馬華菊,盧友志,陳東蓮,明憲權(quán),李維健,袁愛群,韋冬萍,周澤廣,杜景龍(.桂林理工大學(xué)南寧分校, 南寧5000;.廣西民族大學(xué)化學(xué)化工學(xué)院,南寧50006;.中信大錳礦業(yè)有限責(zé)任公司,南寧500)
甲醛-硫酸亞鐵協(xié)同還原浸出低品位氧化錳礦
馬華菊1,盧友志2,陳東蓮1,明憲權(quán)3,李維健3,袁愛群2,韋冬萍2,周澤廣2,杜景龍2
(1.桂林理工大學(xué)南寧分校, 南寧530001;2.廣西民族大學(xué)化學(xué)化工學(xué)院,南寧530006;3.中信大錳礦業(yè)有限責(zé)任公司,南寧530022)
在硫酸介質(zhì)中以甲醛-硫酸亞鐵為還原劑協(xié)同還原軟錳礦,考察了甲醛-硫酸亞鐵摩爾比、溫度、反應(yīng)時(shí)間、轉(zhuǎn)速、硫酸濃度等因素對(duì)錳、鋁的浸出率及溶液中鐵和有機(jī)殘留甲酸的影響.采用單因素實(shí)驗(yàn)獲得較佳的還原工藝條件,采用HPLC測(cè)定溶液中的甲酸.結(jié)果表明,在固定轉(zhuǎn)速為200 r/min、液固比為 8 ml/g 時(shí),最佳反應(yīng)條件為:甲醛-硫酸亞鐵摩爾比1∶3(甲醛1.5 mol)、浸出時(shí)間3 h、硫酸濃度 3 mol/L、溫度90 ℃.在該條件下重復(fù)實(shí)驗(yàn),錳的平均浸出率為93.51%,鋁的平均浸出率為33.08%,鐵的濃度為23.07 mol/L,甲酸濃度為0.001 g/L.
甲醛; 硫酸亞鐵; 氧化錳礦;協(xié)同還原;浸出
我國的軟錳礦大多為低品位軟錳礦,含錳量低,回收利用的成本高而且容易帶來環(huán)境污染等問題[1],隨著錳資源的日漸貧乏,開發(fā)低品位軟錳礦還原的新工藝對(duì)實(shí)現(xiàn)錳資源的合理利用有著重要的意義.目前,火法和濕法是還原軟錳礦常用的兩種方法,其中濕法工藝使用無機(jī)有機(jī)、生物質(zhì)等作為還原劑,避免了火法工藝能耗高等弊病,簡化了工藝,越來越受到人們的重視[2].常見的無機(jī)還原劑有硫酸亞鐵、鐵屑、雙氧水等[3-5],硫酸亞鐵工藝存在浸出過程中其漿料固液分離困難,后續(xù)處理工藝復(fù)雜的缺點(diǎn);SO2酸耗大,存在煙氣排放的問題,且SO2對(duì)人體危害較大;而雙氧水價(jià)格昂貴,工藝熱耗大.使用有機(jī)還原劑[6-10]則反應(yīng)條件溫和、錳的浸出率高且無機(jī)雜質(zhì)少,常用的有機(jī)還原劑有葡萄糖、甲酸、草酸、苯胺、醇類等物質(zhì),但這些物質(zhì)大多價(jià)格昂貴,而且由于產(chǎn)生大量的有機(jī)物殘留造成極板腐蝕從而影響電流效率[11-12],難以實(shí)現(xiàn)產(chǎn)業(yè)化.
為了降低溶液中的有機(jī)物含量,采用最簡單的有機(jī)物甲酸、甲醛[13-14]作為還原劑還原軟錳礦,發(fā)現(xiàn)兩者無法完全反應(yīng),溶液中仍然殘留有機(jī)物.而采用甲醛-鐵粉[15]作為復(fù)合還原劑可以明顯降低浸出液中的甲酸殘留.本文利用最簡單的有機(jī)物甲醛作為還原劑,加入無機(jī)還原劑硫酸亞鐵,利用二者的協(xié)同效應(yīng),改善反應(yīng)條件,既能夠避免因硫酸亞鐵導(dǎo)致漿料分離困難的問題,又能夠充分利用有機(jī)還原劑的高效還原效果,同時(shí)更為有效地降低了浸出液中殘留的有機(jī)物,并通過工藝條件的控制,使甲醛及其氧化產(chǎn)物甲酸充分反應(yīng),使有機(jī)殘留物接近0,避免了原料的浪費(fèi)及因此帶來的設(shè)備腐蝕和環(huán)境污染問題.
1.1 原料
實(shí)驗(yàn)所用軟錳礦來自廣西大新某錳礦,其化學(xué)成分如表1所示,其中二氧化錳僅為25.25%,屬于低品位氧化錳礦.礦石磨細(xì)后過篩(孔徑0.16 mm)以備用.甲醛、硫酸亞鐵、濃硫酸等均為分析純?cè)噭?,水為去離子水.
表1 軟錳礦的主要化學(xué)成分(質(zhì)量分?jǐn)?shù))
1.2 實(shí)驗(yàn)方法
取20 g礦石粉和硫酸加入到250 mL的三口燒瓶內(nèi),將燒瓶置于恒溫水浴中,三口燒瓶一側(cè)的開口用于取樣和安裝溫度計(jì),中間的開口安裝可用于變頻無極調(diào)速的機(jī)械攪拌器,另一側(cè)的開口安裝冷凝器避免水分蒸發(fā).當(dāng)溶液達(dá)到所需溫度后,再加入甲醛、硫酸亞鐵溶液.
反應(yīng)停止后,反應(yīng)混合溶液過濾,濾液定容至250 ml,取樣分析.Al, Fe濃度用電感耦合等離子體發(fā)射光譜分析(ICP, Optima 5300DV, Perkin Elmer, USA),浸出液中錳的含量按照硫酸亞鐵銨滴定法分析.甲酸含量采用Agilent1260型高效液相色譜法測(cè)定,測(cè)試條件:0.03 mol/L NaH2PO4和0.02 mol/L H3PO4流動(dòng)相,流速1 ml/min,波長210 nm,色譜柱為C18(5 μm,4.6 mm×250 mm),柱溫30 ℃,G1314B可變波長紫外檢測(cè)器定量檢測(cè).
浸出過程中甲醛和硫酸亞鐵可能發(fā)生的化學(xué)反應(yīng)有:
HCHO+2MnO2+2H2SO4=2MnSO4+3H2O+CO2↑
(1)
HCHO+MnO2+H2SO4=HCOOH+MnSO4+H2O
(2)
2FeSO4+MnO2+2H2SO4=Fe2(SO4)3+MnSO4+2H2O
(3)
HCOOH+MnO2+H2SO4=MnSO4+2H2O+CO2↑
(4)
2Fe3++2HCOOH=3Fe2++CO2+2H2O
(5)
3Fe2++MnO2+2H2SO4=2Fe3++MnSO4+FeSO4+ 2H2O
(6)
從中可以看出,浸出液中可能存在鐵的二價(jià)和三價(jià)離子,有機(jī)物除還原劑甲醛外,只有甲酸.
2.1 甲醛-硫酸亞鐵摩爾比對(duì)浸出率的影響
當(dāng)反應(yīng)條件為:液固比8 ml/g,硫酸濃度為 3 mol/L,浸出溫度90 ℃,總反應(yīng)時(shí)間3 h,攪拌速率200 r/min時(shí),甲醛1.95 mL為理論用量的90%(理論用量指甲醛與二氧化錳分別按方程(1)恰好完全反應(yīng)時(shí)所需質(zhì)量),甲醛用量及甲醛-硫酸亞鐵摩爾比對(duì)浸出過程錳和鋁的浸出率(ηMn和ηAl)的影響及溶液中甲酸的質(zhì)量濃度(ρ(HCOOH))和鐵的質(zhì)量濃度(ρ(Fe))如表2所示.
從表2看到,如只添加硫酸亞鐵一種還原劑時(shí),錳的浸出率ηMn只有31.8%,浸出液中無有機(jī)物.如只添加甲醛,錳的浸出率ηMn為81.35%,浸出液中有機(jī)物殘留為甲酸,說明體系中不僅發(fā)生如式(1)的反應(yīng),同時(shí)還發(fā)生如式(2)的反應(yīng).如果同時(shí)添加兩種還原劑,隨著甲醛-硫酸亞鐵摩爾比的增加,錳的浸出率逐漸增加,當(dāng)這一比值增加到1∶3.5時(shí),錳的浸出率可到97.3%,而鋁的浸出率變化不大,溶液中甲酸的質(zhì)量濃度ρ(HCOOH) 先增加后降低,說明甲醛的還原效果優(yōu)于硫酸亞鐵.可見,增加甲醛的加入量,錳的浸出率提高,但有機(jī)物殘留增加;而增加硫酸亞鐵加入量,會(huì)使溶液中鐵的含量逐漸增加,影響后序過濾.綜合考慮,選擇摩爾比為1∶3作為還原劑比例.
表2 還原劑摩爾比對(duì)浸出效果的影響
注:①表示“先加入甲醛反應(yīng)時(shí)間+再加入硫酸亞鐵反應(yīng)時(shí)間”;. 浸出時(shí)間中不特別注明的,表示甲醛先反應(yīng)一段時(shí)間再加入鐵粉繼續(xù)反應(yīng).
在改變兩種還原劑的加入順序時(shí),發(fā)現(xiàn)先加入甲醛及延長甲醛反應(yīng)時(shí)間有利于降低浸出液中甲酸和鐵的含量,錳浸出率較高而鋁的含量變化不大,說明兩者的加入順序?qū)鲞^程有影響.當(dāng)加入甲醛反應(yīng)2 h后,再加入硫酸亞鐵反應(yīng)1 h,錳浸出率達(dá)到97.61%,而溶液中甲酸的含量達(dá)到最低值,這可能是甲醛氧化產(chǎn)物甲酸是一種弱還原劑,還原體系除了發(fā)生式(1)至(3)反應(yīng)外,還可能發(fā)生式(4)至(5)的反應(yīng),促進(jìn)了錳浸出率的提高和降低甲酸的含量.
2.2 總浸出時(shí)間對(duì)浸出率的影響
當(dāng)硫酸濃度為3 mol/L,浸出溫度為90 ℃,液固比為8 ml/g,攪拌速率為200 r/min,摩爾比為 1∶3 時(shí),總浸出時(shí)間對(duì)浸出效果的影響見圖1.由圖1可知,隨著浸出時(shí)間的增加,錳浸出率先增加后略降低,在反應(yīng)3 h時(shí)達(dá)到最大,為97.6%,甲酸的濃度逐漸降低,反應(yīng)進(jìn)行到3.5 h時(shí),甲酸的濃度接近0.鐵的質(zhì)量濃度在28.15~29.98 g·L-1之間變化, 鋁的浸出率ηAl在33.84%~37.86%之間,甲酸的質(zhì)量濃度0.004 g/L,因此選擇總浸出反應(yīng)時(shí)間為3 h.
圖1 總浸出時(shí)間對(duì)浸出效果的影響Fig.1 Effect of the total reaction time on the leaching result
2.3 反應(yīng)溫度對(duì)浸出率的影響
當(dāng)硫酸濃度為3 mol/L,總浸出時(shí)間為3 h, 液固比為8 ml/g,攪拌速率為200 r/min時(shí),浸出溫度對(duì)浸出效果的影響見圖2.由圖2可知,隨著反應(yīng)溫度的增高,錳的浸出率先增加后降低,當(dāng)溫度為90 ℃時(shí)達(dá)到最大,為97.6%,甲酸濃度先降低后不變,當(dāng)溫度從90 ℃增加到95 ℃時(shí),甲酸的質(zhì)量濃度為0.004 g/L不變,而鐵的濃度逐漸增加但變化范圍不大,鋁的浸出率略有提高.為減少能量的消耗,減少鋁的浸出,選擇最適宜溫度為90 ℃.
圖2 浸出溫度對(duì)浸出效果的影響Fig.2 Effect of reaction temperature on the leaching result
2.4 硫酸濃度對(duì)浸出效果的影響
當(dāng)浸出溫度為90 ℃,總浸出時(shí)間3 h,液固比為8 ml/g,攪拌速率為200 r/min時(shí),硫酸濃度對(duì)浸出效果的影響見圖3.由圖3可知,隨著硫酸濃度的增加,錳的浸出率逐漸增加,當(dāng)硫酸濃度增加到3 mol/L時(shí),錳的浸出率為97.6%,鋁的浸出率不再提高,甲酸的含量逐漸降低,鐵的濃度變化不大.
圖3 硫酸濃度對(duì)浸出效果的影響Fig.3 Effect of concentration of sulfuric acid on the leaching result
2.5 轉(zhuǎn)速的影響
當(dāng)硫酸濃度為3 mol/L,總浸出時(shí)間為3 h, 液固比為8 ml/g,浸出溫度為90 ℃時(shí),攪拌速率對(duì)浸出效果的影響見圖4.從圖4可以看出,轉(zhuǎn)速為200 r/min后時(shí)錳的浸出率增加不明顯,甲酸的質(zhì)量濃度明顯降低,鐵的質(zhì)量濃度不再大幅增加.轉(zhuǎn)速為200 r/min較為合適.
2.6 液固比對(duì)浸出率的影響
當(dāng)浸出溫度為90 ℃,總浸出時(shí)間為3 h,硫酸濃度為3 mol/L,攪拌速率為200 r/min時(shí),液固比對(duì)浸出率的影響見圖5.由圖5可知,液固比對(duì)錳的浸出率、鐵的質(zhì)量濃度影響不大.甲酸的質(zhì)量濃度在液固比為8 ml/g后增加較快,浸出液中甲酸的質(zhì)量濃度越大對(duì)電解的負(fù)面影響越大,因此,綜合考慮,液固比取8 ml/g.
由上述條件實(shí)驗(yàn)可以得到甲醛-硫酸亞鐵浸出錳的最佳實(shí)驗(yàn)條件為:甲醛-硫酸亞鐵摩爾比1∶3、浸出時(shí)間3 h、硫酸濃度3 mol/L、溫度90 ℃.
2.7 驗(yàn)證實(shí)驗(yàn)
為了進(jìn)一步驗(yàn)證上述數(shù)據(jù)的可重復(fù)性和穩(wěn)定性,在上述最佳的浸出條件下進(jìn)行三組重復(fù)實(shí)驗(yàn)進(jìn)行驗(yàn)證,其結(jié)果如表3所示.結(jié)果表明,數(shù)據(jù)具有可重復(fù)性,錳的浸出率平均值為93.51%,鋁的平均浸出率為33.08%,甲酸濃度接近0,鐵的濃度為23.07 g·L-1,表明利用硫酸亞鐵-甲醛作為還原劑,取得了較高的錳的浸出率,且甲酸的殘留少.
圖4 攪拌速率對(duì)浸出效果的影響Fig.4 Effect of stirring rate on the leaching result
圖5 液固比對(duì)浸出效果的影響Fig.5 Effect of liquid-solid ratio on the leaching result
表3 驗(yàn)證實(shí)驗(yàn)結(jié)果
采用甲醛和硫酸亞鐵協(xié)同還原浸出低品位氧化錳礦,當(dāng)液固比取8 ml/g、攪拌轉(zhuǎn)速為200 r/min時(shí),各因素對(duì)錳的浸出率影響的大小依次為:甲醛-硫酸亞鐵摩爾比>反應(yīng)時(shí)間>硫酸濃度>溫度.該工藝最佳反應(yīng)條件為:甲醛-硫酸亞鐵摩爾比為1∶3、甲醛濃度為1.5 mol.、浸出時(shí)間為3 h、硫酸濃度為3 mol/L、溫度為90 ℃.在該條件下重復(fù)實(shí)驗(yàn),錳的平均浸出率為93.51%,浸出液中鋁的質(zhì)量濃度為1.15 g·L-1,鐵的濃度為23.07 g·L-1,甲酸質(zhì)量濃度為0.001 g·L-1,接近0.由此可見,與其他的有機(jī)物還原軟錳礦技術(shù)相比,使用甲醛和硫酸亞鐵協(xié)同還原浸出低品位氧化錳礦具有錳浸出率高、有機(jī)物殘留少的優(yōu)點(diǎn),是一種高效、經(jīng)濟(jì)的濕法還原軟錳礦新技術(shù).
[1]李同慶. 低品位軟錳礦還原工藝技術(shù)與研究進(jìn)展[J]. 中國錳業(yè), 2008, 26(2): 4-14. (LI Tongqing. Technology of low grade pyrolusite ore reduction process and recent advances [J]. China’s Manganese Industry, 2008, 26(2): 4-14.)
[2]盧友志, 盧國賢, 明憲權(quán), 等. 有機(jī)物還原氧化錳工藝研究進(jìn)展[J]. 濕法冶金, 2015, 34(1) : 1-5. (Lu Youzhil, Lu Guoxian, Ming Xianquan,etal. Research advances of reduction of manganese oxide ore by organic matter [J]. Hydrometallurgy of China, 2015, 34(1) : 1-5.)
[3]粟海鋒, 馮國忠.兩礦干法制取工業(yè)硫酸錳的實(shí)驗(yàn)研究[J].廣西大學(xué)學(xué)報(bào)(自然科學(xué)版), 1995 (1): 37-40. (Su Haifeng, Feng Guozhong. Study on production of manganese sulfate by dry processes method with pyrolusite and iron pyrites [J].Journal of Guangxi University(Natural Science Edition), 1995 (1): 37-40.)
[4]Mohammad Sh B, Alireza Z , Zahra G,etal. Reductive dissolution of manganese ore in sulfuric acid in the presence of iron metal[J]. Hydrometallurgy, 2008, 90(2-4): 207-212.
[5]El-Hazek M N, Lasheen T A, Helal A S. Reductive leaching of manganese from low grade Sinai ore in HC1 using H2O2as reductant[J]. Hydrometallurgy, 2006, 84(12): 187-191.
[6]Tang Q, Zhong H, Wang S,etal. Reductive leaching of manganese oxide ores using waste tea as reductant in sulfuric acid solution[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3): 861-867.
[7]金生龍, 王雨紅, 粟海鋒, 等. 響應(yīng)面法優(yōu)化葡萄糖還原浸出半氧化錳礦的研究 [J]. 廣西大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 39(6): 1403-1408. (Jin Shenglong, Wang Yuhong, Su Haifeng. Response surface optimization of process parameters for reduction leaching of semi-oxidized manganese ore by glucose [J]. Journal of Guangxi University (Natural Science Edition), 2014, 39(6): 1403-1408.)
[8]粟海鋒, 崔嵬, 文衍宣, 等.還原浸出低品位軟錳礦的研究[J].廣西大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 35(3): 373-377. (Su Haifeng, Cui Wei, Wen Yanxuan,etal. Leaching of low-grade pyrolusite using rutin as reductant [J]. Journal of Guangxi University (Natural Science Edition), 2010, 35(3): 373-377.)
[9]Lasheen T A, El-Hazek M N, Helal A S,etal. Recovery of manganese using molasses as reductant in nitric acid solution[J]. International Journal of Mineral Processing, 2009, 92(3): 109-114.
[10]高玉洋,粟海鋒,文衍宣. 半氧化錳礦的直接還原浸出工藝研究[J]. 廣西大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 38(3): 632-637. (Gao Yuyang, Su Haifeng, Wen Yanxuan. Direct reductive leaching of manganese from semi-oxidized manganese ore [J]. Journal of Guangxi University (Natural Science Edition), 2013, 38(3): 632-637.)
[11]盧國賢, 明憲權(quán), 陳南雄, 等. 電解錳陰極板材料在不同溶液介質(zhì)中的腐蝕研究[J].廣東化工, 2014, 41(20): 42-43. (Lu Guoxian, Ming Xianquan, Chen Nanxiong,etal. Corrosion research of electrolytic manganese stainless steel plate for cathode in the different solution medium[J]. Guangdong Chemical Industry, 2014, 41(20): 42-43.)
[12]明憲權(quán), 盧國賢, 陳南雄, 等. 電解金屬錳鉛陽極板在小分子有機(jī)酸中的腐蝕性研究[J]. 中國錳業(yè), 2014, 32(4): 37-40. (Ming Xianquan, Lu Guoxian, Chen Nanxiong,etal. Corrosion research of electrolytic manganese lead plate for anode in small molecular organic acid[J]. China’s Manganese Industry, 2014, 32(4): 37-40.)
[13]Lu Y Z, Ma H J, Huang R J,etal. Reductive leaching of low-grade pyrolusite with formic acid[J]. Metallurgical and Materials Transactions B, 2015, 26(4): 1709-1715.
[14]盧友志, 韋冬萍, 馬華菊, 等. 甲醛還原浸出低品位軟錳礦[J]. 現(xiàn)代化工, 2015, 35(7): 62-65. (Lu Youzhi, Wei Dongping, Ma Huaju,etal. Reductive leaching of manganese from low-grade pyrolusite ore using methyl aldehyde as reductant[J]. Modern Chemical Industry, 2015, 35(7): 62-65.)
[15]盧友志, 馬華菊, 陳東蓮, 等. 甲醛和鐵粉協(xié)同還原浸出低品位氧化錳礦[J]. 有色金屬-冶煉部分, 2015(10): 26-30. (Lu Youzhi, Ma Huaju, Chen Donglian,etal. Synergic reductive leaching of manganese from low-grade oxide manganese ore with formaldehyde and iron powder[J]. Nonferrous Metals (Extractive Metallurgy ), 2015(10): 26-30.)
[16]Tian X, Wen X X, Yang C,etal. Reductive leaching of manganese from low-grade manganese dioxide ores using corncob as reductant in sulfuric acid solution[J]. Hydrometallurgy, 2010, 100( 3 /4) : 157-160.
Synergistic reductive leaching of manganese from low-grade oxide manganese ore with formaldehyde and ferrous sulfate
Ma Huaju1, Lu Youzhi2, Chen donglian1, Ming Xianquan3, Li Weijian3, Yuan Aiqun2,Wei Dongping2, Zhou Zeguang2,Du Jinglong2
(1.Guilin University of Technology at Nanning, Nanning 530001, China;2.School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China;3.CITIC Dameng Mining Industries Limited, Nanning 530022, China)
Effects of concentration of sulfuric acid, mole ratio of reducing agent, reaction time, leaching temperature and liquid-solid ratio as well as stirring rate on the extraction ratio of manganese and aluminum, concentrations of iron and organic residue in the leaching solution were studied by using formaldehyde and ferrous sulfate as reductants in sulfuric acid medium. Technological parameters were obtained from a single factor experiment. Organic residue of leaching solution was analyzed by HPLC. The results showed that the optimum conditions are as follows: H2SO4is 3mol/L, CH2O / FeSO4mole ratio is 3 (formaldehyde1 is 5mol), reaction time is 3 h, temperature is 90 ℃ fixed liquid-solid ratio is 8 ml/g and stirring rate is 200 r/min. The average leaching ratio is 93.51% for Mn, 33.08% for aluminum, concentration of iron is 23.07 mg/mL, concentration of formic acid is 0.001 g/L from the repeated experiments under the optimum conditions.
formaldehyde; ferrous sulfate; oxide manganese ore; synergistic reductive leaching; leach
10.14186/j.cnki.1671-6620.2017.01.009
TF 803.2
A
1671-6620(2017)01-0047-06