• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Clustering of Virtual Network Function Instances Oriented to Compatibility in 5G Network

    2017-04-10 02:40:10XiaoleiWangLijunXieZhiqiangQinYunjieChen
    China Communications 2017年12期
    關(guān)鍵詞:株菌初篩乳酸菌

    Xiaolei Wang, Lijun Xie*, Zhiqiang Qin, Yunjie Chen

    1 National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450002, he’nan, China

    2 Information and Navigation College, Xi’an 710077, shanxi, China

    1. INTRODUCTION

    The Fifth Generation (5G) wireless communication technology is proposed to push on revolutionizing future ubiquitous wireless networking, applications, and users’ quality of experience. In order to achieve these goals,5G wireless communication technologies need provide considerably higher network capacity,achieve large-scale equipment connections with reduced delay and cost, and save considerable energy compared to existing wireless technologies [1]. However, current mobile core networks is suffering from a huge variety of expensive and proprietary equipment, as well as inflexible hard-state signaling protocols [2]. When a particular function is not available, the cellular operator have to replace existing equipment even if it is still sufficient for most purposes, which shows the difficulty of adjusting the service quickly as needed.

    The European Telecommunications Standards Institute Network functions virtualization Industry Specification Group (ETSI NFVISG) has been promoting the implementation of NFV that replaces dedicated traditional hardware-based middleboxes with novel software-based middleboxes running on commodity hardware (e.g., x86 server),that is called virtual network function (VNF) instances [3].Currently, the traditional network functions in 5G network, which can be virtualized to VNF instances, include such functions as follows[4].

    This paper divides VNF instances with high compatibility into clusters used for combining VNF instances in 5G networks.

    ·Evolved packet core (EPC) functions, such as the mobility management entity (MME),serving gateway (S-GW), home subscriber server (HSS), packet-gateway (PGW), and policy and charging rules function (PCRF).

    ·Baseband processing units functions, such as medium access control (MAC), radio link control (RLC), and radio resource control(RRC) procedures.

    ·switching function, traffic load balancing and operation service centers.

    NFV breaks the barrier of function development that results from the monopoly of traditional function providers. Thus, it enables both carriers and third-party function providers participate in developing and deploying VNF instances in date centers and clouds for 5G services, however it also leads to the incompatibility issue among different VNF instances. This incompatibility provides necessity for clustering of VNF instances.

    Specific VNF instances in given orders consists Service Function Chains (SFCs), which provides the services in 5G network. Many recent attempts have been made to tackle the SFC combination issue by formulating the optimization problems with different objects and constraints. The Internet Engineering Task Force (IETF) launched a Service Function Chain group to decouple the Infrastructure and service function deployments [5]. Clayman S[6] proposed an orchestrator monitoring the behavior of the virtual resources and placing the network services on the virtual nodes dynamically. Cohen R [7] formulated the virtual network function location problem as an integer linear program and attempted to minimize the distance cost and the setup costs of these functions. Luizelli M [8] attempted to minimize the number of VNF instances mapped on the servers. The three papers ignored the performance of functions which will affect the quality of services that is significant to the customers. Cheng G [9] aimed at maximizing the utility of the functions combination by considering the performance, but it may lead to the waste of the performance of the function instances. Basta A [10] proposed a model that combines SFCs by placing VNF instances dynamically and aims at minimizing the transport network load overhead against data-plane delay, number of potential datacenters and control overhead. Baumgartner [11]presented a novel mathematical optimization model for virtual core network embeddings with respect to latency bounds. Martini [12]formulated the problem of composing, computing and connecting virtual functions along the path that minimizes the overall latency in the 5G network. To minimize the cost of occupied link and node resource, Baumgartner [13]proposed a novel integer linear programming formulation that combines the virtual network topology with virtual network embedding optimization. Bagaa [14] argued the need for adopting service type and requirements as metrics for selecting adequate virtual PDNGWs for User Equipment receiving specific service type. Riggio [15] proposed a VNF placement heuristic algorithm for the performance of SFCs.

    All the existing researches about VNFs combination into SFCs ignore the incompatibility issue among different VNF instances,and make the assumption that the real performance parameters of a SFC equals to the theoretical value calculated by the performance parameters of VNF instances in the SFC. Implemented by NFV, 5G network would confront the challenge of incompatibility issues among different VNF instances with distinct features.The opening of VNF instances introduces distinct features to themselves as follows. First,VNF instances could be developed by any authenticated provider, for example, HUAWEI,ZTE, Alcatel-Lucent and LinkerNetwoks, etc.In addition, different VNF instances may be developed with distinct development tools,programing languages, data formats and running environments [16]. Therefore, when some VNF instances are combined into a SFC for specific subscriber requests, they may not always cooperate ideally as expected for the incompatibility issues, the reliability and quality of service cannot be guaranteed. However,telecom systems require 99.999% reliability,and the high reliability problem in 5G network is divided into three layers: hardware layer,NFV platform layer and software layer. Each layer should work together to provide overall high reliability. The mentioned incompatibility issues would reduce the reliability of software layer of 5G network [17].

    In this paper, we solve the incompatibility issues among different VNF instances by dividing them into clusters oriented to high compatibility for SFCs in 5G network. Firstly,we define compatibility among different VNF instances. secondly, we formulate the clustering of VNF instances as a hypergraph cluster problem. Then, we transform the problem to a non-cooperative multiplayer clustering evolutionary game. Thus, the cluster establishing is transformed to the game equilibrium searching. Finally, to find an Evolutionary Stable Strategy (ESS) that represents a set of highly compatible VNF instances, we design the replicator dynamic algorithm and demonstrate its effect by simulations. The main contributions of this paper are as follows:

    1. In order to guarantee the reliability of SFC in 5G, the compatibility of different VNF instances is introduced and measured by the similarity between theoretical value and real measurement value of hit rate, processing cost,processing delay and reliability.

    2. A hypergraph clustering model that divides VNF instances to different clusters is proposed to maximize the sum of weights of a cluster.

    3. The hypergraph clustering problem is transformed into an evolutionary game model and solved by the discrete-time replicator dynamic algorithm.

    The remainder of this paper is organized as follows. Section 2 gives the definition of compatibility of function instances. Section 3 presents the hypergraph clustering model. Section 4 presents the Evolutionary game model.Section 5 proposes the replicator dynamics to obtain instances clusters. Section 6 presents the experimental results. Section 8 concludes this paper.

    II. COMPATIBILITY OF VNF INSTANCES

    The compatibility of VNF instances represents in many aspects, like hit rate, availability,processing delay and cost, so it needs be accurately quantified. In this paper, we evaluate the compatibility of VNF instances by the probability of multidimensional performance parameters of runtime equals to the expected performance. Given a SFC S that contains k VNF instances (f1,f2,…,fk), and the compatibility of (f1,f2,…,fk) is defined as following:

    As mentioned above, we focus on the performance parameters such as hit rate, processing speed, processing cost, and reliability.

    Next, we will explain how to calculate the da.

    The processing delay of the VNF instance is the time interval between the packet input and output, and the processing delay of the SFC is the sum of multiple VNF instances within the SFC.

    The processing cost of an instance is the amount of occupied CPU and the processing cost of a SFC is the sum of multiple VNF instances.

    III. HYPERGRAPH CLUSTERING MODEL

    In this paper, our goal is to place some NVF instances with high compatibility into a cluster that ensures the QoS. Selecting some VNF instances in the whole 5G network into a cluster is formulated as a mathematical problem of extracting a group from a set of objects with some features, so called clustering. In practice, there should be more and more instances in 5G network, so the number of clusters is uncertain in advance and dynamic. Besides,the compatibility of VNF instances relates to multidimensional performance parameters,thus the general clustering methods are not suitable. Fortunately, the hypergraph theory is suitable for solving the problem.

    Based on the hypergraph theory, we formulate this problem as a hypergraph clustering model H=(V,E,)ω, where V={1,...,n}is a finite set of vertices referring to n VNF instances in 5G network, E?2Vis a set of hyperedges referring to all SFCs that once deployed, and ω:E→R+is a real-valued positive weight of each hyperedge (SFC) and reflects fitness of the cluster to the network policy. Here, we let cardinality k be the number of functions in the SFC, called k-graphs.

    The problem of clustering a k-graph H=(V,E,)ω contains a set of n vertices V={1,...,n}, a set of hyperedgesand a real value affinity function ω:. It can be mathematically defined as solving

    Thus finding an expected cluster means finding a subset of vertices with high cluster value. Solving this problem would be an expensive combinational problem and NP-Hard.Bulò [19] proposed a novel method based on the game theoretic point of view for the relax version of this problem.

    IV. EVOLUTIONARY GAME MODEL

    Evolutionary game theory provides an effective way to the hypergraph clustering problem. Generally, an evolutionary game is played iteratively among individuals from a large population and is formulated as Γ =(P,V,π), where P={1,...,k } is a set of players.V={1,...,n} is the set of pure strategies for each player, and indicates the all VNF instances in 5G network. The payoff functionassigns a utility to each strategy profile

    Our goal is to find clusters with high compatibility, so the payoff functionis proportional to the compatibility of the strategy profile

    為了進(jìn)一步證實(shí)在本實(shí)驗(yàn)中MRS培養(yǎng)基更適合初篩所得乳酸菌生長,我們將MRS培養(yǎng)基上分離得到的菌落分別接種于ATB和MRS液體培養(yǎng)基中,以25℃培養(yǎng)24 h,ATB液體培養(yǎng)基中無菌體生長,而MRS液體培養(yǎng)基成渾濁狀;同理,將ATB上分離所得10株菌分別接種于ATB、MRS液體培養(yǎng)基中,這10株菌在兩種培養(yǎng)基中均生長,因此證明:(1)MRS培養(yǎng)基更適合本實(shí)驗(yàn)中乳酸菌的生長;(2)MRS初篩平板上分離得到的112株菌中包含ATB初篩平板上分離得到的10株乳酸菌,因此本實(shí)驗(yàn)后續(xù)試驗(yàn)全部采用MRS培養(yǎng)基,并只驗(yàn)證MRS上分離得到的112株菌。

    Within the evolutionary process of the clustering game, each player will play pre-assigned strategies, and repeatedly select randomly VNF instances from V. Here, a player with preassigned strategy j∈V is called j-strategist. The state of the population at a given time t is represented as an n-dimensional vector x(t), where xj(t ) represents the portion of j-strategists in the population at time t.let the initial distribution of preassigned strategies in the population is x(0). The set of all possible states of population is defined as the following standard simplex

    According to Darwinian evolution theory,the fittest strategies will survive and spread via the natural selection mechanism. We denote the support of x∈? as:

    which is the set of strategies that are alive in a given population x.

    The expected payoff of all players is defined as the following function u:

    We use the notations x[k]as a shortcut for a sequence (x,…,x)of k identical states x,and ejto indicate the n-vector with xj=1 and zero elsewhere. Thus the expected payoff earned by a j-strategist in a population x∈?iswhile the expected payoff over the entire population is u(x[k]).

    In evolutionary game theory, an ESS is a state that a disturbance cannot change the genetic compositions of the population. It is proved that an ESS-cluster of H is an ESS of the corresponding hypergraph clustering game. If x∈? is an ESS-cluster of H, then

    V. EVOLUTION TO A CLUSTER

    In this section, we address the issue of determining an ESS cluster for a given instance of a hypergraph clustering problem that is a computationally hard problem. Bulò [19] proved that the ESSs of the clustering game are in one-to-one correspondence with (strict) local solutions of a nonlinear optimization problem.To get the ESS-cluster of the hypergraph clustering game, we need to introduce replicator equation that ensures the distribution of strategies whose payoffs are higher than average payoff will increase over time. Based on the above definition in the hypergraph clustering game, we define the replicator dynamics as follows:

    Unlike standard partitional techniques,our approach involves extracting one cluster at a time. The complexity of finding an ESS-cluster with our algorithm turns out to bewhereis the number of SFCs that once existed, and ρ is the average number of iteration needed to converge.

    VI. SIMULATION RESULTS

    6.1 Performance of algorithm

    Firstly, to show the effectiveness of the proposed approach, we compare our approach with two of the most classical hypergraph clustering algorithms, the Clique Averaging algorithm (CA) [20] and the Supersym-metric Nonnegative Tensor Factorization (SNTF)[21]. Since CA and SNTF, in contrast to our method, require as a parameter the number of clusters K, so we run them with values of, where K?denotes the correct number of clusters. The quality of the clustering algorithms was evaluated in terms of classification error, which is the rate between the number of misclassified instances and the total instances.

    Fig. 1 Classification error under different number of clutters

    Fig. 2 Clustering time under different number of VNF instances

    We run all the experiments on a computer equipped with 3.4 Ghz Intel Core i7 processor and 4 Gb RAM. In the case of CAVERAGE and SNTF, we used the original codes with Matlab and C++ implementations, respectively; our method is implemented with Matlab.

    To simulate real conditions, we choose 10 VNF instances from HUAWEI, ZTE, Alcatel-Lucent respectively and 10 functions instances from other providers. Here, we let the compatibility of VNF instances from the same provider be 1, and that from n providers be 1/n. Thus, the 10 VNF instances from one provider belong to a cluster, and the other 10 VNF instances from other providers are considered as clutters that do not belong to any cluster. Obviously, K?=3.

    Figure 1 shows the results obtained by the competing algorithms in terms of classification error with three clusters. Each plot shows the average value of 30 experiments. It is clear that our algorithm substantially outperformed both CA and SNTF even when they were set the correct number of clusters K?,and it worked almost perfectly irrespective of the number of clutters. In addition, both competitors achieved better performances when K >K?, and it is intuitional that the only way to get rid of clutters is to divide them into additional (garbage) clusters. Nevertheless, due to the unpredictable nature of clutters, they typically did not get assigned to the garbage class, however, instead were assigned to the original three clusters, thereby making the performance of CA and SNTF poorer and poorer as clutter increases.

    Next, we compare our approach with CA and SNTF about the clustering time with 100, 1000 and 10000 VNF instances. Figure 2 shows that the clustering times of our algorithm is an order of magnitude faster than SNTF, while is an order of magnitude slower than CA. This is indeed to be expected as CAVERAGE, unlike our algorithm and SNTF,transforms the original hypergraph into a graph at the outset, thereby greatly reducing the complexity of the problem. On the other hand, like our algorithm, SNTF does not resort to any graph approximation, but, by optimizing a single variable at a time, it has a substantially larger computational complexity.

    6.2 Eff ectiveness of VNF instances clustering

    Secondly, to show the effectiveness of VNF instances clustering to the combination of SFCs, we combine the SFCs based on the results of clustering, which means that cluster based on our method first and then select VNF instances for each SFC from the proper cluster respectively. We choose the two typical VNF instances combination methods: greedy and exhaustive [9], which combine VNF instances ignoring the compatibility among different VNF instances. Here, we conduct the simulation by combining four, five and six VNF instances into a SFC respectively. The number of VNF instances of a cluster is fixed to be 1000.

    Figure 3 shows the average combination time of different combination methods. Obviously, as the number of VNF instances increases, the combination time of original greedy and exhaustive methods grow quickly,while the combination time of the two clustering-based functions combination methods,called H-g and H-e, increase seldom. Because the original greedy and exhaustive methods need to select VNF instances from all candidates, and then spend more time when the number of VNF instances increases. On the contrary, the number of VNF instances of a cluster is fixed to be 1000, so the number of VNF instance candidates for a SFC is fixed and the time is nearly constant.

    Figure 4. shows the compatibility of SFCs combined with the four methods respectively.It is clear that the compatibility of SFCs obtained with H-g and H-e is higher than the two methods without clustering, which means the clustering of VNF instances oriented to compatibility can guarantee the quality of SFCs close to the excepted quality.

    Fig. 3 Combination time of SFCs

    Fig. 4 Compatibility of SFCs

    VII. CONCLUSION

    To combine VNF instances into SFCs efficiently in 5G network, this paper presented a novel VNF instances clustering method towards dividing VNF instances with diverse characteristics into different clusters oriented to high compatibility within each cluster. We first defined the compatibility among VNF instances based on the fitness of multidimensional performance parameters, and established the hypergraph clustering model based on the compatibility of VNF instances. By introducing the evolutionary game theory, the model was solved by designing the replicator dynamics. Finally, the results of experiments showed that the proposed method is efficient and clustering of instances can improve the quality of SFCs.

    This work was supported by The National High Technology Research and Development Program of China (863) (Grant No.2014AA01A701, 2015AA01A706).

    [1] Akyildiz I F, Wang P, Lin S C, “SoftAir: A software defined networking architecture for 5G wireless systems,” Computer Networks, vol. 85, no. 4,2015, pp. 1-18.

    [2] K. Pentikousis, Y. Wang, and W. Hu, “MobileFlow:Toward Software-Defined Mobile Networks,”IEEE Communications Magazine, vol. 51, no. 7,2013, pp. 44–53.

    [3] Abdelwahab S, Hamdaoui B, Guizani M, et al,“Network function virtualization in 5G,” IEEE Communications Magazine, vol. 54, no. 4, 2016,pp. 84-91.

    [4] Liang C, Yu F R, Zhang X, “Information-centric network function virtualization over 5g mobile wireless networks,” IEEE Network, vol. 29, no. 3,2015, pp. 68-74.

    [5] T. Nadeau E, “Problem Statement for Service Function Chaining,” 2015. https://www.rfc-editor.org/info/rfc7498.

    [6] Clayman S, Maini E, Galis A, et al., “The dynamic placement of virtual network functions,” Proc.network operations and management symposium IEEE, 2014, pp. 1-9.

    [7] Cohen R, et al., “Near optimal placement of virtual network functions” Proc. IEEE Conference on Computer Communications, 2015, pp. 1346-1354.

    [8] Luizelli M C., et al., “Piecing together the nfv provisioning puzzle: Efficient placement and chaining of virtual network functions” Proc.IFIP/IEEE International Symposium on Integrated Network Management, 2015,pp. 98-106.

    [9] Cheng G, Chen H, Hu H, et al, “Enabling network function combination via service chain instantiation,” Computer Networks, vol. 92, no.4, 2015, pp. 396-407.

    [10] Basta A, et al., “Applying NFV and SDN to LTE mobile core gateways, the functions placement problem,” The Workshop on All Things Cellular:Operations, Applications, & Challenges. ACM,2014, pp. 33-38.

    [11] Baumgartner A, Reddy V S, Bauschert T, “Combined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency Bounds,” Proc. Fourth European Workshop on Software Defined Networks, 2015, pp. 97-102.

    [12] Martini B, et al., “Latency-aware composition of Virtual Functions in 5G” Proc. Network Softwarization. IEEE, 2015,pp. 1-6.

    [13] Baumgartner A, Reddy V S, Bauschert T, “Mobile core network virtualization: A model for combined virtual core network function placement and topology optimization,” Proc. Network Softwarization. IEEE, 2015, pp. 1-9.

    [14] Bagaa M, Taleb T, Ksentini A, “Service-aware network function placement for efficient traffic handling in carrier cloud,” Proc. Wireless Communications and NETWORKING Conference IEEE, 2014, pp. 2402-2407.

    [15] Riggio R, Bradai A, Rasheed T, et al., “Virtual network functions orchestration in wireless networks,” Proc. International Conference on network and service management IEEE Computer Society, 2015, pp. 108-116.

    [16] Yousaf F Z, Taleb T, “Fine-grained resource-aware virtual network function management for 5G carrier cloud,” IEEE Network, 2016,vol. 30, no. 2, 2016, pp. 110-115.

    [17] Mijumbi R, Serrat J, Gorricho J L, et al., “Network Function Virtualization: State-of-the-Art and Research Challenges,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, 2016, pp.236-262.

    [18] Akyildiz I F, Lin S C, Wang P, “Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation,”Computer Networks, vol. 93, no. 2, 2015, pp. 66-79.

    [19] Bulò S R, Pelillo M, “A Game-Theoretic Approach to Hypergraph Clustering,” IEEE Transactions on Pattern Analysis & Machine Intelligence,vol. 35, no. 6, 2013, pp. 1312-1327.

    [20] Agarwal S, Lim J, Zelnik-Manor L, et al., “Beyond pairwise clustering,” Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2005, pp.838-845.

    [21] Shashua A, Zass R, Hazan T, “Multi-way Clustering Using Super-Symmetric Non-negative Tensor Factorization,” European Conference on Computer Vision. Springer-Verlag, 2006, pp.595-608.

    猜你喜歡
    株菌初篩乳酸菌
    山西首個(gè)口岸有害生物和外來物種初篩鑒定室投用
    高效好氧反硝化菌篩選及復(fù)合菌群脫氮特性研究*
    禽用乳酸菌SR1的分離鑒定
    無償獻(xiàn)血采血點(diǎn)初篩丙氨酸轉(zhuǎn)氨酶升高的預(yù)防及糾正措施研究
    Multiple gastric angiolipomas:A case report
    卷柏素對(duì)唑類藥物體外抗念株菌的增效作用
    3株耐鹽細(xì)菌對(duì)萘、菲、惹烯和苯并[α]芘的降解性能
    優(yōu)化無償獻(xiàn)血初篩崗位檢測流程探討
    乳酸菌成乳品市場新寵 年增速近40%
    乳飲品中耐胃酸乳酸菌的分離鑒定與篩選
    中國釀造(2014年9期)2014-03-11 20:21:04
    久久久欧美国产精品| av在线老鸭窝| 久久精品熟女亚洲av麻豆精品| 国产野战对白在线观看| 好男人电影高清在线观看| 18禁黄网站禁片午夜丰满| 少妇裸体淫交视频免费看高清 | 热99re8久久精品国产| 99热国产这里只有精品6| 99热国产这里只有精品6| 亚洲伊人久久精品综合| 欧美黄色淫秽网站| 女人精品久久久久毛片| 成年女人毛片免费观看观看9 | 欧美日韩亚洲高清精品| 中文字幕精品免费在线观看视频| 无限看片的www在线观看| 曰老女人黄片| 美女国产高潮福利片在线看| 成年人午夜在线观看视频| 不卡av一区二区三区| 欧美人与性动交α欧美软件| 在线 av 中文字幕| 曰老女人黄片| 欧美成人午夜精品| 咕卡用的链子| 一级毛片精品| 日韩三级视频一区二区三区| 新久久久久国产一级毛片| 午夜免费观看性视频| 欧美黑人欧美精品刺激| 国产在线视频一区二区| 国产成人精品在线电影| 叶爱在线成人免费视频播放| 交换朋友夫妻互换小说| 最近最新免费中文字幕在线| av超薄肉色丝袜交足视频| 纵有疾风起免费观看全集完整版| 国产免费福利视频在线观看| 亚洲性夜色夜夜综合| 黄频高清免费视频| 国产精品 国内视频| 汤姆久久久久久久影院中文字幕| 亚洲精品自拍成人| 18在线观看网站| 亚洲人成电影观看| 后天国语完整版免费观看| 91国产中文字幕| 亚洲人成电影免费在线| 一区二区av电影网| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人久久精品综合| 成人国语在线视频| 国产成人欧美在线观看 | 搡老熟女国产l中国老女人| 一区二区三区四区激情视频| 亚洲中文日韩欧美视频| 一本综合久久免费| 国产在视频线精品| 国产亚洲精品一区二区www | 亚洲久久久国产精品| 人人妻人人爽人人添夜夜欢视频| 久久av网站| 久久中文看片网| 日韩欧美一区视频在线观看| 国产不卡av网站在线观看| 老汉色av国产亚洲站长工具| 国产在线视频一区二区| 亚洲av电影在线进入| 黄色视频不卡| 国产三级黄色录像| 丝袜美腿诱惑在线| 人成视频在线观看免费观看| 国产熟女午夜一区二区三区| 各种免费的搞黄视频| 我的亚洲天堂| 美国免费a级毛片| 下体分泌物呈黄色| 不卡一级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲视频免费观看视频| 国产亚洲欧美在线一区二区| 国产亚洲欧美在线一区二区| 日本a在线网址| av超薄肉色丝袜交足视频| 免费观看a级毛片全部| 99香蕉大伊视频| 女人精品久久久久毛片| av网站在线播放免费| 高清在线国产一区| 国产99久久九九免费精品| 久久综合国产亚洲精品| 搡老熟女国产l中国老女人| 日韩中文字幕欧美一区二区| 丝袜喷水一区| 高清视频免费观看一区二区| 男女之事视频高清在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美日韩另类电影网站| 老熟妇乱子伦视频在线观看 | 999久久久精品免费观看国产| 丝袜在线中文字幕| 男女无遮挡免费网站观看| 欧美日本中文国产一区发布| 亚洲欧美精品自产自拍| 中文欧美无线码| 精品久久久久久电影网| 在线av久久热| svipshipincom国产片| 两个人看的免费小视频| 9191精品国产免费久久| 免费日韩欧美在线观看| 国产精品国产三级国产专区5o| 亚洲精品国产区一区二| 丝瓜视频免费看黄片| 在线观看免费视频网站a站| 日本精品一区二区三区蜜桃| 久久女婷五月综合色啪小说| 大型av网站在线播放| 香蕉国产在线看| 午夜老司机福利片| 爱豆传媒免费全集在线观看| 亚洲国产中文字幕在线视频| 搡老乐熟女国产| 一级片免费观看大全| 欧美亚洲 丝袜 人妻 在线| 成人黄色视频免费在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 日本wwww免费看| www.熟女人妻精品国产| 亚洲中文日韩欧美视频| 女性被躁到高潮视频| 丝袜在线中文字幕| 国产精品久久久av美女十八| 午夜福利乱码中文字幕| 亚洲,欧美精品.| 一个人免费在线观看的高清视频 | 一进一出抽搐动态| 亚洲成国产人片在线观看| 国产精品 欧美亚洲| 免费在线观看日本一区| 亚洲av成人一区二区三| 一边摸一边做爽爽视频免费| 亚洲精品国产av蜜桃| 免费黄频网站在线观看国产| 欧美变态另类bdsm刘玥| 十八禁网站免费在线| 亚洲性夜色夜夜综合| 老鸭窝网址在线观看| 欧美日韩福利视频一区二区| 中文字幕色久视频| 精品少妇久久久久久888优播| 亚洲专区字幕在线| 丰满饥渴人妻一区二区三| 亚洲欧美色中文字幕在线| 亚洲精品美女久久久久99蜜臀| 一个人免费在线观看的高清视频 | 18禁裸乳无遮挡动漫免费视频| 黑人欧美特级aaaaaa片| 国产精品久久久久成人av| 日韩 亚洲 欧美在线| www.自偷自拍.com| 精品一区二区三卡| 大香蕉久久网| 亚洲精品自拍成人| 十分钟在线观看高清视频www| 中文字幕最新亚洲高清| 黄色毛片三级朝国网站| 9热在线视频观看99| 国产亚洲精品第一综合不卡| 亚洲精品久久成人aⅴ小说| 性高湖久久久久久久久免费观看| 交换朋友夫妻互换小说| 精品熟女少妇八av免费久了| 色综合欧美亚洲国产小说| 日日夜夜操网爽| 97人妻天天添夜夜摸| 国产精品影院久久| 日本精品一区二区三区蜜桃| 国产成人精品无人区| 国产区一区二久久| 制服人妻中文乱码| 岛国在线观看网站| 久久人人97超碰香蕉20202| 他把我摸到了高潮在线观看 | 另类亚洲欧美激情| 黄色视频,在线免费观看| 永久免费av网站大全| 亚洲美女黄色视频免费看| 精品欧美一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 精品久久久精品久久久| 国产亚洲一区二区精品| 青春草视频在线免费观看| 一个人免费在线观看的高清视频 | 国产精品一区二区在线不卡| 少妇猛男粗大的猛烈进出视频| 午夜激情av网站| 中文字幕制服av| 亚洲国产精品999| 大香蕉久久网| 久久精品亚洲av国产电影网| 午夜久久久在线观看| 美女大奶头黄色视频| 国产成人免费观看mmmm| 日日爽夜夜爽网站| 蜜桃国产av成人99| 1024香蕉在线观看| 一级片免费观看大全| 99久久国产精品久久久| 久久久久久久久免费视频了| 少妇 在线观看| 国产精品久久久av美女十八| www.av在线官网国产| 国产色视频综合| 国产高清videossex| 9热在线视频观看99| 在线观看人妻少妇| 日韩精品免费视频一区二区三区| 岛国毛片在线播放| 免费看十八禁软件| 十分钟在线观看高清视频www| 国产成人免费无遮挡视频| 老司机在亚洲福利影院| 国产在线观看jvid| 90打野战视频偷拍视频| 一区在线观看完整版| www.精华液| 人妻人人澡人人爽人人| 自线自在国产av| 日韩,欧美,国产一区二区三区| 老鸭窝网址在线观看| 久久久国产一区二区| 一级毛片女人18水好多| 色老头精品视频在线观看| 好男人电影高清在线观看| 国产精品九九99| 欧美人与性动交α欧美精品济南到| 黑人欧美特级aaaaaa片| 午夜激情av网站| 午夜影院在线不卡| 精品久久久久久久毛片微露脸 | 精品久久蜜臀av无| 中文字幕精品免费在线观看视频| 久久久久久久国产电影| 在线天堂中文资源库| 18在线观看网站| 亚洲精品国产一区二区精华液| 国产精品久久久久成人av| 欧美+亚洲+日韩+国产| 五月开心婷婷网| 亚洲激情五月婷婷啪啪| 午夜久久久在线观看| 黑人操中国人逼视频| 国产高清视频在线播放一区 | 国产高清国产精品国产三级| 亚洲自偷自拍图片 自拍| 人人妻,人人澡人人爽秒播| 久久久久精品人妻al黑| 亚洲五月婷婷丁香| 久久ye,这里只有精品| 色婷婷久久久亚洲欧美| 精品亚洲成a人片在线观看| 美女脱内裤让男人舔精品视频| 亚洲国产av新网站| 日本av手机在线免费观看| 国产日韩欧美视频二区| 另类亚洲欧美激情| 亚洲av日韩在线播放| 老司机午夜十八禁免费视频| 亚洲av成人一区二区三| 伊人久久大香线蕉亚洲五| 亚洲国产日韩一区二区| 如日韩欧美国产精品一区二区三区| 欧美国产精品一级二级三级| 精品福利观看| 80岁老熟妇乱子伦牲交| 麻豆av在线久日| 正在播放国产对白刺激| 麻豆乱淫一区二区| 国产精品二区激情视频| 麻豆国产av国片精品| 精品少妇久久久久久888优播| 悠悠久久av| www.999成人在线观看| 欧美人与性动交α欧美精品济南到| 国产av国产精品国产| 久久久久久久大尺度免费视频| 99国产精品免费福利视频| 大香蕉久久成人网| 丰满迷人的少妇在线观看| 韩国高清视频一区二区三区| 99国产精品免费福利视频| 免费观看a级毛片全部| 啦啦啦中文免费视频观看日本| 欧美+亚洲+日韩+国产| 狠狠狠狠99中文字幕| av一本久久久久| 国产日韩欧美视频二区| kizo精华| 两性夫妻黄色片| 黄色怎么调成土黄色| 国产日韩欧美视频二区| 在线天堂中文资源库| 老司机午夜十八禁免费视频| 欧美日韩国产mv在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| www.999成人在线观看| 最新在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| kizo精华| 精品国产一区二区久久| 咕卡用的链子| 国产日韩欧美在线精品| 欧美精品人与动牲交sv欧美| 老司机福利观看| 老熟妇乱子伦视频在线观看 | 久久九九热精品免费| 亚洲精品av麻豆狂野| 久久精品国产a三级三级三级| 免费观看人在逋| 成人18禁高潮啪啪吃奶动态图| 飞空精品影院首页| 视频区欧美日本亚洲| 日韩中文字幕视频在线看片| 老熟妇乱子伦视频在线观看 | 亚洲美女黄色视频免费看| 国产精品秋霞免费鲁丝片| 咕卡用的链子| 热99久久久久精品小说推荐| 亚洲美女黄色视频免费看| 免费一级毛片在线播放高清视频 | 啦啦啦在线免费观看视频4| 国产日韩欧美亚洲二区| 电影成人av| 久久青草综合色| 亚洲伊人色综图| 欧美精品一区二区大全| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三区在线| 高清黄色对白视频在线免费看| 91大片在线观看| 国产成人欧美| 国产免费福利视频在线观看| 亚洲欧洲精品一区二区精品久久久| 国产一级毛片在线| 欧美激情高清一区二区三区| 欧美另类一区| 伊人久久大香线蕉亚洲五| 男女免费视频国产| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 欧美av亚洲av综合av国产av| 午夜免费成人在线视频| 亚洲专区字幕在线| 久久国产精品人妻蜜桃| 亚洲欧美日韩高清在线视频 | 女性被躁到高潮视频| 一边摸一边做爽爽视频免费| 韩国高清视频一区二区三区| av免费在线观看网站| 在线观看人妻少妇| tocl精华| 久久精品国产综合久久久| 青春草视频在线免费观看| 大香蕉久久成人网| 国产成人a∨麻豆精品| 国产xxxxx性猛交| 嫁个100分男人电影在线观看| 亚洲 欧美一区二区三区| 免费少妇av软件| 久久性视频一级片| 精品国产国语对白av| avwww免费| 麻豆国产av国片精品| 亚洲欧美清纯卡通| 另类亚洲欧美激情| 91国产中文字幕| 女人爽到高潮嗷嗷叫在线视频| 国产野战对白在线观看| 亚洲精华国产精华精| 成人影院久久| 十八禁高潮呻吟视频| 亚洲欧美精品自产自拍| 9色porny在线观看| 国产野战对白在线观看| 汤姆久久久久久久影院中文字幕| 精品国产国语对白av| 另类亚洲欧美激情| 18禁黄网站禁片午夜丰满| 老熟妇乱子伦视频在线观看 | 国产精品成人在线| 丝袜美足系列| 在线观看一区二区三区激情| 国产色视频综合| av不卡在线播放| 热99久久久久精品小说推荐| 精品国产一区二区久久| 亚洲欧美精品综合一区二区三区| 90打野战视频偷拍视频| 法律面前人人平等表现在哪些方面 | 欧美日韩福利视频一区二区| 国产一区二区 视频在线| 国产精品久久久av美女十八| 男人操女人黄网站| 岛国在线观看网站| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 一级黄色大片毛片| 天天添夜夜摸| 久久影院123| 亚洲av成人不卡在线观看播放网 | 久久精品国产综合久久久| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 国产精品1区2区在线观看. | 久久性视频一级片| 男男h啪啪无遮挡| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 免费日韩欧美在线观看| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9 | 捣出白浆h1v1| 极品人妻少妇av视频| 啦啦啦啦在线视频资源| 精品免费久久久久久久清纯 | 日本黄色日本黄色录像| 两人在一起打扑克的视频| 精品国产超薄肉色丝袜足j| 久久人妻熟女aⅴ| 久久国产亚洲av麻豆专区| 日韩电影二区| 国产成人av教育| 亚洲中文字幕日韩| 黄频高清免费视频| 一级毛片精品| 国产主播在线观看一区二区| 亚洲欧美成人综合另类久久久| 久久久久国产精品人妻一区二区| 色94色欧美一区二区| 国产高清国产精品国产三级| 在线观看一区二区三区激情| 99热国产这里只有精品6| 九色亚洲精品在线播放| 天堂中文最新版在线下载| 一级毛片精品| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 黄色怎么调成土黄色| 夜夜夜夜夜久久久久| 精品一区在线观看国产| 新久久久久国产一级毛片| 国产熟女午夜一区二区三区| 丝袜脚勾引网站| 中文字幕人妻丝袜制服| 久久青草综合色| 国产精品久久久人人做人人爽| 日韩大片免费观看网站| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o| av电影中文网址| 国产欧美亚洲国产| 多毛熟女@视频| 国产精品麻豆人妻色哟哟久久| 久久精品久久久久久噜噜老黄| 97精品久久久久久久久久精品| 国产亚洲精品久久久久5区| 男男h啪啪无遮挡| 中文字幕人妻丝袜一区二区| 国产亚洲午夜精品一区二区久久| videos熟女内射| 99香蕉大伊视频| 妹子高潮喷水视频| 一级,二级,三级黄色视频| www日本在线高清视频| 成人免费观看视频高清| 我的亚洲天堂| 久久狼人影院| 久久久久久亚洲精品国产蜜桃av| 国产成人欧美| 国产黄频视频在线观看| 丝袜脚勾引网站| 亚洲av电影在线进入| 亚洲 欧美一区二区三区| 国产精品久久久人人做人人爽| 中文精品一卡2卡3卡4更新| 国产亚洲精品第一综合不卡| 嫁个100分男人电影在线观看| 欧美精品亚洲一区二区| 狠狠狠狠99中文字幕| 一本久久精品| 成人免费观看视频高清| xxxhd国产人妻xxx| 午夜福利,免费看| 亚洲欧洲精品一区二区精品久久久| 精品一品国产午夜福利视频| 性少妇av在线| 亚洲国产成人一精品久久久| 国产精品偷伦视频观看了| 黑人巨大精品欧美一区二区mp4| 男女之事视频高清在线观看| netflix在线观看网站| 十八禁网站免费在线| 久久综合国产亚洲精品| av视频免费观看在线观看| 国产成人av教育| 老司机靠b影院| 青草久久国产| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av | 99国产精品一区二区蜜桃av | 久久九九热精品免费| av免费在线观看网站| 高清黄色对白视频在线免费看| 国产成+人综合+亚洲专区| 一个人免费在线观看的高清视频 | 亚洲伊人色综图| 99热国产这里只有精品6| 妹子高潮喷水视频| 两性夫妻黄色片| 丰满饥渴人妻一区二区三| 国产成人影院久久av| 久久久久国产精品人妻一区二区| 欧美精品一区二区大全| 免费日韩欧美在线观看| 91av网站免费观看| 一区二区三区乱码不卡18| 亚洲av电影在线进入| 国产免费视频播放在线视频| 亚洲中文av在线| 男男h啪啪无遮挡| 午夜福利免费观看在线| 大片免费播放器 马上看| 成人亚洲精品一区在线观看| 热re99久久国产66热| 90打野战视频偷拍视频| 免费一级毛片在线播放高清视频 | 超碰97精品在线观看| 中文欧美无线码| 欧美亚洲日本最大视频资源| 国产精品成人在线| 丝袜在线中文字幕| 久9热在线精品视频| 欧美日韩亚洲高清精品| 99精品久久久久人妻精品| 中文字幕制服av| 欧美日韩福利视频一区二区| 三上悠亚av全集在线观看| 午夜老司机福利片| 亚洲伊人色综图| 少妇人妻久久综合中文| 亚洲国产成人一精品久久久| 18禁黄网站禁片午夜丰满| 亚洲伊人色综图| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 在线av久久热| 波多野结衣av一区二区av| 日韩大片免费观看网站| 国产精品久久久av美女十八| 久久久久视频综合| 国产又爽黄色视频| 熟女少妇亚洲综合色aaa.| 美女中出高潮动态图| 法律面前人人平等表现在哪些方面 | 99久久人妻综合| 久久精品久久久久久噜噜老黄| 亚洲av成人不卡在线观看播放网 | 91字幕亚洲| 午夜老司机福利片| 午夜免费成人在线视频| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 男女国产视频网站| 久久天堂一区二区三区四区| av天堂久久9| 日本精品一区二区三区蜜桃| 高潮久久久久久久久久久不卡| 中文字幕人妻丝袜一区二区| 看免费av毛片| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 精品国产一区二区三区久久久樱花| 老司机深夜福利视频在线观看 | netflix在线观看网站| 人人妻人人澡人人爽人人夜夜| 色播在线永久视频| 丝袜美腿诱惑在线| 美女国产高潮福利片在线看| 天天操日日干夜夜撸| 国产亚洲av高清不卡| 又大又爽又粗| 97精品久久久久久久久久精品| 亚洲人成电影观看| 蜜桃国产av成人99| 亚洲人成电影免费在线| 99国产极品粉嫩在线观看| av又黄又爽大尺度在线免费看| 考比视频在线观看| 欧美精品av麻豆av| 91精品三级在线观看| 日日摸夜夜添夜夜添小说| 五月开心婷婷网| 欧美日韩国产mv在线观看视频| 日本a在线网址| 亚洲精品成人av观看孕妇| 日韩人妻精品一区2区三区| 亚洲中文字幕日韩| 国产精品 国内视频| 精品国产超薄肉色丝袜足j| 亚洲国产毛片av蜜桃av|