曾強(qiáng)林 白志勛 王 丹 楊亦彬
(遵義醫(yī)學(xué)院附屬醫(yī)院腎病風(fēng)濕科,遵義563003)
抑制TGF-β1對(duì)慢性環(huán)孢素腎病小鼠Smad2/3及ILK信號(hào)分子的影響①
曾強(qiáng)林 白志勛 王 丹 楊亦彬
(遵義醫(yī)學(xué)院附屬醫(yī)院腎病風(fēng)濕科,遵義563003)
目的:特異性抑制TGF-β,觀察Smad2/3、ILK信號(hào)蛋白變化,評(píng)估TGF-β1/Smad/ILK信號(hào)通路在環(huán)孢素腎病 (CCN) 模型小鼠小管間質(zhì)纖維化中的作用。方法:BALB/c小鼠隨機(jī)分成:環(huán)孢素模型組 (CMG)、干預(yù)模型組(IMG)、溶媒對(duì)照組(SCG)、低鹽對(duì)照組 (LCG)和正常對(duì)照組 (NCG)。CMG與IMG組采用低鹽飼養(yǎng)并環(huán)孢素60 mg/(kg·d)灌胃,從第28天腹腔給予TGF-β1特異抑制劑SB-431542 10 mg/(kg·2 d),第38天后采樣,比較各組血清肌酐(Scr);觀察腎組織羥脯氨酸(Hyp)含量及其病理變化,免疫組化或Western blot觀察TGF-β1、P-Smad2/3、ILK表達(dá),RT-PCR檢測(cè)TGF-β1、Smad2/3及ILK mRNA表達(dá)。結(jié)果:CMG和IMG小鼠SCr顯著升高 (P<0.01),腎小管結(jié)構(gòu)不同程度損傷,間質(zhì)炎性細(xì)胞增多,藍(lán)色膠原染色不同程度增多,腎組織Hyp含量明顯增多(P<0.01),其中IMG上述指標(biāo)較CMG明顯改善。CMG和IMG小鼠腎小管間質(zhì)TGF-β1、P-Smad2/3及ILK基因和蛋白表達(dá)明顯增強(qiáng) (P<0.01),而IMG上述因子表達(dá)明顯低于CMG (P<0.05)。腎臟Hyp含量與Scr、TGF-β1、P-Smad 2/3、ILK水平呈正相關(guān)(r=0.860、 0.711、0.776、0.676,均P<0.01)。 結(jié)論:TGF-β1/Smads信號(hào)通路是CCN模型小鼠腎間質(zhì)纖維化重要機(jī)制之一;ILK參與CCN小管間質(zhì)纖維化,且可能系TGF-β1/Smads信號(hào)通路下游因子參與CCN小管間質(zhì)纖維化進(jìn)程。
環(huán)孢素腎病;環(huán)孢素A;小管間質(zhì)纖維化;轉(zhuǎn)化生長(zhǎng)因子-β1/Smads;整合素連接激酶
環(huán)孢素A(Cyclosporine-A,CsA)是目前廣泛應(yīng)用于器官移植的免疫抑制劑,但其慢性毒副作用導(dǎo)致的慢性環(huán)孢素腎病(Chronic cyclosporine nephro-pathy,CCN)嚴(yán)重影響到移植患者和移植物的長(zhǎng)期存活[1,2]。CCN發(fā)病機(jī)制十分復(fù)雜,其突出的病理改變?yōu)樾」荛g質(zhì)纖維化(Tubule interstitial fibrosis,TIF)。業(yè)已證明TIF是各種慢性腎臟疾病進(jìn)展至終末期腎臟病的共同途徑,并涉及多種信號(hào)傳導(dǎo)通路激活,其中轉(zhuǎn)化生長(zhǎng)因子β1 (Transforming growth factor-β1,TGF-β1)/Smads是公認(rèn)的組織纖維化重要信號(hào)通路之一[3,4],而近年來(lái)發(fā)現(xiàn)整合素連接激酶(Integrin-linked kinase,ILK)可能作為T(mén)GF-β1/Smads信號(hào)通路下游因子參與纖維化進(jìn)展[5]?;谇捌诎l(fā)現(xiàn)CNN腎臟存在TGF-β1、Smads基因異常表達(dá),并與腎小管間質(zhì)纖維化程度相關(guān)[6],本研究旨在通過(guò)阻斷性實(shí)驗(yàn)以進(jìn)一步觀察TGF-β1/Smads/ILK在CCN小管間質(zhì)纖維進(jìn)程中作用。
1.1 材料
1.1.1 主要實(shí)驗(yàn)材料 清潔級(jí)雄性BALB/c小鼠50只,6~8周齡,體重約16~18 g(北京華阜康生物科技有限公司);環(huán)孢素口服溶液(中美華東制藥);SB-431542(Sigma);羥脯氨酸試劑盒(南京建成);免抗小鼠TGF-β1、p-Smad2/3、ILK一抗、熒光標(biāo)記二抗、兔二步法檢測(cè)試劑盒(PV-6001);SP試劑盒(中杉金橋);RNA逆轉(zhuǎn)錄試劑盒、SYBR?Premix Ex TaqTM試劑盒(大連寶生物)。
1.1.2 模型建立及分組 小鼠適應(yīng)性喂養(yǎng)1周后,隨機(jī)分為5組:環(huán)孢素模型組[CsA model group,CMG,CsA 60 mg/(kg·d)灌胃]、干預(yù)模型組 (Interventional model group,IMG)、溶媒對(duì)照組(Solvent control group,SCG)、低鹽對(duì)照組(Low salt control group,LCG)和正常對(duì)照組(Normal control group,NCG),10只/組。CsA以橄欖油為溶媒稀釋,按60 mg/(kg·d) 灌胃,干預(yù)組于第28天腹腔注射TGF-β特異抑制劑SB-431542 10 mg/(kg·2 d),共10 d。正常對(duì)照組予以標(biāo)準(zhǔn)飼料喂養(yǎng),其余各組均予以 0.042%低鹽飼料飼養(yǎng)(廣東省醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物中心加工)。第38天麻醉后摘眼球取血,分離血清,-20℃保存?zhèn)溆?,生理鹽水自腹主動(dòng)脈灌注后摘除雙側(cè)腎臟,置福爾馬林溶液和液氮保存?zhèn)溆谩?/p>
1.2 方法
1.2.1 腎組織羥脯氨酸測(cè)定 堿水解法,嚴(yán)格按試劑盒說(shuō)明操作。
1.2.2 免疫組織化學(xué) 取福爾馬林固定腎組織,石蠟包埋,3 μm切片,逐步脫蠟至水,雙氧水除內(nèi)源性過(guò)氧化物酶,PBS沖洗,抗原熱修復(fù)后,加入TGF-β1(1∶200)、p-Smad2/3(1∶200)、ILK(1∶100)一抗,4℃孵育過(guò)夜。復(fù)溫并PBS沖洗后加入相應(yīng)二抗,DAB顯色,蘇木素復(fù)染,封片。采用PBS代替一抗作為陰性對(duì)照。每張切片隨機(jī)取5個(gè)視野,采用IP-Win32分析染色結(jié)果,Image-proplus 6.0讀取積分光密度值(IOD值)進(jìn)行半定量分析。
1.2.3 Western blot檢測(cè)ILK 冰上剪碎腎組織,加入RIPA和PMSF混合液裂解后提取總蛋白,BCA法蛋白定量后,SDS-聚丙烯酰胺凝膠電泳,電轉(zhuǎn)運(yùn)至PVDF膜上,脫脂牛奶封閉1 h,分別加入ILK(1∶500)一抗、熒光標(biāo)記二抗(1∶10 000)并孵育、洗滌,ECL顯影,Odyssey 近紅外雙色激光成像系統(tǒng)掃描分析,以β-actin作為內(nèi)參。
1.2.4 RT-PCR 腎組織勻漿后用Trizol試劑盒提取RNA,Nano-Drop 1000測(cè)定RNA的純度及濃度。嚴(yán)格按試劑盒說(shuō)明書(shū)逆轉(zhuǎn)錄合成cDNA,PCR擴(kuò)增目的基因片段,引物由大連寶生物公司設(shè)計(jì)合成(見(jiàn)表1)。以Ct值為統(tǒng)計(jì)參數(shù),按2-ΔΔCt法計(jì)算TGF-β1、Smad 2/3和ILK mRNA的相對(duì)表達(dá)量。
表1 RT-PCR引物序列對(duì)
Tab.1 Primer sequences of RT-PCR
2.1 小鼠一般情況變化 給CsA 1周后,墊料潮濕逐漸加重,并出現(xiàn)異常酸臭氣味,動(dòng)物毛色暗淡無(wú)光,體型瘦弱,直到實(shí)驗(yàn)終點(diǎn)無(wú)小鼠死亡。
2.2 血肌酐水平 兩個(gè)CsA模型組 (CMG、IMG) 血肌酐水平明顯升高(P<0.01),但I(xiàn)MG低于CMG(P<0.01),見(jiàn)表2。
2.3 病理組織學(xué)變化 Masson染色顯示CMG及IMG小鼠腎組織都有不同程度的間質(zhì)纖維化,部分小管腔縮小、閉塞,其中IMG纖維化程度相對(duì)較輕,見(jiàn)圖1。
2.4 腎組織Hyp含量檢測(cè) 兩模型組(CMG、IMG)小鼠Hyp含量較三個(gè)對(duì)照組(SCG、LCG、NCG)顯著增高(P<0.01),IMG腎臟Hyp含量低于
GroupsScr(μmol/L)CMG 78 000±13 6142)IMG 38 500±4 2431)3)SCG27 200±6 099LCG18 571±8 223NCG20 444±6 386
Note:Compared with three control group,1)P<0.05, 2)P<0.01;compared with CMG, 3)P<0.05.
CMG(P<0.01),見(jiàn)表3。
2.5 各組大鼠腎組織免疫組化結(jié)果 CMG及IMG腎組織TGF-β1、P-Smad2/3及ILK表達(dá)明顯增多(P<0.01),突出表現(xiàn)在小管間質(zhì),但I(xiàn)MG上述三個(gè)指標(biāo)表達(dá)均明顯低于CMG(P<0.01),見(jiàn)表4、圖 2~4。
GroupsHypcontent(μg/mg)CMG0 395±0 0261)IMG0 280±0 0501)2)SCG0 158±0 025LCG0 162±0 034NCG0 177±0 048
Note:Compared with three control group,1)P<0.01;compared with CMG,2)P<0.01.
GroupsTargetproteinsTGF?β1P?Smad2/3ILKCMG40 593±1 7601)28 339±1 3861)31 687±2 3051)IMG30 366±1 5771)2)18 752±0 3221)2)18 384±1 3331)2)SCG9 278±9 1008 551±0 90210 537±0 263LCG9 100±1 1518 284±0 42210 377±0 784NCG9 321±0 5198 770±0 65310 582±1 221
Note:Compared with three control group,1)P<0.01;compared with CMG,2)P<0.01.
圖1 小鼠腎組織Masson染色結(jié)果(× 400)Fig.1 Representative renal tissue section stained by Masson(×400)
圖2 各組小鼠腎組織TGF-β1 免疫組化圖(×400)Fig.2 Representative TGF-β1 immunostaining in renal tissue of rats(×400)
圖3 各組小鼠腎組織P-Smad 2/3 免疫組化圖(×400)Fig.3 Representative P-Smad2/3 immunostaining in renal tissue of rats(×400)
圖4 各組小鼠腎組織ILK免疫組化圖(×400)Fig.4 Representative ILK immunostaining in renal tissue of rats(×400)
圖5 各組小鼠腎組織ILK蛋白表達(dá)Fig.5 Expression of ILK protein in renal tissue of ratsNote:Compared with three control group,△.P<0.01;compared with CMG,*.P<0.01.
2.6 ILK蛋白印跡結(jié)果 CMG及IMG小鼠腎組織 ILK表達(dá)水平明顯升高(P<0.01),但I(xiàn)MG表達(dá)水平明顯低于CMG(P<0.01),見(jiàn)圖5。
2.7 腎組織TGF-β1、Smad2/3及 ILK mRNA表達(dá)(RT-PCR) CMG以及IMG腎組織TGF-β1、Smad2/3及 ILK mRNA表達(dá)明顯上調(diào)(P<0.01),但I(xiàn)MG 上述3個(gè)指標(biāo)表達(dá)明顯低于CMG(P<0.05),見(jiàn)表5。
2.8 指標(biāo)相關(guān)性分析 腎臟Hyp含量與Scr、TGF-β1、P-Smad2/3、ILK水平呈正相關(guān)(r=0.860、 0.711、0.776、0.676,均P<0.01)。
CsA是神經(jīng)鈣調(diào)蛋白抑制劑,作為抗排斥反應(yīng)藥物極大促進(jìn)器官移植領(lǐng)域發(fā)展,但卻存在嚴(yán)重腎
GroupsTargetgenesTGF?β1Smad2/3ILKCMG17 220±3 2921)9 184±1 9251)10 090±1 4971)IMG5 603±1 5061)3)5 503±1 4941)3)7 017±1 3961)2)SCG1 699±1 3491 609±1 0291 333±0 539LCG1 320±1 5631 251±1 3051 609±0 297NCG1 352±1 0551 099±0 5561 095±0 447
Note:Compared with three control group,1)P<0.01;compared with CMG,2)P<0.05,3)P<0.01.
毒性作用,其急性腎毒性損害多可通過(guò)換藥或減量得以改善,而慢性腎毒性導(dǎo)致移植腎CCN受醫(yī)學(xué)界關(guān)注[7,8]。CCN最主要的病理表現(xiàn)是慢性腎纖維化,其發(fā)病機(jī)制主要涉及腎素血管緊張素系統(tǒng) (RAS)激活、腎小管上皮細(xì)胞-間葉細(xì)胞轉(zhuǎn)分化、氧化應(yīng)激、纖維化細(xì)胞因子表達(dá)上調(diào)、炎癥反應(yīng)以及腎臟慢性缺血缺氧等[9,10]。
小管間質(zhì)纖維化是各種慢性腎臟疾病進(jìn)展至終末期腎衰竭共同途徑,有效防治和延緩小管間質(zhì)纖維化已成為研究熱點(diǎn)[11],其過(guò)程涉及多種細(xì)胞信號(hào)傳導(dǎo)通路的參與,其中TGF-β/Smads被認(rèn)為在慢性腎纖維化進(jìn)程中具有重要作用[3,4]。Smads是TGF-β受體作用的最直接底物,可分為通路限制性R-Smad(Smad1/2/3/5/8/9)、共同通路性C-Smads(Smad4)、抑制性I-Smads(Smad6/7)。TGF-β與其受體結(jié)合并磷酸化Smad2和Smad3化,發(fā)揮促纖維化作用,而Smad7通過(guò)競(jìng)爭(zhēng)性結(jié)合TGF-β1受體實(shí)現(xiàn)對(duì)Smad2/3磷酸化進(jìn)程的抑制而發(fā)揮負(fù)性調(diào)節(jié)[12]。有學(xué)者發(fā)現(xiàn)CCN大鼠腎臟存在TGF-β1、Smad2/3表達(dá)上調(diào),其異常表達(dá)與腎小管間質(zhì)纖維化程度相關(guān),而槲皮素、瑞舒伐他汀、抗氧化劑等可改善相關(guān)因子表達(dá)及纖維化程度[6,13,14]。為進(jìn)一步證實(shí)TGF-β1/Smad2/3通路在CsA致小管間質(zhì)纖維化中的作用,本實(shí)驗(yàn)通過(guò)BALB/c小鼠灌胃CsA建模,給予TGF-β1特異性抑制劑(SB-431542),觀察到模型小鼠腎小管間質(zhì)纖維化、腎功異常的同時(shí),TGF-β1、Smad2/3 mRNA和蛋白表達(dá)明顯上調(diào),經(jīng)TGF-β1特異性抑制劑干預(yù)處理后,腎組織TGF-β1、Smad2/3基因和蛋白表達(dá)水平較CsA模型組明顯下調(diào),血肌酐下降,腎羥脯氨酸含量及小管間質(zhì)纖維化程度減輕,說(shuō)明TGF-β1/Smads信號(hào)通路激活參與了CsA致慢性小管間質(zhì)纖維化進(jìn)程。
ILK是一種生物學(xué)活性多樣化的絲氨酸/蘇氨酸蛋白激酶,通過(guò)多種信號(hào)通路介導(dǎo)細(xì)胞骨架相關(guān)蛋白與整合素的連接、調(diào)節(jié)細(xì)胞表型、細(xì)胞外基質(zhì)積聚等生物學(xué)過(guò)程。近年來(lái)研究顯示上皮細(xì)胞向間充質(zhì)細(xì)胞轉(zhuǎn)分化(Epithelial-mesenchymal transiton,EMT)是腎臟纖維化重要機(jī)制之一,而ILK在腎臟纖維化進(jìn)程中具有重要作用[15],且ILK可能作為T(mén)GF-β1/Smads信號(hào)通路下游因子參與纖維化進(jìn)程[5]。有學(xué)者發(fā)現(xiàn)腎臟間質(zhì)炎癥和纖維化區(qū)域,其調(diào)控小管上皮細(xì)胞轉(zhuǎn)分化的相關(guān)因子如TGF-β1、p-Smad2/3、ILK、β1-integrin、P38MAPK、Wnt5b、β-catenin等高表達(dá),并認(rèn)為T(mén)GF-β1/Smad、ILK、Wnt/β-catenin是腎臟纖維化重要信號(hào)通路[15,16],但在CCN中尚未見(jiàn)相關(guān)報(bào)道。本實(shí)驗(yàn)發(fā)現(xiàn)CCN模型小鼠腎臟ILK基因和蛋白表達(dá)明顯上調(diào),且與TGF-β1、Smad2/3、羥脯氨酸等中正相關(guān),說(shuō)明ILK激活參與CCN小管間質(zhì)纖維化進(jìn)程;給予TGF-β1特異性抑制劑后,其小鼠ILK基因和蛋白表達(dá)下調(diào)、血肌酐及腎組織羥脯氨酸含量下降,提示ILK可能作為T(mén)GF-β1/Smad2/3下游因子參與小管間質(zhì)纖維化進(jìn)程。有研究顯示TGF-β1可誘導(dǎo)腎小管上皮細(xì)胞細(xì)胞上調(diào)ILK、α-SMA、pSmad2/3表達(dá),下調(diào)E-cadh-erin 和Smad7表達(dá),從而促進(jìn)細(xì)胞EMT[5];而抑制ILK可明顯改善TGF-β1誘導(dǎo)腎小管上皮細(xì)胞、足突細(xì)胞轉(zhuǎn)分化,亦可降低輸尿管梗阻、阿霉素腎病模型腎臟纖維化程度[17,18],這些結(jié)果提示ILK系TGF-β1/Smads信號(hào)通路下游分子,抑制或阻斷ILK的表達(dá)和功能,對(duì)防治CCN具有積極意義。
[1] Tedesco D,Haragsim L.Cyclosporine:a review[J].J Transplant,2012,2012:230386.
[2] Issa N,Kukla A,Ibrahim HN.Calcineurin inhibitor nephrotoxicity:a review and perspective of the evidence[J].Am J Nephrol,2013,37(6):602-612.
[3] Meng XM,Tang PMK,Li J,etal.TGF-β/Smad signaling in renalbrosis[J].Front Physiol,2015,6:82.
[4] Samarakoon R,Overstreet JM,Higgins PJ.TGF-beta signaling in tissue fibrosis:redox controls,target genes and therapeutic opportunities[J].Cell Signal,2013,25(1):264-268.
[5] Qi F,Cai P,Liu X,etal.Adenovirus-mediated P311 inhibits TGF-β1-induced epithelial-mesenchymal transition in NRK-52E cells via TGF-β1-Smad-ILK pathway[J].Biosci Trends,2015,9(5):299-306.
[6] 譚州科,羅 茜,楊 蝶,等.槲皮素通過(guò)轉(zhuǎn)化生長(zhǎng)因子-β1/Smad通路減輕孢素誘導(dǎo)的大鼠腎小管間質(zhì)纖維化[J].中華實(shí)驗(yàn)外科雜志,2015,32(8):1933-1935.
[7] Sereno J,Vala H,Nunes S,etal.Cyclosporine A-induced nephrotoxicity is ameliorated by dose reduction and conversion to sirolimus in the rat[J].J Physiol Pharmacol,2015,66(2):285-299.
[8] Camilleri B,Bridson JM,Halawa A.Calcineurin inhibitor-sparing strategies in renal transplantation:where are we? a comprehensive review of the current evidence[J].Exp Clin Transplant,2016,14(5):471-483.
[9] Hesselink DA,Bouamar R,van Gelder T.The pharmacogenetics of calcineurin inhibitor-related nephrotoxicity[J].Ther Drug Monit,2010,32(4):387-393.
[10] Yoon SP.Insights into the possible mechanism of cyclosporine-induced chronic nephrotoxicity;arteriolopathy[J].Nephrourol Mon,2012,4(2):489-490.
[11] Lee SY,Kim SI,Choi ME.Therapeutic targets for treating fibrotic kidney diseases[J].Transl Res,2015,165(4):512-530.
[12] Meng XM,Huang XR,Xiao J,etal.Disruption of Smad4 impairs TGF-beta/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro[J].Kidney Int,2012,81(3):266-279.
[13] Nam HK,Lee SJ,Kim MH,etal.Rosuvastatin attenuates inflammation,apoptosis and fibrosis in a rat model of cyclosporine-inducednephropathy[J].Am J Nephrol,2013,37(1):7-15.
[14] Damiano S,Ciarcia R,Montagnaro S,etal.Prevention of nephrotoxicity induced by cyclosporine-A:role of antioxidants[J].J Cell Biochem,2015,116(3):364-369.
[15] Liu Y.New insights into epithelial-mesenchymal transition in kidney fibrosis[J].J Am Soc Nephrol,2010,21(2):212-222.
[16] Kim MK,Maeng YI,Sung WJ,etal.The differential expression of TGF-β1,ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis:an immunohistochemical study[J].Int J Clin Exp Pathol,2013,6(9):1747-1758.
[17] Li Y,Tan X,Dai C,etal.Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis[J].J Am Soc Nephrol,2009,20(9):1907-1918.
[18] Kang YS,Li Y,Dai C,etal.Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria[J].Kidney Int,2010,78(4):363-373.
[收稿2016-06-12]
(編輯 張曉舟)
Effect of inhibiting TGF-β1 on Smad2/3 and ILK signaling molecules in chronic cyclosporine A nephropathy in mouse
ZENGQiang-Lin,BAIZhi-Xun,WANGDan,YANGYi-Bin.
DepartmentofNephrology&Rheumatology,AffiliatedHospitalofZunyiMedicalCollege,Zunyi563003,China
Objective:To investigate the effect of specific inhibition of transforming growth factor-β1 (TGF-β1) with SB-431542 on the Smad2/3 and integrin-linked kinase (ILK) signaling molecules in tubule interstitial fibrosis(TIF)-induced cyclosporine A(CsA) in mouse.Methods:50 BALB/c mice were randomly divided into 5 groups (10 mice per group):the CsA model group (CMG),the interventional model group (IMG),the solvent control group (SCG),the low-salt control group (LCG),and the normal control group (NCG).The model mouse was established with low-sodium diet and intragastric administration of cyclosporine A,which was dissolved in olive oil at a dose of 60 mg/(kg·d).After 4 weeks,a specific inhibitor of TGF-β1 (SB-431542 )was administered intraperitoneally with 10 mg/(kg·2 d) for 10 days (every other days).Mice were sacrificed at day 38.Serum creatinine (Scr) was measured,hydroxyp roline (Hyp)level and morphological changes of renal tissue were analyzed,expression levels of TGF-β1,P-Smad 2/3 and ILK were respectively detected by immunohistochemistry or Western blot,mRNA levels of TGF-β1,Smad 2/3 and ILK were respectively detected real-time polymerase chain reaction (RT-PCR).Results:Compared with three control groups (NCG,LCG and SCG),mice weight was decreased significantly,Scr level was increased significantly in two modeling groups (CMG and IMG) (P<0.01),and these changes in CMG were more obvious than those of IMG (P<0.05).Different levels of tubulointerstitial injury,interstitial infiltration of inflammatory cells and blue collagen staining in two modeling groups were observed,and particularly evident in CMG.TGF-β1,P-Smad2/3 and ILK immunostaining were mainly expressed in tubulointerstitium.The TGF-β1,P-Smad2/3 and ILK mRNA and immunostaining levels in two modeling groups were significantly increased as compared with three control groups (P<0.01),but their levels in IMG were significantly lower than those of CMG (P<0.05).The level of Hyp in renal tissue was positively correlated with Scr,TGF-β1,Smad2/3 and ILK (r=0.860,0.711,0.776,0.676,P<0.01).Conclusion:The activation of the TGF-β1/Smads signaling pathway plays an important role in the development of chronic CsA-induced TIF.The activation of ILK is closely correlated with the development of TIF,and may be used as a downstream factor of TGF-β1/Smads signaling pathway in regulating CsA-induced TIF.
Chronic cyclosporine nephropathy;Cyclosporine-A;Tubuleinterstitial fibrosis;TGF-β1/Smads;Integrin-linked kinase
10.3969/j.issn.1000-484X.2017.04.007
①本文為貴州省教育廳自然科學(xué)基金項(xiàng)目(黔教科2010044)和遵義市科技計(jì)劃項(xiàng)目[遵市科合社字(2012)42號(hào)]。
曾強(qiáng)林(1985年-),男,碩士,住院醫(yī)師,主要從事免疫抑制劑腎損害和慢性腎纖維化方面的研究。
及指導(dǎo)教師:楊亦彬(1962年-),男,博士,教授,主要從事慢性腎臟病、免疫抑制劑腎損害方面的研究,E-mail:yyb1011@sina.com。
R979.5 R692
A
1000-484X(2017)04-0511-05