3CH2OH催化體系應(yīng)用于3-乙炔基吡啶的水合反應(yīng),并高產(chǎn)率得到利塞膦酸鈉的關(guān)鍵中間體3-乙酰基吡啶,產(chǎn)物經(jīng)核磁、質(zhì)譜等進(jìn)行了結(jié)構(gòu)確認(rèn),其具體合成路線見(jiàn)圖 2.
圖2 3-乙?;拎さ暮铣陕肪€Fig.2 Synthesis route of 3-acetylpyridine
1.1 主要儀器與試劑
Bruker-500型核磁共振儀,Thermo Scientific LCQ質(zhì)譜儀. 3-溴吡啶、乙炔基三甲基硅烷、二異丙胺、碘化亞銅、無(wú)水硫酸鎂、氫氧化鉀、三氟甲磺酸,三氟乙醇、無(wú)水硫酸鈉、碳酸氫鈉、二氯甲烷、甲醇、乙酸乙酯、正己烷均為分析純.
1.2 實(shí)驗(yàn)步驟
1.2.1 3-乙炔基吡啶的合成[17]
在1 000 mL三頸圓底燒瓶中先加入3-溴吡啶49.8 g(0.31 mol),Pd(PPh3)Cl25.4 g和 CuI 1.5 g,加完后進(jìn)行氮?dú)庵脫Q,在控溫(30 ℃)及攪拌下再依次加入二異丙胺 510 mL和乙炔基三甲基硅烷34.2 g(0.34 mol),加完后保溫反應(yīng)約3 h,反應(yīng)結(jié)束后依次加水淬滅,二氯甲烷萃取及MgSO4干燥,減壓蒸餾得到濃縮物;接著,在氮?dú)獗Wo(hù)的1 000 mL三頸圓底燒瓶中依次加入上述濃縮物,KOH 19.2 g(0.62 mol),甲醇570 mL和二氯甲烷300 mL. 加完后保溫反應(yīng)約3 h,反應(yīng)結(jié)束后依次加水淬滅,二氯甲烷萃取,MgSO4干燥,減壓蒸餾得到3-乙炔基吡啶黃色固體產(chǎn)物30.3 g,收率93%,mp 38.5~39.5 ℃(ref. [18], 39~40 ℃).
1.2.2 3-乙?;拎さ暮铣?/p>
在250 mL圓底燒瓶中依次加入3-乙炔基吡啶28.8 g(0.28 mmol),水10.2 g(0.56 mmol),三氟甲磺酸8.4 g (0.56 mmol),三氟乙醇100 mL,加完后進(jìn)行瓶口密封,在室溫?cái)嚢璺磻?yīng)約45 h. 反應(yīng)結(jié)束后,將反應(yīng)液倒入500 mL分液漏斗中,然后加入250 mL的乙酸乙酯,混合物先后分別經(jīng)100 mL 1mol/L 碳酸氫鈉和100 mL氯化鈉溶液洗滌,所得有機(jī)層經(jīng)無(wú)水硫酸鎂干燥、過(guò)濾、減壓濃縮,最后經(jīng)蒸餾得到無(wú)色油狀液體32.19 g,收率為95%,bp 218~219 ℃;1H NMR (500 MHz, CDCl3):δ9.18 (d, 1H), 8.90~8.68 (m, 1H), 8.25 (d, 1H), 7.44(dd, 1H), 2.66 (s, 3H);13C NMR (126 MHz CDCl3):δ196.63, 153.40, 149.80, 135.35, 132.15, 123.53, 26.60. MS (ESI):m/z122.06 [M + H]+.
本研究主要考察了CF3SO3H與CF3CH2OH體系及用量、水的用量、反應(yīng)溫度和反應(yīng)時(shí)間對(duì)3-乙炔基吡啶水合化反應(yīng)的影響. 實(shí)驗(yàn)結(jié)果表明3-乙炔基吡啶在CF3SO3H/CF3CH2OH催化體系下進(jìn)行炔烴的水合反應(yīng),該體系無(wú)需任何過(guò)渡金屬的參與,克服了傳統(tǒng)工藝中劇毒Hg鹽和貴重金屬鹽的使用所帶來(lái)環(huán)境污染嚴(yán)重、生產(chǎn)成本過(guò)高等不足. 反應(yīng)過(guò)程中只需加入催化量的CF3SO3H和等物質(zhì)量的水,從而大大減少了三廢的排放. 反應(yīng)在室溫下反應(yīng)就能順利進(jìn)行,且以較高產(chǎn)率(95%)得到目標(biāo)產(chǎn)物3-乙?;拎? 總之,該工藝與現(xiàn)有文獻(xiàn)報(bào)道的工藝相比,具有反應(yīng)條件溫和、操作簡(jiǎn)單、三廢排放少、收率高、生產(chǎn)成本低等優(yōu)點(diǎn),具有非常好的工業(yè)化生產(chǎn)應(yīng)用前景.
本文通過(guò)對(duì)3-乙炔基吡啶的無(wú)金屬參與催化的馬氏水合反應(yīng)的研究,在高產(chǎn)率獲得利塞膦酸鈉關(guān)鍵中間體3-乙?;拎さ耐瑫r(shí),為其建立了一種高效的合成新方法,該工藝具有原料易得、反應(yīng)條件溫和、操作簡(jiǎn)便、產(chǎn)率高、環(huán)境友好、適合工業(yè)化生產(chǎn)等特點(diǎn).
[1] 中華醫(yī)學(xué)會(huì). 臨床診療指南·骨質(zhì)疏松癥和骨礦鹽疾病分冊(cè)[M]. 北京: 人民衛(wèi)生出版杜, 2006: 44-47.
Chinese Society of Osteoporosis and Bone Mineral Disease, Chinese Medical Association. Clinical practice guidelines: osteoporosis [M]. Beijing: People’s Medical Publishing House, 2006: 44-47.
[2] 中華醫(yī)學(xué)會(huì). 原發(fā)性骨質(zhì)疏松癥診治指南(2011年)[J]. 中華骨質(zhì)疏松和骨礦鹽疾病雜志, 2011, 4(1): 2-17.
Chinese Medical Association. Guidelines for diagnosis and treatment of primary osteoporosis [J]. Chinese Journal of Osteoporosis & Bone Mineral Research, 2011, 4(1): 2-17.
[3] CART A J, THOMPSON P W, COOPER C. Factors associated with adherence and persistence to bisphosphonate therapy in osteoporosis: a cross-sectional survey [J]. Osteoporosis International, 2006, 17(11): 1638-1644.
[4] MCCLUNG M R, ZANCHETTA J R, RACEWICZ A, et al. Efficacy and safety of risedronate 150-mg once a month in the treatment of postmenopausal osteoporosis: 2-year data [J]. Osteoporosis International, 2013, 24(1): 293-299.
[5] KARIMI F, BARLETTA J, L?NGSTR?M B. Palladium-mediated 11C-carbonylative cross-coupling of alkyl/aryl iodides with organostannanes: An efficient synthesis of unsymmetrical alkyl/aryl [11C-carbonyl]ketones [J]. Journal of Organometallic Chemistry, 2005, 2005(11): 2374-2378.
[6] PEI W, MO J, XIAO J L. Highly regioselective Heck reactions of heteroaryl halides with electron-rich olefins in ionic liquid [J]. The Journal of Organic Chemistry, 2005, 690(15): 3546-3551.
[7] XU D, LIU Z H, TANG W J, et al. Palladium-catalyzed regiocontrolled internal heteroarylation of electron-rich olefins with heteroaryl halides [J]. Tetrahedron Letters, 2008, 49(42): 6104-6107.
[8] PILLER F M, APPUKKUTTAN P, GAVRYUSHIN A, et al. Convenient preparation of polyfunctional aryl magnesium reagents by a direct magnesium insertion in the presence of LiCl [J]. Angewandte Chemie International Edition, 2008, 47(36): 6802-6806.
[9] LIU Y Y, XIE A, LI J J, et al. Heterocycle-substituted tetrazole ligands for copper-catalysed aerobic oxidation of alcohols [J]. Tetrahedron, 2014, 70(52): 9791-9796.
[10] XU Y, HU X B, SHAO J, et al. Hydration of alkynes at room temperature catalyzed by gold(I) isocyanide compounds [J]. Green Chemistry, 2015, 17(1): 532-537.
[11] XU C X, DU W Y, ZENG Y, et al. Reactivity switch enabled by counterion: highly chemoselective dimerization and hydration of terminal alkynes [J]. Organic Letters, 2014, 16(3): 948-951.
[12] HERZON S B, LI L, ZENG M S. A highly active and air-stable ruthenium complex for the ambient temperature anti-markovnikov reductive hydration of terminal alkynes [J]. Journal of the American Chemical Society, 2014, 136 (19): 7058-7067.
[13] HASSAM M, LI W S. Copper-catalyzed Markovnikov hydration of alkynes [J]. Tetrahedron, 2015, 71(19): 2719-2723.
[14] BAQUERO E A, SILBESTRI G F, FLORES J C. Sul-fonated water-soluble N-heterocyclic carbene silver(I) complexes: Behavior in aqueous medium and as NHC-transfer agents to platinum(II) [J]. Organometallics, 2013, 32(9): 2814-2826.
[15] CORDON J, JIMENEZ O G, JOSE M L, et al. Experimental and theoretical study of gold(III)-catalyzed hydration of alkynes [J]. Organometallics, 2014, 33(14): 3823-3830.
[16] LIU W B, WANG H N, LI C J. Metal-free Markovnikov-type alkyne hydration under mild conditions [J]. Organic Letters, 2016, 18(9): 2184-2187.
[17] HOLMES B T, PENNINGTON W T, HANKS T W. Efficient synthesis of a complete donor/acceptor bis(aryl)diyne family [J]. Synthetic Communications, 2003, 33(14): 2447-2461.
[18] RODRIGUEZ J G, MARTIN-VILLAMIL R, CANO F H, et al. Synthesis of 1,4-di(n-pyridyl)buta-1,3-diyne and formation of charge-transfer complexes. X-ray structure of 1,4-di(3-pyridyl)buta-1,3-diyne [J]. Journal of the Chemical Society, Perkin Transactions, 1997, 5(5): 709-714.
[責(zé)任編輯:張普玉]
Synthesis of 3-acetylpyridine as a key intermediate for risedronate sodium
GUAN Yueqing1*, ZHANG Pengfei2
(1.DepartmentofMedicalandPharmaceuticalEngineering,TaizhouVocational&TechnicalCollege,Taizhou318000,Zhejiang,China; 2.CollegeofMaterial,ChemistryandChemicalEngineering,HangzhouNormalUniversity,Hangzhou310036,Zhejiang,China)
3-Acetylpyridine is a key intermediate for risedronate sodium. A highly improved and environmentally benign methodology with the advantages of simple materials, simple operation, high yield and suitable for scale-up, has been developed for the synthesis of 3-acetylpyridine from the metal-free Markovnikov-type hydration of 3-ethynylpyridine by using CF3SO3H/CF3CH2OH (n(CF3SO3H)/n(CF3CH2OH)=20%) as the catalyst under mild conditions.
risedronate sodium; key intermediate; 3-acetylpyridine; synthesis; environmental friendship
2017-01-07.
國(guó)家自然科學(xué)基金 (21376058),臺(tái)州市科技計(jì)劃項(xiàng)目(131KY07),臺(tái)州市博士后科研基金項(xiàng)目(2013BSH01).
管月清(1976-),女,高級(jí)工程師,主要從事藥物合成及分析.*
,E-mail:gbzhou_zju@126.com.
TQ463.2
A
1008-1011(2017)02-0191-04