• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inhibition of CYP3A4 by natural accurring flavonoids:A SAR and 3D-QSAR study

    2017-04-25 08:00:06ng
    關(guān)鍵詞:黃酮

    , , , ,ng , , , ,

    (1.Key Laboratory for Basic Pharmacology of Ministry of Education,Zunyi Medical University,Zunyi Guizhou 563099,China; 2.Pharmaceutical Lab,School of Pharmacy,Zunyi Medical University,Zunyi Guizhou 563099,China; 3.School of Pharmaceutical Engineering,Shenyang Pharmaceutical University,Shenyang Liaoning 110000,China; 4.Department of Biotechnology,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian Liaoning 116023,China)

    基礎(chǔ)醫(yī)學(xué)研究

    Inhibition of CYP3A4 by natural accurring flavonoids:A SAR and 3D-QSAR study

    WangWei1,2,LiMing3,AiChunzhi4,DuYimei1,2,LingLei1,2,MaFeifei1,2,ZhouXumei2,LuYanliu1,HeYuqi1,2

    (1.Key Laboratory for Basic Pharmacology of Ministry of Education,Zunyi Medical University,Zunyi Guizhou 563099,China; 2.Pharmaceutical Lab,School of Pharmacy,Zunyi Medical University,Zunyi Guizhou 563099,China; 3.School of Pharmaceutical Engineering,Shenyang Pharmaceutical University,Shenyang Liaoning 110000,China; 4.Department of Biotechnology,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian Liaoning 116023,China)

    Objective Mining the key structure feature of natural occurring flavonoids for inhibition on CYP3A4 via SAR and 3D-QSAR strategy.Methods Evaluate the activity of CYP3A4 in human liver microsome incubation system via checking the specific probe reaction:6β-hydroxylation of testosterone.Screen the inhibitory effect of 25 flavonoids at a relatively higher concentration.Check the IC50values of flavonoids with inhibitory rate more than 50%.Using the tested and reported IC50values to construct a 3D-QSAR model to predict the inhibitory potency of flavonoids other than the investigated 25 objects.Results Nine flavonoid glycones showed high inhibitory effect on CYP3A4.The number,type,and position of the substituted groups on flavonoid core structures are correlated with their inhibitory effect on CYP3A4.C1-C2 double bond promotes the inhibitory effect.A 3D-QSAR model was established and applied with good prediction.Conclusion Key structure features for CYP3A4 inhibition were extracted from flavonoids.A 3D-QSAR model for flavonoids related CYP3A4 inhibition prediction was established.Results of the present study would benefit the prediction of Food or Drug-Drug interaction mediated by flavonoids.

    flavonoids; CYP3A4; inhibition; SAR; 3D-QSAR

    Cytochrome P450 enzymes play an important role on the metabolism of endogenous and xenobiotic small molecules in animals and human.Usually,cytochrome P450 enzymes catalyze compounds to inactive them,however,sometimes,they also active non-toxic or non-active molecules to be toxic and active.Some of those P450-catalyzed metabolites even too active to attach biomacromoleculars such as DNA and protein[1].As the cytochrome P450-mediated metabolism would change the activity or toxicity of drugs,inhibition on P450 enzymes is extremely important to understand the potential metabolism-mediated food or drug-drug interaction,toxicity,and carcinogenicity[2-3].CYP3A4 is the most important cytochrome P450 isozyme.It occupies around 30% of total P450s and accounts for more than 50% of the metabolism of current drugs[1].Thus,inhibition of CYP3A4 is the prior choice while entering into inhibition studies for cytochrome P450 isozymes.

    Flavonoids exist extensively in foods,herbs and drinks (tea,red wine etc.)[4].By the year 2000,more than 8000 flavonoids have been isolated from plants and over 5000 flavonoids have been described[5].They exhibit broad pharmacological activities such as antioxidant,anti-hypertension,anti-arrhythmia,and anti-tumor.In addition,clinical observations indicated that foods with high level of flavonoids showed significant effects on preventing cancer,thus theyhave been considered as the valuable chemo-preventive agent for anti-cancer[6].Recently Amin A and Buratovich M.illustrated the charm of flavonoids in the treatment of hormone-dependent cancers and they even proposed that “A Cup-of-Tea Will Do”[7].

    To data,flavonoids inhibit cytochrome P450 sextensively[6,8].As the significant correlation between flavonoids treatment and cancer prevention,most studies were focused on the inhibition effect of flavonoids to CYP1A1/1A2[9-11].Regarding CYP3A4,the most important cytochrome P450 isozyme,strong inhibition by flavonoids were also observed[12-14].Naringenin inhibited CYP3A1/2 and increased the AUC of paclitaxel (substrate of CYP 3A) in rats[15].The grapefruit juice (with kinds of flavonoids)[16],increased the bioavailability of drugs metabolized by CYP3A4[17].Quercetin and kaempferol[18]showed a dose-dependent and time-dependent inhibition to CYP3A4.Isoliquiritigenin,licopyranocoumarin,4-hydroxyguaiacol apioglucoside,liquiritin,liquiritigenin 7,4-diglucoside,liquiritinapioside,silybin,silydianin,silycristin,and dehyfrosilybin[14,19]show strong inhibition to CYP3A4 with IC50values of less than 100 μmol/l.Quercetin and baicalein inhibited CYP3A4 with IC50values as low as less than 20 μmol/L[16,18,20].Glabridin,an isoflavone,showed mechanism-based inactivation to CYP3A4 with a KIvalue (inhibition constant) as low as 7 μmol/l[21].A few structure features of flavonoids were noted for CYP3A4 inhibition.For example,hydroxylation on C-7of flavonoids is considered to promote the inhibition on CYP3A4.In addition,the number of substituted hydroxyl radical is also important for CYP3A4 inhibition.However,these data can’t be used for SAR analysis because they were generated by different experimental platforms.Until now,a strictly speaking SAR study between flavonoid structures and CYP3A4 inhibitory activity is still deficient.

    In this study,twenty five flavonoids were collected.They covered five subgroup of flavonoids (Fig 1).Their inhibitory effect on CYP3A4 activity would be check in human liver microsome incubation system by using testosterone as probe.SAR would be done while a 3D-QSAR model would be established.The present study provided not only a descriptive model but also a prediction model for CYP3A4 inhibition by flavonoids.

    Series numbers represent compounds as follows:1 oroxylin A,2 baicalein,3 chrysin,4 luteolin,5 apigenin,6 naringenin,7 alpinetin,8 daidzein,9 formononetin,10 isorhamnetin,11 kaempferol,12 quercetin,13 cardamonin,14 rutin,15 hyperoside,16 quercitrin,17 baicalin,18 scutellarin,19 genistin,20 naringin,21 hesperidin,22 neohespeidin,23 icariin,24 puerarin,25 liquritin.Fig 1 Structures of investigated flavonoids

    1 Materials and methods

    1.1 Chemicals Flavonoids were isolated by our lab and the purities are more than 98% analyzed by HPLC.Testosterone,D-glucose-6-phosphate,glucose-6-phosphate dehydrogenase,NADP+,methanol and acetonitrile were purchased from Sigma-Aldrich (St.Louis,MO,USA).Ketoconazole (KTZ) was obtained from ICN Biomedicals Inc.(Aurora,Ohio,USA).All other reagents were of HPLC grade or of the highest grade commercially available.

    1.2 Preparation and characterization of liver microsomes Human livers were obtained from autopsy samples (n=5,male Chinese,ages from 27 to 48) from Dalian Medical University,with the approval of the ethics committee of Dalian Medical University.The medication history of the donors was not known.Research involving human subjects was done under full compliance with government policies and the Helsinki Declaration.Liver specimens were stored in liquid nitrogen until preparation of microsomes.Microsomes were prepared from liver tissue by differential ultra centrifugation as described previously[22-23].

    1.3 Assay of the CYP3A4 activity A standard incubation system included:human liver microsome (HLM,0.5 mg/ml),D-glucose-6-phosephate (1 mmol/l),D-glucose-6-phosephate dehydrogenase (1 U/ml),NADPNa (1 mmol/l),and substrate.In case of CYP3A4 activity probing,testosterone (50 μmol/l,1 μl for each reaction system) was used as the specific substrate[24].Total volume of incubation system was 200 μl and total organic volume was less than 1% of the reaction system.After incubation for 10 min at 37 ℃,100 μl acetonitrile with corticosterone (20 μmol/l,used as internal standard) was added to quench the reaction.Then the quenched reaction system was centrifuged at 14 300 rpm for 10 min.The supernatant was injected to HPLC to determine the generation of 6β-hydroxylated testosterone (product of testosterone catalyzed by CYP3A4).All reaction parameters followed the reported methods[24].

    1.4 HPLC analysis CYP3A4-specific metabolite of testosterone was analyzed on a Shimadzu LC-10A HPLC system with an Agilent Zorbax C18column (150×4.6 mm,5 μm).An aliquot of 20 μl samples were separated at 25oC by ddH2O and methanol with elution gradient as follow:0-15 min,52% to 70% of methanol; 15-22 min,70% to 80% of methanol.Testosterone,cortisone (internal standard),and 6β-hydroxylated testosterone was determined at 254 nm.

    1.5 Screening of the inhibitory effect of flavonoids on CYP3A4 A relatively high concentration was used to screen flavonoids with potential inhibitory effect on CYP3A4.For baicalein,kaempferol,luteolin,quercetin,rutin,quercitrin,naringenin,alpinetin,naringin,cardamonin,puerarin,and liquiritin,the screening concentrations were set at 100 μmol/l.Saturated concentrations of other tested compounds were used in screening assay.Details were shown below:40 μmol/l for oroxylin A,15 μmol/l for isorhamnetin,33.3 μmol/l for chrysin,16 μmol/l for apigenin,25 μmol/l for hyperoside,33.35μmol/l for baicalin,50 μmol/l for scutellarin,40 μmol/l for daidzein,50 μmol/l for formononetin,8.9 μmol/l for genistin,5 μmol/l for hesperidin,12.5 μmol/l for neohesperidin,and 20 μmol/l for icariin.KTZ (1 μmol/l) was used as the positive inhibitor.For test flavonoids and the positive inhibitor,an aliquot of 1 μl was added into the incubation system.Incubation without test flavonoids and KTZ was used as control.The remaining enzyme activity (REA) was calculated based on the HPLC peak area of 6β-hydroxylated testosterone.

    1.6 Determination of IC50values Nine compounds with the inhibition rate more than 50% were subjected IC50value tests.Concentrations of flavonoids were set as follows:15,5,3,0.75 and 0.375 μmol/l for chrysin,5,2.5,1.25,0.625 and 0.312 5 μmol/l for apigenin,15,5,3,1.5 and 0.75 μmol/l for cardamonin,6,3,2,1 and 0.5 for quercetin,15,5,3,1.5 and 0.75 μmol/l for luteolin,15,5,3,1.5 and 0.75 μmol/l for kaempferol,90,40,20,10 and 5 μmol/l for naringenin,15,10,5,3 and 1.5 μmol/l for baicalein,15.45,10,5,2.5 and 1.25 μmol/l for isorhamnetin.According to the remaining enzyme activity (REA),the IC50value was calculated using the formula as follows:

    lgIC50=Xm-I(P-(3-Pm-Pn)/4)

    (1)

    WhereXmrepresents the logarithm value of the maximal concentration,Irepresents the logarithm value of the ratio that the maximal concentration to the second highest concentration,Pindicates the sum of the inhibition rate (1-REA) at all five concentrations,Pmrepresents the inhibition rate of flavonoids at the highest concentration,andPnrepresents the inhibition rate of flavonoids at the lowest concentration.

    Regarding investigated compounds other than the aforementioned nine flavonoids,IC50values were calculated by two formulas as follows:

    (2)

    (3)

    WhereKmis Michaelis constant of CYP3A4-catalyzed testosterone 6β-hydroxylation,[S] represents the concentration of substrates,Control% represents the REA,[I] is the concentration of inhibitor,Kiis the inhibition constant.

    1.7 Computationalmethods All the molecular modeling and computational analyses were conducted and viewed on LINUX RedHat 8.0 operating system employing SYBYL6.9 package on a Dell precision 650 workstation.

    1.7.1 Structure generation,conformational analysis,and alignment Energy minimization and conformational search were performed using Tripos force field (SYBYL6.9.Tripos Inc.).The convergence criterion was set at 0.001 kcal/mol.In order to obtain the most stable conformation,the energy gradient limit was set at 0.05 kcal/mol.? and the partial atomic charges were calculated with Gasteiger-Huckel Charge method.Then the dataset was aligned to the template.Apigenin was randomly chosen as the initial template for congruence.Sixteen of the investigated flavonoids were thrown into the training set while the other 9 flavonoids were used as test set.

    1.7.2 CoMFA Comparative molecular field analysis (CoMFA) module in Sybyl 6.9 is used to develop 3D-QSAR model[25].In CoMFA,two parameters,the steric and electrostatic potential fields,were used to construct a mathematic model against the IC50values of each flavonoids.A sp3carbon atom with a charge of +1.0 was used as the probe atom to calculate steric and electrostatic fields,and a cutoff value of 30 kcal/mol with smooth transition was used.

    1.7.3 Partial Least-Squares (PLS) analysis The conventional CoMFA descriptors derived above served as explanatory variables,while the pIC50represented the target variable in PLS[26]regression analyses to generate 3D-QSAR models implemented in the SYBYL package.The optimal number of components were obtained by running the cross validation in leave-one-out (LOO) option,where the lowest standard error of prediction corresponds toq2coefficient.The cross-validated coefficient,q2,was calculated using the following equation:

    (4)

    (5)

    WhereSDisthesumofsquareddeviationsbetweenthebiologicalactivitiesofthetestsetandmeanactivityofthetrainingsetmolecules,andPRESSisthesumofsquareddeviationbetweenactualandpredictedactivitiesofthetestsetmolecules.

    2 Results

    2.1ScreeningofinhibitoryeffectonCYP3A4by25flavonoidsAttheconcentrationsusedforscreening(100μmol/lorsaturatedconcentration),flavonoidaglyconesshowedmuchstrongerinhibitionthanglycosides(Fig2).Amongtheseaglycones,baicalein,isorhamnetin,kaempferol,chrysin,luteolin,apigenin,quercetin,naringenin,andcardamonininhibitedmorethan90%oftheactivityofCYP3A4.Isorhamnetinshowedinhibitionratesofmorethan50%.

    2.2IC50valuesAccordingtothescreeningofCYP3A4inhibitionby25investigatedflavonoids,chrysin,apigenin,cardamonin,quercetin,luteolin,kaempferol,naringenin,baicalein,andisorhamnetinshowedinhibitionratemorethan50%.Here,wetestedtheinhibitionratesofthese9flavonoidsataserialofconcentrations.ThenIC50valuesoftheseflavonoidswerecalculatedfollowingequation1 (Fig3).Amongthese9compounds,apigeninshowedthestrongestinhibitoryactivitybasedonthetestedIC50value(1.34μmol/l).IC50valuesforalltestedcompoundsarelessthan25μmol/l,suggestingthehighinhibitionpotencyofflavonoidaglycones.

    1-25 represent the compounds as described in Fig 1.PC represents positive control (KTZ).Compounds 1-13 were flavonoid aglycones (black solid bar) and compounds 14-25 were flavonoid glycosides (white open bar).Fig 2 Inhibiton of CYP3A4 by investigated flavonoids at screening concentrations

    The IC50 values of apigenin,baicalein,chrysin,isorhamnetin,luteolin,kaempferol,cardamonin,quercetin and naringenin were 1.34,3.16,3.27,11.93,3.31,2.85,3.25,1.75 and 23.08 μmol/l.Fig 3 Determination of IC50 values of 9 compounds showing high inhibition potency in screening test

    For other investigated flavonoids,the IC50values were calculated according to Formula 2 and Formula 3.The calculated IC50values (Tab 1) were far higher than other 9 compounds described above.

    Tab 1 Tested,calculated,and reported inhibition effect of flavonoids on CYP3A4

    CompoundsIC50(μmol/l)InpresentstudyReportedCompoundsIC50(μmol/l)InpresentstudyRe-por-tedOroxylinA48.69>50[20]Rutin217.47Noin-hibitionbBaicalein3.16*17.4[20]Hyperoside138.28N/AChrysin3.27*10-100[16]Quercitrin112.23N/ALuteolin3.31*N/ABaicalin147.42N/AApigenin1.34*>200[16]Scutellarin94.17N/ANaringenin23.08*100-200[16]Genistin67.86N/AAlpinetin160.52N/ANaringin683.54>200[16]Daidzein79.39N/AHesperidin36.00Noin-hi-bi-tionFormonone-tin122.63N/ANeohespeidin175.43>200[16]Isorhamnetin11.93*N/AIcariin161.76N/AKaempferol2.85*0.1-10[18]Puerarin1266.44N/AQuercetin1.75*0.1-10[18]Liquritin970.3657[14]Cardamonin3.25*N/A

    “*”,tested IC50values; “N/A”,reported IC50values are Not Avalable; “no inhibition”:this compound does not inhibit CYP3A4.

    2.3 Apparent SAR analysis ①Flavones inhibited CYP3A4 stronger than flavanone.Apigenin and naringenin had extremely similar structures with each other.However,different connection of C2-C3 determined that apigenin was flavone while naringenin was flavonone.To table 1,apigenin (1.34 μmol/l) showed lower IC50value than naringenin (23.08 μmol/l),suggesting flavone favored CYP3A4 inhibition more than flavonone.②Flavones showed higher inhibitory potency than flavonol,which was supported by the comparison between IC50values of apigenin (1.34 μmol/l) and kaempferol (2.85 μmol/l).The only difference between these two compounds is R7.For apigenin,R7 is a hydrogen atom,determining it’s a flavone.For kaempferol,R7 is a hydroxyl,determining it’s a flavonol.As all left structures were the same as each other,data from apigenin and kaempferol indicated that flavones may inhibit CYP3A4 stronger than flavonol.With the same strategy,we got more information as follows:③Chalcone favored CYP3A4 inhibition more than flavonone,as cardamonin (3.25 μmol/l) showed higher inhibitory potency than alpinetin (160.52 μmol/l).④ Methoxyl substitution weakened the inhibitory effect of flavonoids.Methylation on R2 of baicalein formed oroxylin A,and significantly increased the IC50values from 3.16 to 48.69 μmol/l.The same phenomenon was also observed between daidzein (73.39 μmol/l) and formononetin (122.63 μmol/l),as well as quercetin (1.75 μmol/l) and isorhamnetin (11.93 μmol/l).⑤ C5-substitution promote the inhibition effect on CYP3A4.This is supported by tested high IC50values of daidzen and formononetin,as well as by data reported[16].⑥ Flavonols with two hydroxyls on ring B had stronger inhibitory activity than that with only one even no.This is supported by comparison between quercetinand kaempferol.⑦ However,flavones with two hydroxyls on ring B had weaker inhibitory activity than that with only one.This regularity is different from flavonols.For example,luteolin had weaker inhibitory activity than apigenin.

    2.4 3D-QSAR analysis 3D-QSAR analysis was performed to connet the dimensionally structural features with the inhibition activities quantitatively.It would provide a predictive model for CYP3A4 inhibition by flavonoids.The aligned 16 compounds were included in the training set to establish the 3D-QSAR model while the other 9 inhibitors were used as test set to validate the model.The structures of molecules in test set are similar to the training set,including flavone (oroxylinA,luteolin),flavonol (isorhamnetin,icariin,quercitrin),isoflavone (liquiritin),flavanone (genistin),and chalcone (cardamonin) derivates.

    Based on the molecular alignment (Fig 4),a predictive 3D-QSAR model was obtained with CoMFA default parameters.Aq2of 0.527 was yielded for the cross validated model.The optimal number of components was determined to be four to produce the conventional model using the SAMPLS method.Start from the structure,the electrostatic and steric fields of a flavonoid could be calculated and applied in the established 3D-QSAR model to predict the potential IC50value.

    Anr2of 0.955 was finally determined for the non-cross-validated model with the standard estimation of error (SEE) 0.235 and theFratio of 57.969

    (Tab 2).This model was used to predict the inhibitory bioactivities for the compounds in both training set and test set,see Table 3.

    Fig 4 Molecular alignment of flavonoid compounds as inhibitors of CYP3A4 based on the template of apigenin

    Tab 2 Statistics of CoMFA models

    q2NcSEPr2SEEFvalueContributionSEr2pred0.52740.7040.9550.23557.9690.4270.5730.632

    Tab 3 Prediction of the inhibitory bioactivities of the flavonoid compounds in the training and test set

    FlavonoidsActual(pIC50)Predicted(pIC50)Residual(pIC50)TrainingAlpinetin-2.21-2.280.07Apigenin-0.13-0.11-0.02Baicalein-0.50-1.000.50Baicalin-2.17-1.75-0.42Chrysin-0.52-0.45-0.07Daidzein-1.90-1.930.03Formonone-tin-2.09-1.94-0.15Hesperetine-1.56-1.610.05Hesperidin-2.14-2.01-0.13Kaempferol-0.45-0.560.11Naringenin-1.36-1.600.24Naringin-2.83-2.860.03Neohesperi-din-2.24-2.20-0.04Puerarin-3.10-3.200.10Quercetin-0.24-0.07-0.17Scutellarin-1.97-1.86-0.11TestCardamonin-0.51-1.320.81Genistin-1.83-1.50-0.33Icariin-2.21-1.59-0.62Isorhamnetin-1.08-1.150.07Liquiritin-2.99-1.41-1.58Luteolin-0.52-1.260.74Oroxylina-1.69-1.04-0.65Quercitrin-2.05-2.080.03Rutin-2.34-1.20-1.14

    Circles represent compounds in training set and pentacle indicate test set compounds outside the training set. Fig 5 Correlation between CoMFA-predicted and actual inhibitory potencies of IC50

    CoMFA contour maps were generated and interpolated upon the reference molecules to visualize the information content of the derived 3D-QSAR model.In steric (Fig 6A) and electrostatic contour (Fig 6B) maps,apigenin,hyperoside,neohesperidin and puerarin were superimposed to represent flavone,flavonol,flavanone and isoflavone analogues and illustrate the isocontour diagrams of the field contributions (“stdev*coeff”) for different properties calculated by the CoMFA analysis.Apigenin was shown in transparent stick-ball style,hyperoside in green transparent stick style,neohesperidin in red-orange stick style and puerarin in capped stick style.Puerarin was in a distinct coordinate from the other three molecules in the superimposition (Fig 6).The contour maps may be helpful to identify important regions related to CYP3A4 inhibition.

    Apigenin was shown in transparent stick-ball style,hyperoside in green transparent stick style,neohesperidin in red-orange stick style and puerarin in capped stick style.Green contours indicate inhibitory efficacy increasing and yellow indicate efficacy decreasing upon addition of steric bulk.Blue contours indicate potency increasing upon addition of positive charge and red indicate potency increasing upon addition of negative charge. Fig 6 Steric (A),and electrostatic (B) contour maps of CoMFA shown for flavonoid inhibitors of CYP3A4 apigenin,hyperoside,neohesperidin and puerarin were superimposed to illustrate the isocontours

    In Fig 6A,the green contours encode stericaly attractive regions and the yellow indicate repulsive areas.Several alkyl disfavored yellow plots were located around R1and R3position of apigenin,hyperoside,and neohesperidin,indicating that large substituted groups,such as -Glu and -Rha,would decrease the inhibitory effect of flavonoids.Whereas for puerarin these yellow contours were situated near R4area,which suggests isoflavone derivates are disfavored of bulky addition to R4.That’s why puerarin exhibits a lower bioactivity than daidzein and formononetin.Isorhamnetin shows a smaller inhibitory activity than kaempferol and quercetin.Perhaps,it could be explained that a relatively larger substructure of -OCH3 substitutes at R5region.Nevertheless flavone analogues wouldn’t repulse bulky substituents at R5and R6position because a bulky favored green contour was localized near the phenyl ring of apigenin (representative flavone).

    The electrostatic fields were demonstrated in Figure 6B.The blue and red contours represent the preference for electropositive and electronegative groups,respectively.Figure 7 showed the electro structure of flavonoid compounds.In flavonoids,π-πconjugation was formed between phenyl ring A and C3=OThus,the electron clouds tend to transfer from Ring A to =O,resulting in the positive-charged feature of C4 and C6.In case of flavone,flavonol and chalcone,C1 and C2 was connected by a double bond,π-πconjugation also exist between Ring B and C3=O.Substitution on C6 would enhance the conjugation while on C5 and C7 would weaken the conjugation.

    Fig 7 Electro structures of flavonoid derivates

    In Fig 6,the large blue-colored block covering the region below Ring A and Ring C.Thus,positive charge at C3 and C4 would increase the bioactivities of flavonoid compounds.R1prefers to be substituted by groups like hydroxyl that would increase the positive charge at C4.This is supported by the inhibition effect of liquiritin with the lowest inhibition activity among all investigated flavonoids.Substitution of R2destroyed the conjugation status,decreasing the inhibitory potencies.Apigenin,chrysin and luteolin inhibited CYP3A4 sensitively.Once R2of them were replaced,they were converted to oroxylin A,scutellarin,and baicalin respectively.Along with the R2substitution,IC50values of aforementioned compounds significantly increased.The stronger inhibitory activity of flavone (apigenin) than corresponding flavonol also related to the distinct substitution at C5 site.Similarly,the blue plot at C6 position suggests that substitution at this site would enhance the conjugated effect.

    On ring B of apigenin and hyperoside,a large blue contour were observed,indicating low electron density.Accordingly,C4’ prefers the addition of groups with lone electron pair rather than C3’.Thus,apigenin and quercetin showed higher inhibitory effect than luteolin and kaempferol,respectively.However,different from flavones,a hydroxylation at C3’ of flavonol enhances the bioactivities.Perhaps hydroxyl group at C3’ withdrawed electrons rather than strengthened the π-π conjugation.Although this blue block was also situated at Ring B of n eohesperidin,conjugated effect couldn’t be employed because no double carbon bond was formed between C1 and C2.For flavanone analogues,electro-withdrawn substituents would be favored to show positive charge characteristic.

    3 Discussion

    Hydroxylation was considered as the main factor influencing the inhibitory activity of flavonoids to CYP3A4.More hydroxylation were associated with higher CYP3A4 inhibition[16].However,the reversed effect of glucose and methoxyl substitution may completely cancel hydroxylation effect.For example,although isorhamnetin have more hydroxyls than chrysin,available methoxyl still make the inhibitory effect of isorhamnetin lower than chrysin.Moreover the double carbon bond of C1-C2 plays an important role on enhancing the inhibitory activity.To describe so many factors clearly,a 3D-QSAR analysis was performed using CoMFA approach.

    We have correlated the inhibition of flavonoids to CYP3A4 with the steric and electrostatic fields calculated with CoMFA.Based on the training set with 16 flavonoid inhibitors,a predictive 3D-QSAR model have been establish.This model is successfully be validated by other 9 flavonoids.As the inhibition of CYP3A4 would induce potential drug drug interaction with agents metabolized by this enzyme,the prediction showed highly application value in both clinic and drug development.

    Antioxidant activity is considered as one of the most important activities of flavonoids.In this paper we found that the CYP3A4-inhibition related SAR is similar to antioxidation-related SAR of flavonoids.For example,the more hydroxyls lead both strong CYP3A4 inhibition and antioxidation[27].Two hydroxyls at ring B and one oxygen atom at site 4 also increase the antioxidant activity of flavonoids[28-30].Some QSAR analysis between the flavonoids structures and the antioxidant activity suggested that more hydroxyl can increase the activity of flavonoids while 5-hydroxylation is the key factor.These data implied that the inhibition against CYPs may be one of the mechanisms of antioxidant activity of flavonoids.Cytochrome p450 enzymes generate reactive oxygen species (ROS), inhibition of oxidation enzymes may contribute to antioxidant acitivity of flavonoids.

    In this study,by test inhibitory effect of 25 flavonoids in human liver microsome incubation system,we mined the key structure features benefit for CYP3A4 inhibition.A predictive 3D-QSAR model was established and validated.Result of the present study would be useful for new drug development as well as prevention of drug-drug interaction in clinic.

    [1] Nebert D W,Dalton T P.The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis [J].Nature,2006,6:947-960.

    [2] Tam L S,Chan T Y,Leung W K,et al.Warfarin interactions with Chinese traditional medicines:danshen and methyl salicylate medicated oil [J].Aust N Z J Med,1995,25(3):258.

    [3] Patterson L H,Murray G I.Tumour cytochrome P450 and drug activation[J].Curr Pharm Des,2002,8(15):1335-1347.

    [4] Cook N C,Samman S.Flavonoids-Chemistry,metabolism,cardioprotective effects,and dietary sources[J].J Nutr Biochem,1996,7(2):66-76.

    [5] Pietta P G.Flavonoids as antioxidants [J].J Nat Prod,2000,63(7):1035-1042.

    [6] Hodek P,Trefil P,Stiborova M.Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450[J].Chem Biol Interact,2002,139(1):1-21.

    [7] Amin A,Buratovich M.The anti-cancer charm of flavonoids:A cup-of-tea will do[J].Recent Patents on Anti-Cancer Drug Discovery,2007,2(2):109-117.

    [8] Moon Y J,Wang X,Morris M E.Dietary flavonoids:effects on xenobiotic and carcinogen metabolism[J].Toxicol In Vitro,2006,20(2):187-210.

    [9] Ishibe N,Hankinson S E,Colditz G A,et al.Cigarette smoking,cytochrome P450 1A1 polymorphisms,and breast cancer risk in the nurses' health study[J].Cancer Research 1998,15:667-671.

    [10] Zhai S,Dai R,Friedman F K,et al.Comparative inhibition of human cytochromes P450 1A1 and 1A2 by flavonoids[J].Drug Metab Dispos,1998,26(10):989-992.

    [11] Wen X,Walle U K,Wallet.5,7-Dimethoxyflavone downregulates CYP1A1 expression and benzo[a]pyrene-induced DNA binding in Hep G2 cells[J].Carcinogenesis,2005,26(4):803-809.

    [12] Obermeier M T,White R E,Yang G C S.Effects of bioflavonoids on hepatic P450 activities [J].Xenobiotica,1995,25(6):575-584.

    [13] Obach R S.Inhibition of human cytochrome P450 enzymes by constituents of St.John's Wort,an herbal preparation used in the treatment of depression[J].J Pharmacol Exp Ther,2000,294(1):88-95.

    [14] Tsukamoto S,Aburatani M,Yoshida T,et al.CYP3A4 inhibitors isolated from Licorice[J].Biol Pharm Bull,2005,28(10):2000-2002.

    [15] Lim S C,Choi J S.Effects of naringin on the pharmacokinetics of intravenous paclitaxel in rats[J].Biopharm Drug Dispos,2006,27(9):443-447.

    [16] Ho P C,Saville D J,Wanwimlruk S.Inhibition of human CYP3A4 activity by grapefruit flavonoids,furanocoumarins and related compounds[J].J Pharm Pharm Sci,2001,4(3):217-227.

    [17] Schmiedlin-Ren P,Edwards D J,Fitzsimmons M E,et al.Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents.Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins[J].Drug Metab Dispos,1997,25(11):1228-1233.

    [18] Zhang F F,Zheng Y F,Zhu H J,et al.Effects of kaempferol and quercetin on cytochrome 450 activities in primarily cultured rat hepatocytes[J].Journal of Zhejiang University,2006,35(1):18-22.

    [19] Zuber R,Modriansky M,Dvorak Z,et al.Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities[J].Phytother Res,2002,16(7):632-638.

    [20] Kim J Y,Lee S,Kim D H,et al.Effects of flavonoids isolated from Scutellariae radix on cytochrome P-450 activities in human liver microsomes[J].J Toxicol Environ Health A,2002,65(5-6):373-381.

    [21] Backman J T,Maenkpaa J,Belle D J,et al.Lack of correlation between in vitro and in vivo studies on the effects of tangeretin and tangerine juice on midazolam hydroxylation[J].Clin Pharmacol Ther,2000,67(4):382-390.

    [22] Sanderink G,Bournique B,Stevens J,et al.Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro[J].J Pharmacol Exp Ther,1997,282:1465-1472.

    [23] Lowry O H,Rosebrough N J,Farr A L,et al.Protein measurement with the Folin phenol reagent [J].J Biol Chem,1951,193(1):265-275.

    [24] Liu Y,Li W,Deng M C,et al.The inhibitory effect of intestinal bacterial metabolite of ginsenosides on CYP3A activity[J].Biol Pharm Bull,2004,27(10):1555-1560.

    [25] Cramer R D,Patterson D E,Bunce J D.Comparative molecular field analysis (CoMFA).1.Effect of shape on binding of steroids to carrier proteins[J].J Am Chem Soc,1988,110(18):5959-5967.

    [26] Wold S,Ruhe A,Wold H,et al.The collinearity problem in linear regression.the partial least squares (PLS) approach to generalized inverses[J].SIAM Journal on Scientific Computing,1984,5(3):735-743.

    [27] Farkas O,Jakus J,Héberger K.Quantitative structure - antioxidant activity relationships of flavonoid compounds[J].Molecules,2004,9(12):1079-1088.

    [28] Rice-Evans C A,Miller N J,Paganga G.Structure-antioxidant activity relationships of flavonoids and phenolic acids[J].Free Radic Biol Med,1996,20(7):933-956.

    [29] Harborne J B,Wlliams C A.Advances in flavonoid research since 1992[J].Phytochem,2000,55:481-504.

    [30] Heim K E,Tagliaferro A R,Bobilya D J.Flavonoid antioxidants:chemistry,metabolism and sructure-activity relationships[J].J Nutr Biochem,2002,13(10):572-584.

    [收稿2016-11-30;修回2017-01-22]

    (編輯:王靜)

    國(guó)家自然科學(xué)基金資助項(xiàng)目(NO: 81402985,81560673,81660685);上海市復(fù)方中藥重點(diǎn)實(shí)驗(yàn)室(上海中醫(yī)藥大學(xué))開放基金資助項(xiàng)目(NO:2014OP01);貴州省科學(xué)技術(shù)基金資助項(xiàng)目(NO:黔科合J字[2015]2158號(hào),黔科合JZ字[2015]2010號(hào));貴州省留學(xué)人員擇優(yōu)資助項(xiàng)目(NO:黔人項(xiàng)目資助合同[2015]03);遵義醫(yī)學(xué)院博士科研啟動(dòng)基金資助項(xiàng)目(NO:F-736,F(xiàn)-744)。

    何芋岐,男,博士,副教授,研究方向:藥物分析與系統(tǒng)生物學(xué),E-mail:hyqJeff@hotmail.com;魯艷柳,女,博士,副教授,研究方向:藥物代謝與毒理學(xué),E-mail:yanliu.lu@foxmail.com。

    天然黃酮類化合物抑制CYP3A4的構(gòu)效關(guān)系研究

    汪 巍1,2,李 明3,艾純芝4,杜藝玫1,2,凌 蕾1,2,馬菲菲1,2,周旭美2,魯艷柳1,何芋岐1,2

    (1.遵義醫(yī)學(xué)院 基礎(chǔ)藥理教育部重點(diǎn)實(shí)驗(yàn)室,貴州 遵義 563099;2.遵義醫(yī)學(xué)院 藥學(xué)院藥學(xué)實(shí)驗(yàn)室,貴州 遵義 563099;3.沈陽(yáng)藥科大學(xué) 制藥工程學(xué)院,遼寧 沈陽(yáng) 110000;4.中國(guó)科學(xué)院 大連化學(xué)物理研究所生物技術(shù)部,遼寧 大連 116023)

    目的 研究天然黃酮類化合物對(duì)CYP3A4的抑制活性并通過定性及三維定量分析兩種方法挖掘天然黃酮結(jié)構(gòu)中抑制CYP3A4活性的關(guān)鍵因素。方法 利用睪酮特征代謝反應(yīng)表征人肝微粒體中CYP3A4的活性。在此體系中,首先選取較高濃度初篩25種黃酮類化合物的抑制活性。對(duì)于抑制活性超過50%的化合物,進(jìn)行多濃度測(cè)試以獲得IC50值。最后分別采用定性和三維定量?jī)煞N方式分析黃酮結(jié)構(gòu)與CYP3A4抑制之間的相關(guān)性。結(jié)果 初篩實(shí)驗(yàn)表明,黃酮苷元類化合物中的黃芩素、異鼠李素、山奈酚、白楊素、木犀草素、芹菜素、槲皮素、柚皮素以及豆蔻明9個(gè)化合物對(duì)CYP3A4表現(xiàn)出最強(qiáng)抑制作用。除了異鼠李素之外,另外8個(gè)化合物的抑制百分比高達(dá)90%。黃酮類化合物中主要是取代基的類型、羥基的數(shù)量和位置以及碳1、2位雙鍵影響對(duì)CYP3A4的抑制活性。建立了預(yù)測(cè)性較好的反映黃酮結(jié)構(gòu)及對(duì)CYP3A4抑制活性的定量計(jì)算模型。結(jié)論 本文發(fā)現(xiàn)了黃酮類化合物抑制CYP3A4活性的關(guān)鍵結(jié)構(gòu)特征,同時(shí)建立了可以用于黃酮類化合物抑制CYP3A4活性的計(jì)算化學(xué)模型。

    黃酮類化合物;CYP3A4;抑制;SAR;3D-QSAR

    R969.2

    A

    1000-2715(2017)01-0006-11

    猜你喜歡
    黃酮
    不同桑品種黃酮含量測(cè)定
    桑黃黃酮的研究進(jìn)展
    一測(cè)多評(píng)法同時(shí)測(cè)定腦心清片中6種黃酮
    中成藥(2018年11期)2018-11-24 02:57:00
    HPLC法同時(shí)測(cè)定固本補(bǔ)腎口服液中3種黃酮
    中成藥(2017年8期)2017-11-22 03:19:40
    MIPs-HPLC法同時(shí)測(cè)定覆盆子中4種黃酮
    中成藥(2017年10期)2017-11-16 00:50:13
    DAD-HPLC法同時(shí)測(cè)定龍須藤總黃酮中5種多甲氧基黃酮
    中成藥(2017年4期)2017-05-17 06:09:50
    正交法優(yōu)化王不留行中王不留行黃酮苷的超聲提取工藝
    黃酮抗癌作用研究進(jìn)展
    瓜馥木中一種黃酮的NMR表征
    UV法和HPLC法測(cè)定甘草總黃酮混懸液中總黃酮和查爾酮含量
    国产一区二区三区av在线| 性高湖久久久久久久久免费观看| 欧美成人午夜免费资源| 97精品久久久久久久久久精品| 成人无遮挡网站| 色视频在线一区二区三区| 一本—道久久a久久精品蜜桃钙片| 制服诱惑二区| 肉色欧美久久久久久久蜜桃| 日韩,欧美,国产一区二区三区| 青春草视频在线免费观看| 伊人久久国产一区二区| 少妇人妻精品综合一区二区| 日韩欧美精品免费久久| 91精品国产国语对白视频| 狂野欧美激情性xxxx在线观看| 亚洲国产欧美在线一区| 2018国产大陆天天弄谢| 国产欧美日韩综合在线一区二区| 婷婷色麻豆天堂久久| 午夜福利在线观看免费完整高清在| 国产精品一区二区三区四区免费观看| 国产伦理片在线播放av一区| 日韩欧美一区视频在线观看| 老女人水多毛片| 精品99又大又爽又粗少妇毛片| 午夜激情av网站| 久久久久网色| 春色校园在线视频观看| 精品久久久精品久久久| 久久国产亚洲av麻豆专区| 日本av手机在线免费观看| 精品久久国产蜜桃| 日韩av免费高清视频| 777米奇影视久久| 精品一区二区免费观看| 国产精品偷伦视频观看了| 成人毛片a级毛片在线播放| 满18在线观看网站| 大话2 男鬼变身卡| 精品国产一区二区三区久久久樱花| 人妻制服诱惑在线中文字幕| 赤兔流量卡办理| 国产av一区二区精品久久| 国产成人午夜福利电影在线观看| 人妻 亚洲 视频| 欧美日本中文国产一区发布| 免费av不卡在线播放| 男女免费视频国产| 免费人妻精品一区二区三区视频| 精品久久久久久久久亚洲| 在线观看三级黄色| 丰满迷人的少妇在线观看| 亚洲精品av麻豆狂野| 一本一本综合久久| 免费黄色在线免费观看| 亚洲国产成人一精品久久久| 亚洲第一av免费看| 不卡视频在线观看欧美| 寂寞人妻少妇视频99o| 亚洲欧美成人综合另类久久久| 国精品久久久久久国模美| 晚上一个人看的免费电影| 免费看光身美女| 国产 一区精品| 观看美女的网站| 超碰97精品在线观看| 国产探花极品一区二区| 少妇人妻久久综合中文| 好男人视频免费观看在线| 99久久人妻综合| 亚洲成人av在线免费| 少妇人妻久久综合中文| a 毛片基地| 日韩欧美一区视频在线观看| 日本色播在线视频| 日日摸夜夜添夜夜爱| 亚洲人成网站在线播| 五月开心婷婷网| 亚洲欧洲国产日韩| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 高清黄色对白视频在线免费看| 又粗又硬又长又爽又黄的视频| 亚洲欧美中文字幕日韩二区| 国产又色又爽无遮挡免| 国产 一区精品| 最近中文字幕高清免费大全6| 中文字幕制服av| 女人久久www免费人成看片| 亚洲国产av新网站| 曰老女人黄片| 欧美+日韩+精品| 五月伊人婷婷丁香| 亚洲精品国产av成人精品| 亚洲av成人精品一区久久| 成年美女黄网站色视频大全免费 | 最近2019中文字幕mv第一页| 欧美+日韩+精品| 欧美日韩精品成人综合77777| 啦啦啦视频在线资源免费观看| 亚洲不卡免费看| 人体艺术视频欧美日本| 国产精品三级大全| 久热久热在线精品观看| videosex国产| 国产亚洲欧美精品永久| 久久精品久久久久久久性| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丝袜喷水一区| 欧美xxⅹ黑人| 久久久久人妻精品一区果冻| 内地一区二区视频在线| 一级毛片黄色毛片免费观看视频| 欧美少妇被猛烈插入视频| 国产精品国产三级国产专区5o| 色5月婷婷丁香| 观看av在线不卡| av卡一久久| 亚洲av二区三区四区| 少妇被粗大猛烈的视频| 亚洲成人手机| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 成人影院久久| 老熟女久久久| 欧美精品一区二区大全| 伦理电影免费视频| 国产深夜福利视频在线观看| 男的添女的下面高潮视频| 国产亚洲最大av| 成人二区视频| 免费高清在线观看日韩| 精品久久国产蜜桃| 国产欧美日韩一区二区三区在线 | 久久青草综合色| 丝瓜视频免费看黄片| 狠狠婷婷综合久久久久久88av| 一边亲一边摸免费视频| 91精品国产九色| 亚洲成人av在线免费| 少妇的逼好多水| 国产日韩欧美视频二区| 亚洲经典国产精华液单| 国产精品欧美亚洲77777| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 我的女老师完整版在线观看| 99热这里只有是精品在线观看| 免费看光身美女| 亚洲av.av天堂| 下体分泌物呈黄色| 五月开心婷婷网| 亚州av有码| 少妇 在线观看| 国产在线视频一区二区| 777米奇影视久久| 久久精品国产亚洲网站| videosex国产| 狂野欧美激情性xxxx在线观看| 欧美日韩亚洲高清精品| 两个人的视频大全免费| 亚洲欧美日韩卡通动漫| 中文字幕久久专区| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | 成人无遮挡网站| 秋霞伦理黄片| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 99国产精品免费福利视频| 日本vs欧美在线观看视频| 国产片特级美女逼逼视频| 尾随美女入室| 啦啦啦在线观看免费高清www| 日韩一区二区三区影片| 成年av动漫网址| .国产精品久久| 有码 亚洲区| 欧美丝袜亚洲另类| 在线看a的网站| 成人18禁高潮啪啪吃奶动态图 | 汤姆久久久久久久影院中文字幕| 国产成人av激情在线播放 | 国产精品一国产av| 亚洲四区av| 国产成人一区二区在线| 亚洲国产欧美在线一区| 欧美丝袜亚洲另类| 中文天堂在线官网| 美女内射精品一级片tv| 91成人精品电影| 亚洲激情五月婷婷啪啪| 婷婷色综合www| 熟女av电影| 极品人妻少妇av视频| 欧美日韩av久久| 伦理电影大哥的女人| 久久人人爽人人爽人人片va| 乱人伦中国视频| 精品人妻偷拍中文字幕| 亚洲国产最新在线播放| 精品少妇黑人巨大在线播放| 亚洲综合色网址| 嘟嘟电影网在线观看| 免费观看av网站的网址| av国产精品久久久久影院| 日本欧美视频一区| 最黄视频免费看| 亚洲国产精品成人久久小说| 国产男女超爽视频在线观看| 一级毛片电影观看| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| 丰满乱子伦码专区| 国产成人精品一,二区| 日本av免费视频播放| 亚洲精品国产av成人精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产欧美亚洲国产| 伦理电影免费视频| 美女中出高潮动态图| 3wmmmm亚洲av在线观看| 午夜激情福利司机影院| 亚洲欧美一区二区三区黑人 | 久久久精品94久久精品| 亚洲av成人精品一区久久| 国产一区二区三区av在线| 国产在视频线精品| 女人久久www免费人成看片| 97在线视频观看| 久久精品国产鲁丝片午夜精品| 视频在线观看一区二区三区| 99久国产av精品国产电影| 久久久久久久久久成人| 久久久精品94久久精品| 国产色爽女视频免费观看| 欧美日韩视频精品一区| 久久精品国产亚洲网站| 满18在线观看网站| 99九九在线精品视频| 国产伦理片在线播放av一区| 97在线视频观看| 精品人妻一区二区三区麻豆| 少妇被粗大猛烈的视频| 热re99久久精品国产66热6| 亚洲欧美精品自产自拍| 精品卡一卡二卡四卡免费| 亚洲精品一二三| 免费不卡的大黄色大毛片视频在线观看| 婷婷色av中文字幕| 亚洲激情五月婷婷啪啪| av女优亚洲男人天堂| 久久精品人人爽人人爽视色| 精品少妇久久久久久888优播| 日韩精品免费视频一区二区三区 | 一边亲一边摸免费视频| 国产高清三级在线| 久久久久久伊人网av| 韩国高清视频一区二区三区| 亚洲一区二区三区欧美精品| 下体分泌物呈黄色| 寂寞人妻少妇视频99o| 黄色毛片三级朝国网站| 人妻一区二区av| 高清av免费在线| 亚洲图色成人| 最黄视频免费看| 久久人人爽人人片av| 午夜福利在线观看免费完整高清在| 日日爽夜夜爽网站| 亚洲在久久综合| 午夜激情久久久久久久| 欧美成人午夜免费资源| 26uuu在线亚洲综合色| 亚洲欧美日韩另类电影网站| 成人毛片60女人毛片免费| 国产精品久久久久久av不卡| kizo精华| 国产成人精品婷婷| 免费少妇av软件| 日本wwww免费看| 久久久精品区二区三区| 免费高清在线观看视频在线观看| av女优亚洲男人天堂| 人体艺术视频欧美日本| 一区二区三区免费毛片| 99re6热这里在线精品视频| 夫妻午夜视频| 国产免费又黄又爽又色| 亚州av有码| 国产在线一区二区三区精| 成人黄色视频免费在线看| 水蜜桃什么品种好| 22中文网久久字幕| 精品一区二区三区视频在线| 亚洲av日韩在线播放| videossex国产| 国产探花极品一区二区| 视频中文字幕在线观看| 亚洲欧美成人精品一区二区| 精品久久久久久久久av| 国产免费又黄又爽又色| av福利片在线| 亚洲欧美中文字幕日韩二区| 中文字幕人妻丝袜制服| 毛片一级片免费看久久久久| 午夜影院在线不卡| 观看av在线不卡| 建设人人有责人人尽责人人享有的| 午夜福利网站1000一区二区三区| 99久国产av精品国产电影| 成人亚洲欧美一区二区av| 国产黄片视频在线免费观看| 日本黄色日本黄色录像| 国产成人av激情在线播放 | 大码成人一级视频| 久久久久久久亚洲中文字幕| 色婷婷av一区二区三区视频| 亚洲精品乱码久久久v下载方式| 哪个播放器可以免费观看大片| 久久人人爽人人片av| 伊人亚洲综合成人网| 美女cb高潮喷水在线观看| 色94色欧美一区二区| xxxhd国产人妻xxx| 国产欧美亚洲国产| 国产成人免费无遮挡视频| 人妻一区二区av| 亚洲欧洲精品一区二区精品久久久 | 波野结衣二区三区在线| 一区二区三区免费毛片| 亚洲成人av在线免费| 美女福利国产在线| 亚洲精品美女久久av网站| 久久人人爽av亚洲精品天堂| 亚洲无线观看免费| 天堂8中文在线网| 久久毛片免费看一区二区三区| 一级a做视频免费观看| 国产成人精品一,二区| 亚洲一级一片aⅴ在线观看| 中文字幕制服av| 哪个播放器可以免费观看大片| 国产亚洲一区二区精品| 街头女战士在线观看网站| 免费黄色在线免费观看| 免费高清在线观看视频在线观看| 国产亚洲一区二区精品| 在线观看免费日韩欧美大片 | 又大又黄又爽视频免费| 九九爱精品视频在线观看| 亚洲天堂av无毛| a级毛色黄片| 亚洲激情五月婷婷啪啪| 三级国产精品片| 汤姆久久久久久久影院中文字幕| 韩国高清视频一区二区三区| 亚洲熟女精品中文字幕| 如何舔出高潮| 久久久久精品久久久久真实原创| 老熟女久久久| 成人国产av品久久久| 观看av在线不卡| 91精品国产九色| 哪个播放器可以免费观看大片| 免费看av在线观看网站| av福利片在线| 乱人伦中国视频| 国产伦精品一区二区三区视频9| 亚洲国产成人一精品久久久| 精品国产一区二区久久| 日日啪夜夜爽| 18禁裸乳无遮挡动漫免费视频| 丁香六月天网| 成人国产av品久久久| 最近最新中文字幕免费大全7| 新久久久久国产一级毛片| www.色视频.com| 精品亚洲乱码少妇综合久久| 最近最新中文字幕免费大全7| 午夜福利视频在线观看免费| 久久人人爽人人爽人人片va| 精品视频人人做人人爽| 国产亚洲最大av| 亚洲精品一二三| 黑人欧美特级aaaaaa片| 十八禁网站网址无遮挡| 黄色毛片三级朝国网站| 99精国产麻豆久久婷婷| 日韩亚洲欧美综合| 亚洲精品自拍成人| 亚洲精品中文字幕在线视频| 国产极品粉嫩免费观看在线 | 国产精品成人在线| 如何舔出高潮| 精品一区二区免费观看| 国产成人精品一,二区| 一边亲一边摸免费视频| 在线播放无遮挡| 国产综合精华液| 欧美+日韩+精品| 一区二区三区四区激情视频| 成人亚洲精品一区在线观看| 在线观看www视频免费| 久久人人爽人人片av| 亚洲av国产av综合av卡| 亚洲精品亚洲一区二区| 麻豆乱淫一区二区| 欧美日韩精品成人综合77777| 99热这里只有精品一区| 国产成人免费观看mmmm| 日本欧美视频一区| 国产视频首页在线观看| 亚洲在久久综合| 91久久精品国产一区二区成人| 久久久国产精品麻豆| 丰满少妇做爰视频| 久久99一区二区三区| 国产 精品1| 国产极品天堂在线| 欧美成人精品欧美一级黄| 亚洲欧洲国产日韩| 亚洲av成人精品一区久久| 有码 亚洲区| 亚洲精品久久成人aⅴ小说 | 纯流量卡能插随身wifi吗| 国产一区二区在线观看av| 中文字幕人妻熟人妻熟丝袜美| 爱豆传媒免费全集在线观看| 亚洲人成网站在线观看播放| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 国产精品嫩草影院av在线观看| 亚洲av日韩在线播放| 久久精品夜色国产| 国产熟女午夜一区二区三区 | 有码 亚洲区| 熟女av电影| 高清不卡的av网站| 天堂中文最新版在线下载| 国产精品99久久99久久久不卡 | 亚洲国产精品国产精品| 国产成人精品婷婷| 久久av网站| 91久久精品国产一区二区成人| 插逼视频在线观看| 久久久久国产精品人妻一区二区| 午夜av观看不卡| 久久久久久人妻| 久久久久视频综合| 国产极品粉嫩免费观看在线 | 日产精品乱码卡一卡2卡三| 蜜桃国产av成人99| 亚洲国产av影院在线观看| 国产色爽女视频免费观看| 欧美国产精品一级二级三级| 免费看光身美女| 欧美日韩国产mv在线观看视频| 成人毛片60女人毛片免费| 人妻系列 视频| 少妇被粗大猛烈的视频| 一级爰片在线观看| 一级二级三级毛片免费看| 女性生殖器流出的白浆| 国产精品熟女久久久久浪| 最新的欧美精品一区二区| 亚洲av不卡在线观看| 成人国产av品久久久| 有码 亚洲区| 国产精品99久久久久久久久| 午夜91福利影院| 人成视频在线观看免费观看| 国产精品嫩草影院av在线观看| 插逼视频在线观看| 91精品伊人久久大香线蕉| 精品酒店卫生间| 91精品伊人久久大香线蕉| 久久精品人人爽人人爽视色| 五月天丁香电影| 国产极品天堂在线| 黑人巨大精品欧美一区二区蜜桃 | 美女国产高潮福利片在线看| 男人操女人黄网站| 久久久久久久亚洲中文字幕| 欧美性感艳星| 插逼视频在线观看| 少妇熟女欧美另类| 精品一区二区免费观看| 午夜视频国产福利| 中文字幕av电影在线播放| 欧美xxⅹ黑人| 超碰97精品在线观看| 亚洲av.av天堂| 少妇被粗大的猛进出69影院 | 久久久久网色| 街头女战士在线观看网站| av黄色大香蕉| 亚洲精品国产色婷婷电影| 亚洲国产日韩一区二区| 在现免费观看毛片| 欧美日韩视频精品一区| 国产一区有黄有色的免费视频| 久久久久人妻精品一区果冻| 成人亚洲欧美一区二区av| 欧美xxxx性猛交bbbb| 又大又黄又爽视频免费| 亚洲精品久久成人aⅴ小说 | 国产成人一区二区在线| 一本久久精品| 国产精品国产三级专区第一集| av线在线观看网站| 欧美少妇被猛烈插入视频| 亚洲中文av在线| 亚洲欧美中文字幕日韩二区| 欧美bdsm另类| 日韩精品免费视频一区二区三区 | av不卡在线播放| 免费高清在线观看视频在线观看| 高清在线视频一区二区三区| 制服人妻中文乱码| 国产av码专区亚洲av| 国产视频内射| 亚洲av.av天堂| 欧美老熟妇乱子伦牲交| 一本久久精品| 91aial.com中文字幕在线观看| 老女人水多毛片| 丰满迷人的少妇在线观看| 精品国产露脸久久av麻豆| 麻豆乱淫一区二区| 日韩大片免费观看网站| 亚洲,欧美,日韩| 国产亚洲精品久久久com| 一区二区三区精品91| 中文字幕人妻熟人妻熟丝袜美| 久久久久人妻精品一区果冻| 在线天堂最新版资源| 久久久精品区二区三区| 日韩中文字幕视频在线看片| 99国产精品免费福利视频| 热99国产精品久久久久久7| 亚洲天堂av无毛| 欧美一级a爱片免费观看看| 久久99热这里只频精品6学生| 制服丝袜香蕉在线| 18禁动态无遮挡网站| 九色成人免费人妻av| 成人免费观看视频高清| 99热6这里只有精品| 亚洲国产av影院在线观看| 国产精品人妻久久久久久| 午夜91福利影院| 大香蕉久久成人网| 午夜影院在线不卡| 国精品久久久久久国模美| 久久久久久久久久久久大奶| 99久久人妻综合| 久久午夜综合久久蜜桃| 免费观看在线日韩| 亚洲国产欧美日韩在线播放| 一级a做视频免费观看| 久久精品久久精品一区二区三区| 在线亚洲精品国产二区图片欧美 | 久久亚洲国产成人精品v| 午夜老司机福利剧场| 国产黄频视频在线观看| tube8黄色片| 美女xxoo啪啪120秒动态图| 午夜福利在线观看免费完整高清在| 如何舔出高潮| 免费av中文字幕在线| 亚洲人成77777在线视频| 天堂俺去俺来也www色官网| 国产精品人妻久久久影院| 看免费成人av毛片| 狂野欧美激情性bbbbbb| 久久久久久久久大av| 色5月婷婷丁香| 亚洲精品日本国产第一区| 久久久久精品久久久久真实原创| 久久毛片免费看一区二区三区| 插阴视频在线观看视频| 国产精品一国产av| av专区在线播放| 午夜老司机福利剧场| 制服诱惑二区| av专区在线播放| 日韩欧美精品免费久久| 亚洲熟女精品中文字幕| 一区二区日韩欧美中文字幕 | 亚洲人与动物交配视频| 欧美精品一区二区大全| 国产在线一区二区三区精| 久久综合国产亚洲精品| 边亲边吃奶的免费视频| 国产在线一区二区三区精| 免费大片18禁| 交换朋友夫妻互换小说| 高清在线视频一区二区三区| 黄色怎么调成土黄色| 国产永久视频网站| 精品亚洲成国产av| 黄色怎么调成土黄色| 日韩av不卡免费在线播放| 新久久久久国产一级毛片| 久久精品久久精品一区二区三区| 久久久亚洲精品成人影院| 一个人免费看片子| 国产免费视频播放在线视频| 久久99精品国语久久久| 欧美97在线视频| 成人无遮挡网站|