劉慶良
【摘要】建構(gòu)主義是一種新的認識論,對教育領(lǐng)域起到了非常深遠的影響。在新課標教學(xué)的改革下,遵循建構(gòu)主義理論的指導(dǎo)開展教育工作,成為教育工作者提高教學(xué)的重要工作。筆者根據(jù)多年的教學(xué)經(jīng)驗,對建構(gòu)主義理論下數(shù)學(xué)課堂的教學(xué)改革提出了幾點心得,具有一定的參考意義。
【關(guān)鍵字】建構(gòu)主義;數(shù)學(xué);自主;實踐
G633.6
傳統(tǒng)的教學(xué)主要是以教師為主導(dǎo),學(xué)生被動接受為主的過程。隨著國內(nèi)外對教育的不斷重視與深入研究,產(chǎn)生了許多提高教學(xué)效果和學(xué)生學(xué)習(xí)效率的教育理念。其中,建構(gòu)主義理論對學(xué)習(xí)的含義和學(xué)習(xí)的方法進行了深入的闡述。根據(jù)這一理論的指導(dǎo)思想,我在數(shù)學(xué)教學(xué)中通過任務(wù)驅(qū)動、多元交流、架設(shè)橋梁、積極實踐等多種教學(xué)措施來改進教學(xué)的效果,實現(xiàn)數(shù)學(xué)課堂教學(xué)的改革。
一、任務(wù)驅(qū)動,自主探究
建構(gòu)主義學(xué)習(xí)理論認為人的認識本質(zhì)是主體的構(gòu)造過程,即主體借助自己的認知結(jié)構(gòu)去主動構(gòu)造知識。由此可見,教師在教學(xué)時,一定要充分調(diào)動學(xué)生的積極性,引導(dǎo)他們自主學(xué)習(xí)。通過任務(wù)驅(qū)動,可以引導(dǎo)學(xué)生自主探究,發(fā)揮主體的作用。
比如,在講數(shù)學(xué)必修五第二章《數(shù)列》時,這一章的重點和難點就是讓學(xué)生掌握等差數(shù)列及等比數(shù)列的性質(zhì)、公式以及求和公式,從若干數(shù)列中歸納總結(jié)規(guī)律。教學(xué)時如果直接采用教師引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律總結(jié)公式的方式,容易造成學(xué)生的理解程度不高,記憶效果不佳,運用不夠熟練等問題。因此在教學(xué)時,我通過布置課堂任務(wù),讓學(xué)生們自主探究,發(fā)現(xiàn)規(guī)律。例如我給出一個等差數(shù)列的若干項,讓同學(xué)們依次求出前四項、前六項、前八項的數(shù)值,同學(xué)們能夠迅速的發(fā)現(xiàn)規(guī)律并給出答案,這時候我再問“那么第155項的數(shù)是什么呢?”同學(xué)們不可能把前面的155項都列出來再計算求和,我提醒同學(xué)們?nèi)タ偨Y(jié)等差數(shù)列前n項求和的計算公式從而解決問題。最終,在同學(xué)們的探究總結(jié)下,大部分的同學(xué)都歸納出等差數(shù)列的求和公式Sn=a1*n+1/2*n*(n-1)*d。然后我再給同學(xué)們疏理一遍推導(dǎo)過程,讓同學(xué)們加深記憶。
在上述教學(xué)中,我通過任務(wù)驅(qū)動,充分的調(diào)動了學(xué)生們的積極性,讓學(xué)生自主探究,從而獲得更深的理解與感悟,起到了很好的教學(xué)效果。
二、多元交流,深化思維
建構(gòu)主義理論強調(diào)教師在教學(xué)時,要增進學(xué)生之間的合作,使學(xué)生看到那些與他觀點不同觀點的基礎(chǔ),即合作學(xué)習(xí)。為了貫徹這一思想,在教學(xué)時,我通過采用多元交流的方式,開展討論與交流活動,與同學(xué)們合作探究問題,從而獲得新知。
教師應(yīng)當是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者。我在講課時,通過有效的問答,與同學(xué)們進行交流,引導(dǎo)同學(xué)們主動的學(xué)習(xí)與探究。比如我在講必修五《解三角形》這一章節(jié)時,同一道題可能會有很多種解題方法,當同學(xué)們有不同的見解時,我會邀請他到講臺來給大家分享和講解。我在對解三角形中的最值問題進行講解時,我對大家進行提問:“在解決三角形最值問題時,利用相似三角形的性質(zhì)、利用對稱變換、利用二次函數(shù)與利用圓的性質(zhì)這幾種策略那個更為通用及有效”。同學(xué)們就此問題展開了思考與討論,通過比較若干三角形的最值問題,發(fā)表自己的見解。雖然最終意見不能統(tǒng)一,但同學(xué)們在思考討論的過程中,對這類問題的解題策略進行了深入的分析與解讀,起到了很好的復(fù)習(xí)效果,加深了同學(xué)們的理解。
在上述教學(xué)中,我通過設(shè)置引起認知沖突的問題與討論,與學(xué)生有效的交流互動,有助于學(xué)生的知識構(gòu)建,深化了解決數(shù)學(xué)問題的能力與思維,契合了構(gòu)建主義理論合作探究的思想。
三、架設(shè)橋梁,順勢而導(dǎo)
在學(xué)生建構(gòu)學(xué)習(xí)中,已有的知識和經(jīng)驗是新的認識活動的基礎(chǔ)。因此,我在對新的知識內(nèi)容進行教學(xué)時,我通過架設(shè)橋梁,順勢而導(dǎo),完成新舊知識的過渡與銜接,讓同學(xué)們對知識形成深入的領(lǐng)悟。
比如,在講必修五《不等式》這一章節(jié)時,對于不等式的兩邊同時乘以一個負數(shù)時不等式要變號這一性質(zhì),為了讓同學(xué)們更好的理解這一知識點,對其進行熟練的運用,我首先帶領(lǐng)大家復(fù)習(xí)了有理數(shù)比較大小這部分內(nèi)容,例如5>3,然而-5<-3,兩個負數(shù)比較大小,絕對值越大的負數(shù)越小。通過對以前學(xué)過的知識進行復(fù)習(xí),同學(xué)們對新的認識活動形成了一定的基礎(chǔ),更加快速和清晰的理解了不等式這一性質(zhì)。在解一元二次不等式的教學(xué)中,我首先帶領(lǐng)同學(xué)們復(fù)習(xí)一元二次方程的解法,與不等式進行類比,讓同學(xué)們歸納總結(jié)出一元二次不等式的解法,通過這種預(yù)備知識的過程為克服新課難點鋪平了道路,架起了橋梁。
在上述教學(xué)活動中,我按照構(gòu)建主義理論的指導(dǎo),對學(xué)生的知識構(gòu)建起到組織引導(dǎo)的作用,讓同學(xué)們對新舊知識進行有效的構(gòu)建,提高了課堂的學(xué)習(xí)效率,高效的完成了教學(xué)目標。
四、積極實踐,升華素養(yǎng)
建構(gòu)主義理論認為人的認識總是在一定的社會環(huán)境中完成的,建構(gòu)活動是具有社會性的,因此學(xué)生通過動手實踐獲得知識是教學(xué)的一個重要內(nèi)容。在教學(xué)時,我通過引導(dǎo)同學(xué)們積極實踐,讓他們對知識形成深入的認知,升華數(shù)學(xué)的素養(yǎng)。
比如,在學(xué)習(xí)完必修五《解三角形》這一章節(jié)的知識內(nèi)容后,為了讓同學(xué)們在實際的生活環(huán)境中體會解三角形這一數(shù)學(xué)思想的應(yīng)用,我安排了讓同學(xué)們動手實踐的學(xué)習(xí)內(nèi)容。例如學(xué)校鍋爐房的高度無法用皮尺直接量出,那么該如何解決這一高度問題呢?在完成這一實習(xí)作業(yè)時,同學(xué)們首先需要進行理論的分析,
如果所示,AC為鍋爐的高度,首先需要選兩個點B、D,測量出BD之間的距離,其次需要利用學(xué)校的經(jīng)緯儀器設(shè)備對∠ADC和∠ABC進行測。∠DAB=∠ABC-∠ADC,AB=BD*sin∠ADC/sin∠ADC,AC=AB*sin∠ABC,最終求得AC的高度。同學(xué)們在通過對以上數(shù)據(jù)的實際測量,求解,進一步鞏固了解三角形這部分的知識,使自身素養(yǎng)得到了升華。
在上述教學(xué)過程中,我通過安排實習(xí)作業(yè),提高了同學(xué)們分析問題解決問題的能力、動手操作的能力,增強了運用數(shù)學(xué)的意識和數(shù)學(xué)實踐的能力,充分貫徹了建構(gòu)主義理論的思想,取得了很好的教學(xué)效果。
綜上所述,建構(gòu)主義理論的核心在于通過老師的引導(dǎo)、合作與交流,讓學(xué)生主動去構(gòu)建知識,掌握并在實踐中運用。建構(gòu)主義理論作為一種科學(xué)有效的教學(xué)思想,用它來指導(dǎo)教學(xué),有利于從根本上提高課堂效率,提高學(xué)生的綜合素養(yǎng)。
參考文獻
[1]程惠東,臧秀紅.建構(gòu)主義理論指導(dǎo)下數(shù)學(xué)網(wǎng)絡(luò)課堂教學(xué)設(shè)計策略與實踐[J]. 現(xiàn)代教育科學(xué),2007(08).
[2]王思儉.建構(gòu)主義理論在高中數(shù)學(xué)課堂教學(xué)中實踐與思考[J].考試,2010(Z3).