• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-User Detection for Spatial Modulation toward 5G Wireless Communications

    2017-04-10 02:40:06ShiwenFanYueXiaoXiaLeiRongShiKeDengShaoqianLi
    China Communications 2017年12期

    Shiwen Fan*, Yue Xiao, Xia Lei,2, Rong Shi, Ke Deng, Shaoqian Li

    1 National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu 611731, China

    2 The National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

    3 Science and Technology on Electronic Information Control Laboratory, the 29th Research Institute of China Electronics Technology Group Corporation, Chengdu 610036, China

    I. INTRODUCTION

    Spatial modulation (SM) [1]-[10] is a class of potential multi-input multi-output (MIMO)transmission techniques for future wireless communications, which conveys information not only in the transmit antenna, but also in the index of active antenna, so as to make a balanced tradeoff between transmission throughput and computational complexity.Compared to traditional MIMO systems, a unique advantage of SM-MIMO lies in that only one antenna is activated in each time slot, which saves the implement cost for RF chains, especially in the context of massive MIMO ([34]-[37]) in 5G systems. Recently,spatial modulation has been widely considered to be applied in 5G practical systems such as in [31]-[33], because of its advantages of lowcost implement, increased reliability, and power efficiency. The current research progress of SM design includes two aspects: transceiver design without channel state information (CSI)feedback and transceiver design with limited CSI feedback. Specifically, transceiver design without CSI feedback contains transmitter design and low-complexity receiver design. On the other hand, transceiver design with limited CSI feedback contains adaptive modulation,antenna selection, power allocation and link adaptation.

    In this paper, a pair of efficient detectors are proposed for multi-user spatial modulation. Specially, a threshold-aided approximate message passing (T-AMP) detector is proposed with the purpose of reducing the computational complexity of traditional structured approximate message passing (Str-AMP) detector.

    The detail about the potential application of SM is described as follows. In 5G wireless communications, there will be more equivalent antenna resource for MIMO transmission. SM could be utilized since it can be used in flexible transceiver antenna configuration. SM can be also combined with OFDM for practical system. Single carrier (SC) system, especially with frequency domain equalization (FDE),is usually compared to OFDM for combating frequency selective fading. SM-SC is also a possible technique for 5G communications.

    To meet the need of massive connections for the next generation wireless systems [27]-[30], the concept of SM-MIMO should be extended to adapt multi-user scenarios as considered in [11]-[26]. In this situation, the SM signals of multiple user are overlapped in the up/down link of 5G, which introduces the problem of complex signal detection.

    Thus, the detection complexity of multi-user SM, is higher in comparison to traditional SM. When the number of active users is moderate, the wide-ranging studies disseminated in [8]-[20] have found a range of detectors designed for multi-user SM systems. For example, in [3], the optimum maximum likelihood(ML) detector jointly detected the antenna index combination and the symbol vector of all the users through the exhaustive search, which imposes intractable complexity, especially when the numbers of users and antennas are large. In order to reduce the complexity of the ML detector, a linear minimum mean-squared error (LMMSE) detector was proposed in [4].As only one antenna is activated for every user in each time slot, the transmitted multi-user SM symbols is sparse. To exploit the sparsity of the transmitted multi-user SM symbols, the compressive sampling (CS)-based detector was proposed in [14] and [15]. Furthermore, a class of approximate message passing (AMP)detectors for multi-user SM systems were proposed in [16]-[18]. Specifically, the detector in [16 and [17] exploits an i.i.d prior on SM transmit signals. And the detector in [18] uses the vector-form of SM transmit signals.

    On the other hand, considering future 5G wireless communications with massive connections, the signal detection for multi-user SM-MIMO will become even more difficult.Recently, reference [19] proposed a class of efficient detectors for multi-user SM, termed as structured approximate message passing(Str-AMP) detector, by exploiting the inherent structure of SM signals. It is shown that the performance of the Str-AMP detector is better than traditional detectors as [16]-[18], with lower computational complexity.

    For striking a better tradeoff between performance and complexity toward 5G wireless systems, in this paper, a pair of efficient detectors are proposed for the multi-user spatial modulation system. Specially, a threshold-aided AMP detector (T-AMP) is proposed with the purpose of reducing the computational complexity of the Str-AMP detector. The threshold is employed to determine whether the estimated signal at each iteration is reliable. In addition, a novel probability ranking aided approximate message passing detector is proposed for multi-user spatial modulation system. The so-called probability-ranking-aided AMP (P-AMP) detector is proposed with the purpose of improving the performance of traditional Str-AMP detector. Specifically,the probability ranking is used to get a signal search space in the P-AMP detector. Then we can obtain the optimum result from the signal search space. In conclusion, the P-AMP detector are capable of achieving better system performance than Str-AMP from the signal space. Simulation results show that T-AMP detector is able to achieve similar performance as Str-AMP with lower complexity, while the proposed P-AMP detector exhibits a better symbol error rate (SER) performance with similar complexity.

    The remainder of this paper is organized as follows. In Section II, a brief overview of the system model and the Str-AMP detector for multi-user SM systems is given. In Section III,the proposed T-AMP detector and P-AMP detector are introduced. Section IV presents the simulation results. Finally, concluding remarks are drawn in Section V.

    II. MULTI-USER SM SYSTEM

    2.1 Transmitter model and str-AMP detector

    Assume that the multi-user SM system has Kusers, each user has Nttransmit antennas and only one transmit antenna is activated for transmitting symbol. We also assume that there are Nrreceive antennas at the base station (BS). The number of total transmit antenna combinations (TAC) for every user is Nt. Hence, in each time slot for every user, the first block of l1=log2Ntbits is assigned to select a transmit antenna combination index j(j∈(1,Nt)), while the second block ofbits is used to modulate M-PSK/QAM symbols. We assumedenotes the bits of the k-th user. Specifically,the first partof bkis mapped to the activated index j of user k, the second partof b is mapped to thekconstellation symbol xkj. Then the SM transmit vector of user k can be expressed as

    where xkindicates the transmit vector of user k. And xkjindicate the M-PSK/QAM constellation symbols of user k, it denotes the j-th element of xk. At this time, only the j-th transmit antenna is activated. In conclusion,only one transmit is activated in each time slot for every user.

    Repeat the above coding progress, the transmit vector of all the users can be denoted as

    Assume the transmit signals x go through the block Rayleigh fading channeldenotes the channel matrix between the k-th user and the BS, the elementofobeys the Gaussian distribution CN(0,1), where j∈{1,2,…,Nt} and a∈{1,2,…,Nr}. Then the a-th received signal yain the BS can be formulated as

    where nadenote the Additive White Gaussian Noise (AWGN) with the mean 0 and the variance σ2.

    The model of (3) can be rewritten as vector form

    In [14], a detector named Str-AMP is proposed. The Str-AMP detector obtains the mean and the variance of the symbols through that it treats the transmitted antenna as a Gaussian random variable by AMP framework [22].Specially, based on (4), we can obtain

    In conclusion, we can update the estimation of xiiteratively through AMP detector. After the maximum iterations T1is reached, the final resultis got.

    2.2 Proposed T-AMP and P-AMP detectors for multi-user SM System

    A threshold-aided AMP (T-AMP) detector is proposed to maintain the same SER performance of the Str-AMP detector with lower complexity. In the proposed T-AMP detector,a threshold is employed to determine whether the estimated signal? obtained from pi(x)at each iteration is reliable. Specifically, if the Euclidean distance (ED) of x? is inside the threshold, this output x? is taken as the final result. Otherwise, the iterative progress continues. Therefore, we can reduce the complexity of Str-AMP detector by introducing the threshold. The details of the proposed T-AMP detector is described as follows.

    1) As only one transmit antenna is activated for transmitting symbol in each user,we initialize the probability vector pi(x ) of the i-th transmit antenna in the first timewhere x∈s anddenote the M-QAM or M-PSK modulation alphabet. On the other hand, we initialize the messagesandfor the j-th receive antenna, where yjdenotes the j-th element of y, j=1,...,Nr.

    where Hjidenote the (j,i)th element of H.

    6) Update the probability vectorof the i-th transmit antenna in the (t+1)-th iteration as follows,

    7) For each transmit antenna i∈{1,2,...,N}, the probability vector

    tcan be expressed as

    The estimated index h(h∈[1,2,...,M +1])denotes as the index for transmit antenna i can be given by the index of the max value of probability vector

    Therefore, the estimated symbolfor transmit antenna i.

    The estimated signal x? of all the users can be denoted by traversing all the transmit antenna index as follows

    8) Then the output x? is considered as the final output if the Euclidean Distance (ED) of x? satisfies

    Fig. 1 with different parameters β

    Fig. 2 SER with different parameters β

    Otherwise, the next t+1-th iteration is executed to begin with step 2. The above iterative process is stopped until the number of iterations reaches a fixed maximum number or we have satisfied (19).

    From step 8 of T-AMP, it can be seen that the value of β in the threshold Vthhighly affects the performance of T-AMP. Because the value of Vthcan decide the number of iterations. The selection of the value β in our proposed detector for multi-user SM system is derived as follows.

    If we have gotten the right estimated signalcan be simplified asBased on the statistic, in multi-user SM, sincefollows a Chi-squared distribution with 2Nrdegrees of freedom, the probabilitycan be denoted as

    In conclusion, we can select an appropriate β from the range of 1≤β≤2 which is capable of achieving the expected complexity and SER performance for a specific multi-user SM.

    2.3 Proposed P-AMP detector

    In this subsection, a search space ? from pi(s ) through probability ranking is employed in the proposed P-AMP detector after the iterative progress of AMP detector for getting a better SER performance. Then we can obtain the estimated modulated symbols sΛiby comparing the probability pi(s ).

    After traversing the search space ?, the final result of estimated TAC and symbol (Λ~,s~)can be obtained. The details of the proposed P-AMP detector are described as follows.

    1) First, from (16), we can obtain the probability vector, which denotes as different constellational symbols at every transmit antenna. The active probability vector P of transmit antennas is obtained by

    2) For each user k, we choose the second largest transmit antenna index kcof the active probability vectorof transmit antennas as the candidate. After traversing all the users, the candidate C1can be formulated as

    Then the ordered user indices W can be obtained by

    The new candidate set C1is obtained by retaining the first m elements of W as

    For these m users in C1, we have two choices. Specifically, we can choose the largest transmit index or the second largest index wmas the activated index. Thus there are 2mpossible activated transmit combinations for all the users, which can be described as. We assume the r-th activated transmit antenna combination(r=1,2,...,R ), wheredenote the activated transmit antennas index of the user k. Thus the estimated modulate symbol sdrkin the drk-th transmit antenna of user k can be obtained by

    Then the estimated modulate symbol sdrkof activated transmit antenna combination Ω is formulated as

    Finally, the output estimated TAC and symbols () can be expressed as

    2.4 Complexity analysis

    In this subsection, we can analyzed the complexity of the proposed algorithms based on real-valued flops, which can be denoted as a real-valued multiplication or addition.

    For specific matrices A∈?m×n, B∈?n×p,C ∈ ?n×1and, the operations of AB,andrequire 8mnp?2mp,4n?1, and 2n flops, respectively.

    Accordingly, the complexity of the Str-AMP detectorCS, the T-AMP detector CT, the P-AMP detector CPcan be computed by (27),(28) and (29).

    The terms assigned numbers in (27), (28),(29) denote the corresponding equation in this letter. Specifically, the first part of (27) means that the complexity calculation of (10), the same meaning can be found in other part.

    The details of the complexity of the Str-AMP detector, the T-AMP detector and the P-AMP detector is given as follows. The complexity of Str-AMP detector CSis mainly invoked by (6)-(7), and (10)-(15) in the paper.

    Fig. 3 Complexity comparison between the proposed and existing detectors for multi-user SM systems with K=16, Nt=4, Nr=64, m=4

    In general, the Str-AMP detector is a iterative process of (6)-(7) and (10)-(15), and we denote T1as the iterative number of the Str-AMP detector. Hence, the complexity of Str-AMP detector CSis denoted by (27).

    The complexity of T-AMP detector CTis mainly invoked by (8)-(16) and (19) in the paper. The complexity of (10)-(15) is described in the above calculation. The complexity of(8)-(9), (16) and (19) is described as follows.

    Hence, the complexity of T-AMP detector CTis denoted by (27).

    The complexity of P-AMP detector CPis mainly invoked by (6)-(7), (10)-(15) and (26)in the paper. The complexity of (6)-(7) and(10)-(15) is described in the above calculation.

    Hence, the complexity of P-AMP detector is denoted by (28).

    Figure 3 compares the complexity of the proposed T-AMP detector, the proposed P-AMP detector and the Str-AMP detector for the QPSK-aided multi-user SM systems with K=16, Nt=4 and Nr=64 As shown in figure 2, the proposed P-AMP detector can achieve 32% complexity reduction over the Str-AMP detector. The complexity of the proposed P-AMP detector is almost same to the Str-AMP detector.

    Figure 4 compares the complexity of the proposed T-AMP detector, the proposed P-AMP detector and the Str-AMP detector for the QPSK-aided multi-user SM systems withK=32, Nt=2 and Nr=64. As shown in figure 4, the proposed P-AMP detector can achieve 26% complexity reduction over the Str-AMP detector. The complexity of the proposed P-AMP detector is similar to the Str-AMP detector.

    III. SIMULATION RESULTS

    In this section, we have compared the symbol error rate (SER) performance and the complexity of the proposed and the conventional Str-AMP detectors for multi-user SM systems.In our comparisons, we utilize the β=1 [21]and T1=T2=15 in the proposed detectors.The Orthogonal Frequency Division Multiplexing (OFDM) framework is considered in our MIMO setups, thus the Rayleigh fading channel is employed.

    Figure 5 compares the SER performance of the proposed T-AMP detector, the proposed P-AMP detector and the Str-AMP detector for the QPSK-aided multi-user SM systems with K=16,Nt=4 and Nr=64. As shown in figure 5, the proposed T-AMP detector is capable of providing similar performance as Str-AMP detector. The proposed P-AMP detector is capable of providing better performance as AMP detector with similar complexity over the Str-AMP detector.

    Figure 6 compares the SER performance of the proposed T-AMP detector, the proposed P-AMP detector and the Str-AMP detector for the QPSK-aided multi-user SM systems with K=32,Nt=2 and Nr=64. We show that the proposed T-AMP detector is capable of providing similar performance as Str-AMP detector. The proposed P-AMP detector can provide better performance as AMP detector with similar complexity over the Str-AMP detector..

    IV. CONCLUSIO N

    In this paper, toward 5G wireless communications and multi-user spatial modulation, two class of novel detectors, namely T-AMP and P-AMP, were proposed for achieving a balanced tradeoff between system performance and computational complexity. We show that the proposed T-AMP detector was capable of achieving similar performance as traditional Str-AMP detector with lower complexity. On the other hand, the proposed P-AMP detector was able to achieve better performance with similar complexity.

    Fig. 4 Complexity comparison between the proposed and existing detectors for multi-user SM systems with K=32, Nt=2, Nr=64, m=4

    Fig. 5 SER performance between the proposed and existing detectors for multi-user SM systems with K=16, Nt=4, Nr=64, m=4

    Fig. 6 SER performance between the proposed and existing detectors for multi-user SM systems with K=32, Nt=2, Nr=64, m=4

    ACKNOWLEDGEMENT

    The financial support is gratefully acknowledged by the National Science Foundation of China under Grant numbers 61471090, the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No.2015D09), the Foundation Project of Science and Technology on Electronic Information Control Laboratory under Grant JS17041403811 (201606071370-004-001), and the Foundation Project of National Key Lab. of Sci. and Tech. on Comm. under Grant 6142102010702.

    [1] P. Yang, M. D. Renzo, L. Hanzo, et al. Single-Carrier SM-MIMO: A promising design for broadband large-scale antenna systems[J]. IEEE Communications Surveys Tutorials, 2016, 18(2),1687-1716.

    [2] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura,L. Hanzo. Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation[J]. Proc IEEE, 2014, 102(1), 56-103.

    [3] J. Jeganathan, A. Ghrayeb, L. Szczecinski. Spatial modulation: optimal detection and performance analysis[J]. IEEE Commun. Lett., 2008,12(8), 545-547.

    [4] M. Di Renzo, H. Haas, P. M. Grant. Spatial modulation for multiple-antenna wireless systems:a survey[J]. IEEE Commun. Mag, 2011, 49(12),182-191.

    [5] R. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn,S. Yun. Spatial modulation[J]. IEEE Trans. Veh.Technol, 2008, 57(4), 2228-224.

    [6] P. Yang, M. Di Renzo, Y. Xiao, S. Li, L. Hanzo. Design guidelines for spatial modulation[J]. IEEE Commun. Surv. Tuts.,2015, 17(1), 6-26.

    [7] Y. Yang, B. Jiao. Information-guided channel-hopping for high data rate wireless communication. IEEE Commun. Lett., 2008, 12(4),225-227.

    [8] R. Y. Mesleh, M. Di Renzo, H. Haas, P. M. Grant.Trellis coded spatial modulation[J]. IEEE Trans.Wireless Commun., 2010, 9(7), 2349-2361.

    [9] R. Mesleh, H. Elgala, H. Haas. Optical spatial modulation,[J]. IEEE/OSA J. Opt. Commun.Netw., 2011, 3(3),. 234-244.

    [10] M. Di Renzo, H. Haas. Bit error probability of SM-MIMO over generalized fading channels[J].IEEE Trans. Veh. Technol., 2012, 61(3), 1124-1144.

    [11] P. Raviteja, T. L. Narasimhan, A. Chockalingam.Mulituser sm-mimo versus massive mimo:Uplink performance comparison[J]. Computer Science., 2013.

    [12] T. L. Narasimhan, A. Chockalingam. Channel hardening-exploiting message passing (CHEMP)receiver in large-scale MIMO systems[J]. IEEE J.Sel. Topics Signal Process., 2014, 8(5), 847-860.

    [13] T. L. Narasimhan, P. Raviteja, A. Chockalingam,Generalized spatial modulation in large-scale multiuser MIMO systems[J]. IEEE Trans. Wireless Commun., 2015, 14(7), 3764-3779.

    [14] A. Garcia-Rodriguez, C. Masouros. Low-complexity compressive sensing detection for multi-user spatial modulation systems[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015.

    [15] A. Garcia-Rodriguez, C. Masouros. Low-complexity Compressive Sensing Detection for Spatial Modulation in Large-Scale Multiple Access Channels[J]. IEEE Trans. Commun., 2015, 63(7),2565-2579.

    [16] S. Wang, Y. Li, J, J. Wang, M. Zhao. Low-complexity multiuser detection in massive spatial modulation MIMO[C]. IEEE Globecom, 2014,1-5.

    [17] S. Wang, Y. Li, J, M. Zhao, J. Wang. Energy-effi-cient and low-complexity uplink transceiver for massive spatial modulation MIMO[J]. IEEE Trans.Veh. Technol., 2015, 64(10), 4617-4632.

    [18] S. Wang, Y. Li, J. Wang. Multiuser detection in massive spatial modulation mimo with low-resolution adcs[J]. IEEE Trans. Wireless Commun.,2015,14(4), 2156-2168.

    [19] X. Meng, S. Wu, J, L. Kuang, D. Huang, J. Lu.Multi-user detection for spatial modulation via structured approximate message passing[J].IEEE Commun. Lett., 2016, 20(8), 1527-1530.

    [20] P. Raviteja, T. L. Narasimhan, A. Chockalingam.Detection in large scale multiuser SM-MIMO systems: Algorithms and performance[C]. Proc.IEEE Veh. Technol. Conf. (VTC’14-Spring), 2014,1-5.

    [21] L. Xiao, P. Yang, Y. Xiao, S. Fan, M. Renzo, W.Xiang, S. Li. Efficient compressive sensing detectors for generalized spatial modulation systems[J]. IEEE Trans. Veh. Technol., 2017, 66(2),1284-1298.

    [22] D. L. Donoho, A. Maleki, A. Montanari. Message-passing algorithms for compressed sensing[J]. Proc. Nat. Acad. Sci, 2009, 106(45),18914-18919.

    [23] D. Wang, Y. Zhang, H. Wei, et al. An overview of transmission theory and techniques of largescale antenna systems for 5G wireless communications[J]. [Online]. Available: http://arxiv.org/abs/1605.03416

    [24] S. Uluocak, E. Basar, Spatial modulation for multi-user massive MIMO systems[C]. Signal Processing and Communications Applications Conference (SIU), 2017.

    [25] L. He, J. Wang, et al. Bandwidth Efficiency Maximization for Single-Cell Massive Spatial Modulation MIMO: An Adaptive Power Allocation Perspective[J]. IEEE Access, 2017, 5, 1482-1495.

    [26] L. He, J. Wang, J. Song, L. Hanzo. On the multi-user, multi-cell massive spatial modulation uplink: How many antennas for each user?[J]. IEEE Trans. Wireless Commun., in press,doi: 10.1109/TWC.2016.2645201.

    [27] J. Andrews et al, ``What Will 5G be?[J]. IEEE JSAC, 2014, 32(6), 1065-1082.

    [28] C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D.Yuan, H. Aggoune, H. Haas, S. Fletecher, E.Hepsaydir. Cellular Architecture and Key Technologies for 5G Wireless Communication Networks[J]. IEEE Commun. Mag., 2014, 52(2), 122-130.

    [29] C.-Lin, C. Rowell, S. Han, Z. Xu, G. Li, Z. Pan. Toward Green and Soft: A 5G Perspective[J]. IEEE Commun. Mag., 2014, 52(2), 66-73.

    [30] V. Jungnickel, K. Manolakis, W. Zirwas, B.Panzner, V. Braun, M. Lossow, M. Sternad, R.Apelfrojd, T. Svensson. The Role of Small Cells,Coordinated Multipoint, and Massive MIMO in 5G[J]. IEEE Commun. Mag., 2014, 52(5), 44-51..

    [31] E. Basar. Index modulation techniques for 5G wireless networks[J]. IEEE Commun. Mag., 2016,54(7): 168-175.

    [32] P. Patcharamaneepakorn, S. Wu, C. X. Wang, et al. Spectral, energy, and economic efficiency of 5G multicell massive MIMO systems with generalized spatial modulation[J]. IEEE Trans. Veh..Technol., 2016, 65(12): 9715-9731.

    [33] Y. Xiao, L. Xiao, L. Dan, et al. Spatial modulaiton for 5G MIMO communications[C]. IEEE Digital Signal Processing (DSP), 2014 19th International Conference, 847-851.

    [34] X. Li, T. Jiang, S. Cui, J. An, and Q. Zhang. Cooperative Communications Based on Rateless Network Coding in Distributed MIMO Systems[J].IEEE Wireless Communications, June., 2010,17(3), 60-67.

    [35] H. Xie, F. Gao, S. Zhang, S. Jin. A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis expansion model[J].IEEE Trans. Veh. Technol., Apr., 2017, 66(4),3170-3184.

    [36] H. Xie, F. Gao, and S. Jin. An overview of lowrank channel estimation for massive MIMO systems[J]. IEEE Access. Nov., 2016, 4, 7313--7321.

    [37] W. Feng, Y. Wang, D. Lin, N. Ge, J. Lu, and S. Li.When mmWave Communications Meet Network Densification: A Scalable Interference Coordination Perspective[J]. IEEE Journal on Selected Areas in Comm., Jul., 2017, 35(7).

    夜夜夜夜夜久久久久| 欧美xxxx性猛交bbbb| 亚洲五月婷婷丁香| 麻豆国产av国片精品| 欧美乱妇无乱码| 1024手机看黄色片| 精品国内亚洲2022精品成人| 日日摸夜夜添夜夜添小说| 少妇的逼水好多| 亚洲成av人片在线播放无| 国产精品亚洲美女久久久| 国产黄片美女视频| 亚洲精品在线美女| 亚洲一区二区三区色噜噜| 国产乱人视频| 日韩中字成人| 最近视频中文字幕2019在线8| 亚洲最大成人av| 一区二区三区免费毛片| 亚洲国产色片| 成人鲁丝片一二三区免费| 久久伊人香网站| 久久精品国产亚洲av天美| 欧美极品一区二区三区四区| 88av欧美| 亚州av有码| 九色成人免费人妻av| 国产精品自产拍在线观看55亚洲| 他把我摸到了高潮在线观看| 久久久久久久亚洲中文字幕 | 亚洲av中文字字幕乱码综合| 国产精品99久久久久久久久| 国产毛片a区久久久久| 在线观看舔阴道视频| 中文字幕av在线有码专区| 精品久久久久久久久久免费视频| 成人美女网站在线观看视频| 国产在线男女| 欧美+日韩+精品| 免费av不卡在线播放| 国产一区二区三区视频了| 午夜免费成人在线视频| 少妇被粗大猛烈的视频| 99热只有精品国产| 亚洲无线在线观看| 我要搜黄色片| 日韩欧美精品免费久久 | 国产精品亚洲一级av第二区| 中文字幕人成人乱码亚洲影| 老鸭窝网址在线观看| 欧美成人免费av一区二区三区| 特级一级黄色大片| 国产主播在线观看一区二区| 午夜免费激情av| 老女人水多毛片| 99视频精品全部免费 在线| 精品一区二区免费观看| 国产欧美日韩一区二区精品| 日韩欧美在线乱码| 亚洲精品成人久久久久久| а√天堂www在线а√下载| 国产单亲对白刺激| 欧美日韩综合久久久久久 | 亚洲av美国av| 国产欧美日韩一区二区精品| 搡老熟女国产l中国老女人| 国产精品影院久久| 欧美性感艳星| 国产精品久久电影中文字幕| 亚洲第一区二区三区不卡| 男女床上黄色一级片免费看| 亚洲欧美激情综合另类| 757午夜福利合集在线观看| 欧美在线黄色| 日本一二三区视频观看| 国产在线男女| 少妇丰满av| 免费人成视频x8x8入口观看| 又黄又爽又刺激的免费视频.| 亚洲国产高清在线一区二区三| 88av欧美| 在线看三级毛片| 国产熟女xx| 久久国产乱子伦精品免费另类| 少妇裸体淫交视频免费看高清| 91麻豆av在线| 全区人妻精品视频| 国产三级黄色录像| 成年免费大片在线观看| h日本视频在线播放| 久久精品国产清高在天天线| 一本一本综合久久| 国产精品不卡视频一区二区 | 国产大屁股一区二区在线视频| 欧美区成人在线视频| 国产精品免费一区二区三区在线| 亚洲成人久久爱视频| 99久久精品一区二区三区| 欧美最新免费一区二区三区 | 中出人妻视频一区二区| 精品人妻一区二区三区麻豆 | 又爽又黄无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 可以在线观看毛片的网站| 国产精品亚洲一级av第二区| 丁香欧美五月| 乱人视频在线观看| 一个人观看的视频www高清免费观看| 可以在线观看的亚洲视频| 亚洲第一电影网av| 国产精品亚洲美女久久久| 大型黄色视频在线免费观看| 美女大奶头视频| 久久精品国产清高在天天线| 国内毛片毛片毛片毛片毛片| 一级作爱视频免费观看| 蜜桃久久精品国产亚洲av| www.999成人在线观看| 亚洲国产欧美人成| 中亚洲国语对白在线视频| 欧美黄色淫秽网站| av专区在线播放| 婷婷精品国产亚洲av| 久久国产乱子免费精品| 深爱激情五月婷婷| 简卡轻食公司| 国产成人啪精品午夜网站| av专区在线播放| 国产伦在线观看视频一区| 午夜精品在线福利| 很黄的视频免费| 久久久久精品国产欧美久久久| 欧美乱色亚洲激情| 免费在线观看影片大全网站| 一二三四社区在线视频社区8| 久久午夜福利片| 亚洲欧美精品综合久久99| 一个人看的www免费观看视频| 我的女老师完整版在线观看| 国产亚洲欧美98| 白带黄色成豆腐渣| 丰满乱子伦码专区| 又爽又黄a免费视频| 三级国产精品欧美在线观看| 精品免费久久久久久久清纯| 国产成人啪精品午夜网站| 不卡一级毛片| 亚洲av熟女| 国产综合懂色| 久久国产乱子免费精品| 简卡轻食公司| 亚洲经典国产精华液单 | 精品久久久久久久久久久久久| 国产视频一区二区在线看| 国产真实伦视频高清在线观看 | 在线看三级毛片| 亚洲欧美精品综合久久99| www.熟女人妻精品国产| 亚洲va日本ⅴa欧美va伊人久久| 国产三级中文精品| 三级男女做爰猛烈吃奶摸视频| 午夜福利18| 国产一区二区三区在线臀色熟女| 精品人妻熟女av久视频| 99国产精品一区二区三区| 久久99热这里只有精品18| 国产淫片久久久久久久久 | 天堂√8在线中文| 一级黄片播放器| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区三| 麻豆国产av国片精品| 久久久久久久久久成人| 麻豆国产97在线/欧美| 久久精品国产99精品国产亚洲性色| .国产精品久久| АⅤ资源中文在线天堂| 欧美丝袜亚洲另类 | 精品一区二区免费观看| 成年免费大片在线观看| 国产精品一区二区性色av| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 免费大片18禁| 国产色婷婷99| 热99在线观看视频| 免费在线观看亚洲国产| 久久香蕉精品热| 亚洲精品粉嫩美女一区| 精品人妻一区二区三区麻豆 | 日本一本二区三区精品| 美女免费视频网站| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 久久6这里有精品| 免费人成在线观看视频色| 亚洲国产精品sss在线观看| 俺也久久电影网| 91在线观看av| 亚洲国产欧洲综合997久久,| 久久草成人影院| av福利片在线观看| 国产精品免费一区二区三区在线| 男人和女人高潮做爰伦理| 久久久久精品国产欧美久久久| 成年版毛片免费区| 国产爱豆传媒在线观看| 中文字幕熟女人妻在线| 国产69精品久久久久777片| 9191精品国产免费久久| 精品人妻视频免费看| 精品午夜福利在线看| а√天堂www在线а√下载| 欧美丝袜亚洲另类 | 欧美精品啪啪一区二区三区| av在线观看视频网站免费| 综合色av麻豆| 两人在一起打扑克的视频| 在线十欧美十亚洲十日本专区| 深夜精品福利| 亚洲男人的天堂狠狠| 12—13女人毛片做爰片一| 亚洲aⅴ乱码一区二区在线播放| 欧美潮喷喷水| 免费av毛片视频| 国产美女午夜福利| 国产极品精品免费视频能看的| 少妇裸体淫交视频免费看高清| 夜夜躁狠狠躁天天躁| 97人妻精品一区二区三区麻豆| 亚洲最大成人手机在线| 精品福利观看| 精品免费久久久久久久清纯| 亚洲午夜理论影院| 哪里可以看免费的av片| 中文字幕人妻熟人妻熟丝袜美| 午夜免费成人在线视频| 国产精华一区二区三区| 国产黄片美女视频| 亚洲七黄色美女视频| 国产欧美日韩精品一区二区| 深夜精品福利| 中文在线观看免费www的网站| 亚洲精品一区av在线观看| 俺也久久电影网| 老司机深夜福利视频在线观看| 天堂动漫精品| av黄色大香蕉| 男人舔女人下体高潮全视频| 中文字幕精品亚洲无线码一区| 国产成+人综合+亚洲专区| 国产精品不卡视频一区二区 | 欧美精品啪啪一区二区三区| av国产免费在线观看| 亚洲国产精品成人综合色| 国产精品永久免费网站| 国产视频一区二区在线看| 欧美精品国产亚洲| 久久性视频一级片| 亚洲三级黄色毛片| 日韩精品青青久久久久久| 欧美性感艳星| 人妻久久中文字幕网| av天堂中文字幕网| 天堂√8在线中文| 欧美中文日本在线观看视频| 欧美日韩综合久久久久久 | 丁香欧美五月| 熟女电影av网| 丰满人妻一区二区三区视频av| 一边摸一边抽搐一进一小说| 亚洲精品乱码久久久v下载方式| 小说图片视频综合网站| 黄片小视频在线播放| 麻豆成人午夜福利视频| 国产熟女xx| 一区福利在线观看| 最后的刺客免费高清国语| 日日夜夜操网爽| 亚洲精品亚洲一区二区| 国产精品女同一区二区软件 | 亚洲成a人片在线一区二区| 人妻制服诱惑在线中文字幕| 国产欧美日韩一区二区三| 国产人妻一区二区三区在| 一本综合久久免费| 久久国产乱子伦精品免费另类| 成人午夜高清在线视频| 日本在线视频免费播放| 国内精品美女久久久久久| 极品教师在线免费播放| 波多野结衣巨乳人妻| 男女床上黄色一级片免费看| 十八禁国产超污无遮挡网站| 亚洲综合色惰| 亚洲国产精品久久男人天堂| 精品国产三级普通话版| 蜜桃久久精品国产亚洲av| 日韩欧美精品v在线| 精品无人区乱码1区二区| 永久网站在线| 一本一本综合久久| 国内精品美女久久久久久| 中国美女看黄片| 欧美日韩瑟瑟在线播放| 男女之事视频高清在线观看| 一个人看视频在线观看www免费| 亚洲无线在线观看| 免费观看精品视频网站| 五月玫瑰六月丁香| 亚洲欧美日韩高清在线视频| 88av欧美| 天堂网av新在线| 一进一出好大好爽视频| 日本在线视频免费播放| 久久婷婷人人爽人人干人人爱| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久亚洲av鲁大| 精品无人区乱码1区二区| 国产精品综合久久久久久久免费| 麻豆国产av国片精品| 日本黄色视频三级网站网址| 久久久久九九精品影院| 久久国产精品影院| 国产精品久久视频播放| 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放| 熟妇人妻久久中文字幕3abv| 超碰av人人做人人爽久久| 小蜜桃在线观看免费完整版高清| 国产精品日韩av在线免费观看| 夜夜躁狠狠躁天天躁| 在线免费观看的www视频| av黄色大香蕉| 美女黄网站色视频| 亚洲av成人精品一区久久| 国产91精品成人一区二区三区| 亚洲美女搞黄在线观看 | 男人舔奶头视频| 熟女人妻精品中文字幕| 亚洲av成人不卡在线观看播放网| 国产麻豆成人av免费视频| 国产一区二区三区视频了| 最后的刺客免费高清国语| 波野结衣二区三区在线| 久久天躁狠狠躁夜夜2o2o| 少妇高潮的动态图| av视频在线观看入口| 日本熟妇午夜| 免费人成视频x8x8入口观看| 波野结衣二区三区在线| 高清毛片免费观看视频网站| 精品国产亚洲在线| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站| 久久天躁狠狠躁夜夜2o2o| 欧美日本视频| 人人妻,人人澡人人爽秒播| 精华霜和精华液先用哪个| 国产精品三级大全| 欧美色欧美亚洲另类二区| 亚洲专区中文字幕在线| 最后的刺客免费高清国语| 99久久九九国产精品国产免费| 听说在线观看完整版免费高清| 99热精品在线国产| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 国产乱人伦免费视频| 天堂√8在线中文| 精品久久久久久成人av| 波多野结衣高清无吗| 成人无遮挡网站| 成人永久免费在线观看视频| 久久精品影院6| 免费黄网站久久成人精品 | 国产日本99.免费观看| av中文乱码字幕在线| 久久99热6这里只有精品| 成年女人看的毛片在线观看| 狠狠狠狠99中文字幕| 久久久久国产精品人妻aⅴ院| 69av精品久久久久久| 黄色配什么色好看| 亚洲精华国产精华精| 在线a可以看的网站| 国产成人影院久久av| 全区人妻精品视频| 麻豆国产av国片精品| 999久久久精品免费观看国产| 日本a在线网址| 啦啦啦韩国在线观看视频| 久久久成人免费电影| 成年免费大片在线观看| 亚洲成人久久性| 亚洲精华国产精华精| 欧美绝顶高潮抽搐喷水| 男女床上黄色一级片免费看| 中出人妻视频一区二区| 国产一区二区三区视频了| 欧美zozozo另类| 在线国产一区二区在线| 精品乱码久久久久久99久播| 亚洲欧美精品综合久久99| 日韩精品青青久久久久久| 麻豆国产av国片精品| 久久热精品热| 很黄的视频免费| 无遮挡黄片免费观看| 国产精品伦人一区二区| 国产精品av视频在线免费观看| 直男gayav资源| 一a级毛片在线观看| 97超级碰碰碰精品色视频在线观看| eeuss影院久久| av视频在线观看入口| 免费观看精品视频网站| 精品人妻视频免费看| 99在线视频只有这里精品首页| 亚洲经典国产精华液单 | 国产又黄又爽又无遮挡在线| 亚洲国产精品sss在线观看| bbb黄色大片| 欧美三级亚洲精品| 夜夜爽天天搞| 国产伦一二天堂av在线观看| 波野结衣二区三区在线| 色噜噜av男人的天堂激情| 能在线免费观看的黄片| 国产白丝娇喘喷水9色精品| 人人妻人人澡欧美一区二区| 色尼玛亚洲综合影院| 国产男靠女视频免费网站| 久9热在线精品视频| 亚洲av二区三区四区| 99国产综合亚洲精品| 国产伦精品一区二区三区四那| 色综合亚洲欧美另类图片| 特大巨黑吊av在线直播| 此物有八面人人有两片| 久久午夜亚洲精品久久| 欧美激情久久久久久爽电影| 一本久久中文字幕| 嫩草影视91久久| 一级av片app| 男女做爰动态图高潮gif福利片| av在线老鸭窝| 中文字幕熟女人妻在线| 白带黄色成豆腐渣| 国产精品嫩草影院av在线观看 | ponron亚洲| 国产69精品久久久久777片| avwww免费| 久久人妻av系列| 亚洲内射少妇av| 国产精品不卡视频一区二区 | 亚洲一区二区三区色噜噜| 一进一出抽搐动态| 精华霜和精华液先用哪个| 又爽又黄a免费视频| 国产av不卡久久| 国产熟女xx| 毛片一级片免费看久久久久 | 日韩欧美国产一区二区入口| 狂野欧美白嫩少妇大欣赏| 一进一出抽搐gif免费好疼| 99热6这里只有精品| 精品久久久久久久久亚洲 | 国产午夜福利久久久久久| 狂野欧美白嫩少妇大欣赏| 一级a爱片免费观看的视频| 午夜久久久久精精品| 色哟哟·www| 国产伦一二天堂av在线观看| 日韩高清综合在线| 国产乱人视频| 精品午夜福利视频在线观看一区| 国产私拍福利视频在线观看| 日韩欧美在线乱码| 嫩草影院入口| 亚洲专区中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 国产高清视频在线观看网站| 亚洲,欧美,日韩| 性插视频无遮挡在线免费观看| 1000部很黄的大片| 女人被狂操c到高潮| www.色视频.com| 国产精品一区二区免费欧美| 99国产综合亚洲精品| 伦理电影大哥的女人| 1024手机看黄色片| 亚洲成人中文字幕在线播放| 国产在线精品亚洲第一网站| 国内毛片毛片毛片毛片毛片| 午夜两性在线视频| 97超级碰碰碰精品色视频在线观看| 亚洲美女视频黄频| 怎么达到女性高潮| 日本免费a在线| 国产精品久久久久久久电影| 国产视频内射| 91麻豆精品激情在线观看国产| 中文字幕高清在线视频| 丝袜美腿在线中文| 成人毛片a级毛片在线播放| 成人鲁丝片一二三区免费| 我的女老师完整版在线观看| 中文资源天堂在线| 高清毛片免费观看视频网站| 免费看a级黄色片| 级片在线观看| 欧美性猛交╳xxx乱大交人| 又紧又爽又黄一区二区| 亚洲欧美激情综合另类| 久久精品国产亚洲av香蕉五月| 国产伦精品一区二区三区四那| 丝袜美腿在线中文| 久久久久久九九精品二区国产| 老司机福利观看| АⅤ资源中文在线天堂| 日韩精品中文字幕看吧| 精品熟女少妇八av免费久了| 久久精品夜夜夜夜夜久久蜜豆| 窝窝影院91人妻| 成人午夜高清在线视频| 老熟妇仑乱视频hdxx| 亚洲欧美精品综合久久99| 免费高清视频大片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品久久国产高清桃花| 人人妻,人人澡人人爽秒播| 久久久久精品国产欧美久久久| or卡值多少钱| 午夜两性在线视频| 女人被狂操c到高潮| 国产成年人精品一区二区| 老司机深夜福利视频在线观看| 成年人黄色毛片网站| 亚洲成人精品中文字幕电影| 成人美女网站在线观看视频| 日日干狠狠操夜夜爽| 每晚都被弄得嗷嗷叫到高潮| 亚洲男人的天堂狠狠| 精品乱码久久久久久99久播| 精品国内亚洲2022精品成人| 欧美性猛交黑人性爽| 日日摸夜夜添夜夜添av毛片 | 精品久久久久久久末码| 国产精品98久久久久久宅男小说| 日韩高清综合在线| 久久热精品热| 美女高潮的动态| 少妇人妻一区二区三区视频| 欧美高清性xxxxhd video| 色综合亚洲欧美另类图片| 又黄又爽又刺激的免费视频.| 有码 亚洲区| 中文资源天堂在线| 精品久久久久久久末码| 亚洲精品一区av在线观看| 男女那种视频在线观看| 啪啪无遮挡十八禁网站| 成人国产综合亚洲| 亚洲av电影在线进入| 一级黄片播放器| 成人三级黄色视频| 欧美日韩亚洲国产一区二区在线观看| 免费av毛片视频| 亚洲天堂国产精品一区在线| 一二三四社区在线视频社区8| 久久久久久久亚洲中文字幕 | x7x7x7水蜜桃| 少妇丰满av| 久久久精品大字幕| 国内毛片毛片毛片毛片毛片| av福利片在线观看| 成人性生交大片免费视频hd| 美女大奶头视频| 精品日产1卡2卡| 亚洲熟妇中文字幕五十中出| 91在线观看av| 国产高清有码在线观看视频| 国产精品1区2区在线观看.| 欧美成人一区二区免费高清观看| 国产免费一级a男人的天堂| 免费在线观看亚洲国产| 精华霜和精华液先用哪个| 国产伦精品一区二区三区四那| 国模一区二区三区四区视频| 精品人妻视频免费看| 国产伦精品一区二区三区四那| 日韩欧美精品免费久久 | 国产大屁股一区二区在线视频| 国产黄色小视频在线观看| 久久热精品热| 久久人妻av系列| 欧美激情在线99| av天堂在线播放| 淫妇啪啪啪对白视频| 91久久精品国产一区二区成人| 国产三级中文精品| 99热这里只有是精品50| 夜夜爽天天搞| 色在线成人网| 天堂av国产一区二区熟女人妻| 久久久久九九精品影院| 少妇被粗大猛烈的视频| 免费av观看视频| 一本一本综合久久| 久久精品国产亚洲av香蕉五月| 亚洲av美国av| 成年版毛片免费区| 美女高潮的动态|