• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Artificial Noise Aided Polar Codes for Physical Layer Security

    2017-04-10 02:39:41
    China Communications 2017年12期

    China National Digital Switching System Engineering and Technological R&D Center, Zhengzhou 450002, China

    I. INTRODUCTION

    Since 5G network is expected to be heterogeneous, the security paradigms protecting the confidentiality of wireless communications remain elusive [1]. Recently, physical layer security (PLS) has been studied as a promising technique that guarantees secure wireless communications by exploiting the characteristics of wireless channels [2][3].

    There are two main categories of PLS techniques: 1) secret key generation from the wireless communication medium over public channels [4]; and 2) secure transmission strategies by exploiting the inherent randomness of communication channels without a secret key.As keyless security techniques, the second category has drawn great attention and a large amount of research has been done. Artificial noise and beamforming techniques are often used in point-to-point MIMO scenarios, and they have been proved to effectively improve the secrecy capacity and guarantee the confidential communication between legitimate users [5][6]. In relay-aided communication scenarios, cooperative forwarding and cooperative jamming are usually adopted to guarantee PLS [7]. And the problems of source-relay selection and forwarding power allocation are discussed in [8][9]. Secrecy coding based on the randomness of wireless channels is also an important PLS technique which guarantees communication security and reliability simultaneously [10]. Many secrecy codes, such as coset codes [11], nested codes [12] and lattice codes [13], have been proved to approach secrecy capacity in theory. However the design of practical secrecy coding scheme is still an open issue.

    The paper proposes an artificial noise (AN)aided polar coding algorithm to improve the secrecy rate.

    Polar codes have been studied for decades[14], and recently are adopted in the enhanced mobile broadband (EMBB) control channel for 5G communication systems. The property of channel polarization makes them suitable for PLS. The strong and weak theoretical secrecy limits of polar codes for PLS are studied in [15] and [16], respectively. Then, practical polar coding methods are proposed for finite coding length, such as the puncturing polar codes [17], the ARQ-based polar coding schemes [18][19] and the relay aided secrecy polar coding methods [20][21]. However, all these methods are under the assumption that the wiretap channel is degraded with respect to the legitimate channel. When the quality of the wiretap channel is close to (or even better than) that of the legitimate channel, secrecy rate is rather low, and even goes to zero.Therefore, polar coding combined with AN is studied to improve the secrecy rate. To manage interference in favor of the legitimate receiver, [22] and [23] design the AN in the null space of the legitimate channel, and improve the secrecy rate by debasing the SINR of the eavesdropper. However, these methods bring extra power expense, and are invalid when the spatial freedom does not exist.

    In this paper, we present a novel AN-aided polar coding algorithm. Since the confidential bits in secrecy polar coding is only known to the legitimate receiver, we adopt the confidential bits as AN to deteriorate the receiving reliability of eavesdropper, thus improving the secrecy rate. The main contributions of this paper are as follows.

    ● An AN aided polar coding model is proposed, where the confidential bits of last transmission code block are adopted as AN to inject into the current codeword. In this way, the legitimate users can eliminate AN from the jammed codeword, while eavesdropper cannot. The proposed algorithm can work without spatial freedom, which is quite different form the typical null space AN design in [22][23]. Moreover, since AN is directly added on the codeword before modulation, additional power is not needed,which is also different from [22] [23].

    ● Since AN is shorter than the codeword, a low complexity suboptimal jamming positions selection algorithm is proposed based on the structure of polar codes, where the decoding performance of eavesdropper can be deteriorated to the worst, thus further improving the secrecy rate.

    ● The secrecy rate of the proposed AN-aided polar coding algorithm is derived. Theoretical and simulation results demonstrate that the proposed algorithm outperforms the random selection method and the method without AN.

    The remainder of this paper is structured as follows: Section II outlines problem formulation. Section III gives the detailed AN aided polar coding algorithm. Section IV conducts a theoretical analysis to show the security of our proposed algorithm. Section V provides the analyses of simulation results. Section VI summarizes the paper.

    II. PROBLEM FORMULATION

    i=1,2,…,N. As N→∞, the polarized bit channelis either noiseless or pure-noisy

    The construction of polar codes is based on a phenomenon referred to as channel polarization [14]. With channel polarization effect, the polar decoding performance of a certain input position is tightly bounded with the channel characteristic. Hence polar codes have been employed as secrecy codes at physical layer[15-21].

    In the secrecy polar coding scheme, the N recursive uses of transmission channel W can be polarized into bit channels WN(i)after channel polarization, where N=2n, n≥0, and([14] Eq. (5)). Assume the legitimate channel is W and the degraded wiretap channel is W*.By exploiting the above polarization properties, the polarized channels can be divided into three subsets: the first one with indices i∈S used to transmit the confidential bits, the second one with indices i∈R used to transmit the random bits and the third one with indices i∈F flooded with frozen bits [15]. In order to meet the reliability and security restrictions of polar codes for PLS, S, R and F are given by

    Mahdavifar has proved that secrecy polar coding with infinite code length can approach the secrecy capacity in [15]. However, in practical finite code length scenarios, there are many polarized channels between the states of noiseless and pure-noisy because of the incomplete channel polarization process. So the reliable polarized legitimate channels used to transmit the confidential bits are quite small,i.e.is smaller than expected. As a result,the secrecy rate of finite code length polar coding is far from the secrecy capacity [17],which is difficult to fulfil the security requirements of high-speed communications, such as 5G communications. Therefore the design of high-rate secrecy polar codes with finite code length is an urgent issue.

    III. AN-AIDED POLAR CODING

    AN is one of the most classical methods to improve the security performance by confusing the eavesdropper. In this section, we propose an AN aided polar coding algorithm to deteriorate the wiretap channel and improve the secrecy rate.

    3.1 Secrecy coding model

    Based on the channel polarization effect, the confidential bits (with indices i∈S) can only be reliably decoded by the legitimate receiver.Therefore, we adopt the confidential bits transmitted over last code block as AN in current block. So the legitimate user can eliminate AN from the jammed codeword, but the eavesdropper cannot. The system model is shown in figure 1.

    A block fading model is considered for the wiretap channel, i.e. the channel coefficient is assumed to be constant within each coherence time interval. For each code block, transmitter (Alice) encodes the information u into the codeword x. After that, AN is injected into x and we obtain the transmitted vector s=x⊕v, where⊕denotes the module-2 sum, v is the extended vector generated by the AN vector u?Sof the last code block, virepresents the ith column of v. The block indices are omitted here. For simplicity, we denote the length of u?Sis k. It is obvious that k is shorter than code length N. We extend u?Sto length N by zero-padding. When the i th transmitted symbol is not injected with u?S,we have vi=0. Then the received symbols of the legitimate user (Bob) and the eavesdropper(Eve) are obtained as follows:

    where hBand hEare the channel coefficients of Bob and Eve, respectively. nBand nEare i.i.d. Gaussian white noises with variances σB2and σE2, respectively. Since Bob has the knowledge of v, he can eliminate v in (2),and get

    Fig. 1 AN aided secrecy coding model over wiretap channels

    3.2 Jamming positions selection

    From [14], the channel transition probability of polarized channel WN(i)relies on all the polarized channels WN(j)with j<i. That means the decision of information bit uibased on the hypothesis thathas been decoded correctly. This property leads to an error propagation phenomenon. So the eavesdropper will be confused even a small fraction of the codeword is jammed.

    Assume J is the index set of the channels injected with AN. From figure 1, since Eve can only receive x⊕v, without the knowledge of AN vector, he gets nothing about the symbol xi, i∈J. Therefore the Bhattacharyya parameters of the jammed bit channels of Eve can be expressed as

    According to [24], the Bhattacharyya parameters of fading channel can be expressed as an exponential function of the SNR. The signal transmitting power is denoted as Pt.Then SNR of each bit channels of Bob is given by, and the SNR of Eve’s bit channel that padded by zero is given by. Finally we have

    Lemma 1[24]: For a polarized bit channel, i=1,2,…,N, we have: 1)The lower and upper bound ofis continuous monotonically increasing with respect to each,i=1,2,…,N.

    The monotonicity of the lower and upper bound of Z(WN(i)) is shown in Lemma 1.Based on it, the monotonicity ofcan also be proved. Finally we have Corollary 1.

    Corollary 1: For a polarized bit channel, i=1,2,…,N, if any of the transmission channel W1jis deteriorated, j=1,2,…,N,thenis increased.

    From Corollary 1, as long as parts of the transmission channels are jammed by AN,all the polarized bit channels will be deteriorated. So, despite that the length of AN vector is shorter than code length N, it is feasible to utilize AN to worsen the quality of wiretap channel and improve the security performance. However, different AN jamming positions have different effect on the decoding accuracy. Although random selection of AN jamming positions is a simple way, its security performance is not optimal. Therefore, Bhattacharyya parameter is adopted to measure the influence of AN on the information bits, and a novel jamming positions selection algorithm is introduced next.

    Recall the definition of Bhattacharyya parameters in [14],can be written as a function depending onHowever, since the output alphabet increased exponentially, it is difficult to obtain the exactHere we use, the upper bound ofmentioned in [24], replace the parameters, i.e.

    where Joptis the optimal jamming position index set, Jmis the mth element of Jopt,1≤m≤k. Unfortunately, the number of all the possible selection patterns of J isThis number will grow extremely large under practical configuration of N and k, so it is difficult to obtain Jopt.

    Therefore we propose a low complexity suboptimal jamming positions selection algorithm based on the greedy algorithm. Only one jamming position is selected in our selection algorithm during each iteration. Thus k iterations are needed in our algorithm. For the first iteration, all the N transmission channels are available to be jammed. We calculate eachwith every transmission channel jammed in turn. After N calculations, the best jamming position i? that maximizeis found out, and put i? into set J. Then, for the mth iteration,the previous (m?1) jamming positions have been determined. And there are (N-m+1)transmission channels available to be jammed.Similarly, we calculate eachwith every remaining transmission channel jammed in turn and find out the mth jamming position. In this way, all the k jamming positions are selected after k iterations. The detailed algorithm is shown in algorithm 1.

    The complexity of this algorithm chiefly comes from the calculation of(step 7). Since each iteration determines one jamming position, only k(2N?k+1)/2 calculations are required. This complexity is much lower than the exhaustive searching oftimes.

    3.3 Procedure of AN-aided polar coding

    Suppose Eve is also an authorized user in our transmission model, but he is not the desired receiver of the confidential message. Therefore the channel coefficient of wiretap channel is available for Alice. This assumption is widely used in the past researches on secrecy polar coding [15-18][22]. Based on the discussion of subsection 3.2, our AN-aided polar coding algorithm mainly consists of three steps: channel estimation, jamming positions selection,and noisy signal transmission.

    Step 1: In the channel estimation step, the transmitter and the receiver send the same known pilot sequence in turn. Therefore, Alice obtains the estimates hBand hE. Bob and Eve only have their own channel coefficient.

    Step 2: In the jamming positions selection step, Alice initializes the corresponding parameters according to the channel coefficient hBand hE, and then determines the jammingposition indices J by the algorithm proposed in 3.2.

    Algorithm 1 Jamming positions selection algorithm

    Step 3: In the noisy signal transmission step, we inject AN into the transmission bit channels with indices J. However, since AN is injected, the initial Bhattacharyya parameters are renewed by Eq. (4), and then the polarized channel indices sets are updated to S',R', F'(Eq. (1)). Finally, the confidential bits are transmitted over S', and become the AN sequence of the next block (see figure ).

    The jamming positions in step 2 can be directly transmitted to Bob over broadcast channel. Therefore, Bob is able to eliminate AN by utilizing the jamming positions and the known confidential bits of the last code block, and then decode the current codeword with no error. However, since Eve knows nothing about the confidential bits of the last code block,even if he knows the jamming positions, he cannot eliminate AN and decode the current codeword.

    IV. SECURITY ANALYSIS

    In this section, we discuss the secrecy rate that the proposed AN-aided polar coding algorithm can achieve.

    Lemma 2[25]: For any fixed δ∈(0,1),as N goes infinity, the fraction of indices i∈{1,2,…,N } for whichgoes to

    Fig. 2 Block diagram for AN-aided polar coding algorithm

    It is noticed from polar coding that the code rate of Bob and Eve can be expressed as respectively. Note that, step (a) follows from the degraded wiretap channel assumption and restrictions shown in Eq. (1), step (b) from the conclusion of Lemma 2, and step (c) from the conclusion of Proposition 1 in [14]. Hence, the secrecy rate, denoted as RS, can be expressed as

    Corollary 2: As code length N and block number T go to infinity, the secrecy rate of our proposed AN-aided polar coding algorithm is

    where RB0and RE0are the code rates of Bob and Eve without AN.

    Proof.The proof is derived in Appendix A.

    The secrecy rate without AN is defined as RS0.Therefore, we have

    According to Eq. (9), it is obviously thatTherefore, it is proved that the proposed algorithm has a higher secrecy rate than transmission without AN. In addition, it is easily to drive thatfrom (9). Thus,the secrecy rate of our proposed algorithm satisfies

    where the equality holds when RE0= 0.

    V. SIMULATION RESULTS

    In this section, we validate the performance of the proposed AN-aided polar coding algorithm by comparing the secrecy rate and Eve’s bit error rate (BER) with other algorithms.

    The simulation results shown in this section are averaged over 106Monte Carlo simulations. For simplicity, we consider the noise variances of Bob and Eve are both 1, i.e.. The signal transmitting powerare assumed to be 0.5 and 0.1, respectively. There are T=10 blocks within each coherence time interval. Suppose the polar codes with length N=128, the reliability and security thresholds are ZB=10?5and ZE=0.9, respectively. Another two methods are adopted here for comparison, i.e.the random AN positions selection method and the transmission method without AN. The random selection method has the same secrecy coding model as our method, however AN positions are selected randomly among the N positions.

    The secrecy rate curves are depicted in figure 3. The abscissa shows the block number,and secrecy rate is the ratio of confidential bits number and N. When block number is 1,AN has not injected into the codeword, so the secrecy rates of the three methods are equal.From the second block, the secrecy rates of the two methods with AN increase rapidly. This is consistent with the conclusion of section IV.However, for the transmission method without AN, it stays constant. Figure 3 also shows that our proposed algorithm has a better performance than the random selection method. It is because our algorithm chooses the best positions that further deteriorating the decoding performance of Eve.

    Fig. 3 Secrecy rate for different algorithms of polar coding

    Fig. 4 Indices of AN jamming positions

    Figure 4 shows the indices of AN jamming positions by our selection algorithm. The abscissa is the position indices from 1 to N. For simplicity, we only plot the even blocks. We can see from figure 4, AN are concentrated in the positions with large indices. This is because the reliable polarized channels of Eve are concentrated in these positions. Therefore,jamming in these positions will further deteriorate Eve’s receiving reliability. In addition,for any 1≤t1<t2≤T , the selected AN indices set of block t1(J(t1)) is a subset of J(t2).This is because the initial channel parameters of each block are the same (within the coherence time interval), and our jamming positions selection algorithm finds the best AN positions one by one. According to the discussion in section IV, the AN bits number of block t1is less than or equal to that of block t2. Therefore we have J(t1)?J(t2).

    In secrecy polar coding, the transmission positions of the confidential bits vary according to Eq. (1). Therefore, the reliability of Bob always meets the Bhattacharyya threshold ZB. However, the reliability of Eve can be decreased by the AN. The BER curves of Eve are depicted in figure 5. Here, we consider the average BER of all the non-frozen bits of Eve.Figure 5 illustrates our algorithm can effectively increase Eve’s BER. When block number is 9, Eve’s BER is 0.475, which is much higher than the random selection method and the transmission method without AN. The reliability reduction of Eve shows the security improvement from another aspect.

    Fig. 5 BER of Eve for different algorithms of polar coding

    VI. CONCLUSIONS

    An AN-aided polar coding algorithm is proposed to improve the secrecy rate of polar codes for PLS. In this algorithm, the confidential bits of the last transmission code block are adopted as AN and injected into the current codeword to confuse the eavesdropper. Since the length of AN is shorter than the code length, the optimization problem of jamming position selection is investigated to further deteriorate Eve’s receiving reliability. And we present a suboptimal solution based on the greedy algorithm, which has a much lower complexity than exhaustive searching. The performance of the presented algorithm is verified by the theoretical and simulation results.

    Appendix

    A. Proof of Corollary 2

    Assume t1,t2→∞ and t2=t1+1. As N→∞, we have

    According to (7) and (8), we have

    The number of AN bits in block t2is N?RS(t1). We can get the simplification of(A.2)

    By substituting (A.1) into (A.3), the conclusion of Corollary 2 is proofed.

    ACKNOWLEDGEMENTS

    This work was supported in part by China’s High-Tech Research and Development Program (863 Program) under Grant No.2015AA01A708, and National Science Foundation for Young Scientists of China under Grant No. 61501516.

    [1] P. Z Fan, J. Zhao, and L. I Chih, “5G High Mobility Wireless Communications: Challenges and Solutions,” China Communications, vol. 13, no.S2, 2017, pp. 1-13.

    [2] Y. L Zou, J. Zhu, X. B Wang, et al, “A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends,” Proceedings of the IEEE, vol. 104, no. 9, 2016, pp. 1727-1765.

    [3] X. M Chen, W. K Ng, W. Gerstacker, et al, “A Survey on Multiple-antenna Techniques for Physical Layer Security,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, 2017, pp.1027-1053.

    [4] J. Q Zhang, T. Q Tuong, A. Marshall, et al, “Key Generation from Wireless Channels: A Review,”IEEE Access, vol. 4, 2016, pp. 614-626.

    [5] X. S Ji, X. L Kang, K. Z Huang, et al, “The Full-duplex Artificial Noise Scheme for Security of a Cellular System,” China Communications, vol.12, no. S1, 2015, pp. 150-156.

    [6] S. H Lai, P. H Lin, S. C Lin, et al, “On Optimal Artificial-noise Assisted Secure Beamforming for the Multiple-input multiple-output fading eavesdropper channel,” Proc. 2012 IEEE Wireless Communications and Networking Conference(WCNC), 2012, pp. 513-517.

    [7] Y. L Zou, J. Zhu, X. B Wang, et al, “Improving Physical-layer Security in Wireless Communications Using Diversity Techniques,” IEEE Network,vol. 29, no. 1, 2015, pp. 42-48.

    [8] Y. L Zou, B. Champagne, W. P Zhu, et al, “Relay-selection Improves the Security-reliability Trade-off in Cognitive Radio Systems,” IEEE Transactions on Communications, vol. 63, no. 1,2015, pp. 215-228.

    [9] X. M Li, T. Jiang, S. G Cui, et al, “Cooperative Communications Based on Rateless Network Coding in Distributed MIMO Systems,” IEEE Wireless Communications, vol. 17, no. 3, 2010,pp. 60-67.

    [10] A. D Wyner, “The Wiretap Channel,” AT&T Bell Laboratories Technical Journal, vol. 54, no. 8,1975, pp. 1135-1387.

    [11] L. H Ozarow and A. D Wyner, “Wiretap Channel II,” Bell System Technical Journal, vol. 63, no. 10,1984, pp. 2135-2137.

    [12] Y. Cassito and Z. Bandic, “Low Complexity Wiretap Codes with Security and Error-correction Guarantees,” Proc. IEEE Information Theory Workshop, 2010, pp. 1-5.

    [13] J. C Belfiore and F. Oggier, “Lattice Codes Design for the Rayleigh Fading Wire-tap Channel,”Proc. IEEE International Conference on Communications Workshops, 2011, pp. 1-5.

    [14] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-achieving Codes for Symmetry Binary-input Memoryless Channels,”IEEE Transactions on Information Theory, vol. 55,no. 7, 2009, pp. 3051-3073.

    [15] H. Mahdavifar and A. Vardy, “Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes,” IEEE Transactions on Information Theory,vol. 57, no. 10, 2011, pp. 6428 -6443.

    [16] M. Andersson, V. Rathis, R. Thobaben, et al,“Nested Polar Codes for Wiretap and Relay Channels,” IEEE Communications Letters, vol. 14,no. 4, 2010, pp. 752-754.

    [17] M. Yi, X. S Ji, K. Z Huang, et al, “A Method Based on Puncturing Polar Codes for Physical Layer Security,” Journal of Electronics & Information Technology, vol. 36, no. 12, 2014, pp. 2835-2841.

    [18] L. Y. H Song, L. Xie, H. F Chen, et al, “A Feedback-based Secrecy Coding Scheme Using Polar Code over Wiretap Channels,” Proc. International Conference on Wireless Communications &Signal Processing, 2014, pp. 1-6.

    [19] Y. Fountzoulas, A. Kosta, and N. Karystinosg,“Polar-code-based Security on the BSC-modeled HARQ in Fading,” Proc. International Conference on Telecommunications, 2016, pp. 1-5.

    [20] B. Duo, P. Wang, Y. H Li, et al, “Secure Transmission for Relay-eavesdropper Channels Using Polar Coding,” Proc. IEEE International Conference on Communications, Sydney, 2014, pp.2197-2202.

    [21] M. Andersson, R. F Schaefer, T. J Oechtering,et al, “Polar Coding for Bidirectional Broadcast Channels with Common and Confidential Messages,” International Symposium on Wireless Communication Systems, vol. 31, no. 9, 2011,pp. 1901-1908.

    [22] M. F Zheng, M. X Tao, and W. Chen, “Polar Coding for Secure Transmission in MISO Fading Wiretap Channels,” 2014, pp. 1-7, http://arxiv.org/abs/1411.2463.

    [23] Y. X Zhang, Z. Yang, A. J Liu, et al, “Secure Transmission over the Wiretap Channel Using Polar Codes and Artificial Noise,” IET Communications, vol. 11, no. 3, 2017, pp. 377-384.

    [24] Y. X Zhang, A. J Liu, K. G Pan, et al, “A Practical Construction Method for Polar Codes,” IEEE Communications Letters, vol. 18, no. 11, 2014,pp. 1871-1874.

    [25] K. Chen, K. Niu, and J. R Lin, “Practical Polar Code Construction over Parallel Channels,” IET Communications, vol. 7, no. 7, 2013, pp. 620-627.

    久久午夜综合久久蜜桃| 一边亲一边摸免费视频| 国产精品女同一区二区软件| 亚洲国产精品成人久久小说| 国产一区有黄有色的免费视频| 亚洲国产精品999| 看免费成人av毛片| 午夜影院在线不卡| 制服诱惑二区| 亚洲人成电影观看| 亚洲国产欧美一区二区综合| 亚洲精品,欧美精品| 精品国产乱码久久久久久小说| 亚洲熟女精品中文字幕| 国产精品无大码| 国产极品粉嫩免费观看在线| 久久久久视频综合| 国产片内射在线| 国产成人a∨麻豆精品| 国产精品久久久久成人av| 人妻人人澡人人爽人人| 国产精品99久久99久久久不卡 | 国产日韩欧美在线精品| 在线观看免费视频网站a站| 男女床上黄色一级片免费看| 久热这里只有精品99| 国产不卡av网站在线观看| 欧美xxⅹ黑人| 亚洲国产av影院在线观看| 日日爽夜夜爽网站| 97在线人人人人妻| 在线看a的网站| 久久久久视频综合| 国产黄色视频一区二区在线观看| 少妇被粗大的猛进出69影院| 日韩av不卡免费在线播放| av网站在线播放免费| 又黄又粗又硬又大视频| 一区福利在线观看| av在线观看视频网站免费| 中文字幕最新亚洲高清| 婷婷成人精品国产| 国产一区二区三区综合在线观看| 日韩不卡一区二区三区视频在线| 午夜福利影视在线免费观看| 日本91视频免费播放| 天天添夜夜摸| 日韩制服骚丝袜av| 老司机深夜福利视频在线观看 | 又粗又硬又长又爽又黄的视频| www.熟女人妻精品国产| 精品国产超薄肉色丝袜足j| 亚洲,欧美精品.| 日韩大码丰满熟妇| 欧美日韩视频高清一区二区三区二| 国产无遮挡羞羞视频在线观看| 亚洲成人国产一区在线观看 | 国产日韩欧美亚洲二区| 国产伦人伦偷精品视频| 黑人猛操日本美女一级片| 黄色视频在线播放观看不卡| 亚洲,欧美精品.| 免费观看人在逋| 菩萨蛮人人尽说江南好唐韦庄| 毛片一级片免费看久久久久| av在线老鸭窝| 人成视频在线观看免费观看| √禁漫天堂资源中文www| a 毛片基地| 考比视频在线观看| 99香蕉大伊视频| 啦啦啦视频在线资源免费观看| 久久久久久人人人人人| 最近中文字幕2019免费版| av福利片在线| 亚洲自偷自拍图片 自拍| 一级爰片在线观看| 亚洲av国产av综合av卡| 9色porny在线观看| 男人舔女人的私密视频| 国产精品av久久久久免费| 99热网站在线观看| 下体分泌物呈黄色| 一区福利在线观看| 如日韩欧美国产精品一区二区三区| 久久人人爽av亚洲精品天堂| 老司机靠b影院| 岛国毛片在线播放| 国产97色在线日韩免费| 老司机亚洲免费影院| 精品一区二区三卡| 欧美亚洲 丝袜 人妻 在线| 综合色丁香网| 精品亚洲乱码少妇综合久久| 人成视频在线观看免费观看| 人人澡人人妻人| 国产精品久久久久久精品古装| 不卡视频在线观看欧美| 中国三级夫妇交换| 日韩 亚洲 欧美在线| 亚洲精品一二三| 香蕉国产在线看| 最近中文字幕高清免费大全6| 久久精品久久久久久久性| 国产在线视频一区二区| av片东京热男人的天堂| 午夜福利影视在线免费观看| 国产不卡av网站在线观看| 香蕉国产在线看| 国产成人免费无遮挡视频| 精品人妻一区二区三区麻豆| 日韩av不卡免费在线播放| 亚洲情色 制服丝袜| 欧美亚洲日本最大视频资源| 丝袜美腿诱惑在线| www.熟女人妻精品国产| www.自偷自拍.com| 美女大奶头黄色视频| 亚洲av电影在线观看一区二区三区| 啦啦啦啦在线视频资源| 精品国产乱码久久久久久男人| 欧美日韩亚洲国产一区二区在线观看 | 成人三级做爰电影| 啦啦啦啦在线视频资源| 香蕉丝袜av| 亚洲综合色网址| 最近的中文字幕免费完整| 亚洲成av片中文字幕在线观看| 在线观看免费午夜福利视频| 老司机亚洲免费影院| 国产成人午夜福利电影在线观看| 日韩一卡2卡3卡4卡2021年| 欧美日韩国产mv在线观看视频| 国产日韩欧美在线精品| 欧美日韩视频精品一区| 一本大道久久a久久精品| 一区二区日韩欧美中文字幕| 少妇被粗大猛烈的视频| 丝袜脚勾引网站| 尾随美女入室| 亚洲国产av影院在线观看| 色婷婷久久久亚洲欧美| 成年人免费黄色播放视频| 久久久精品国产亚洲av高清涩受| 欧美日韩精品网址| 精品酒店卫生间| 日韩制服丝袜自拍偷拍| 香蕉丝袜av| 欧美国产精品一级二级三级| 亚洲美女搞黄在线观看| 久久免费观看电影| 日本爱情动作片www.在线观看| 国产欧美日韩一区二区三区在线| 永久免费av网站大全| 成人三级做爰电影| 999久久久国产精品视频| 久久人妻熟女aⅴ| 久久久久精品国产欧美久久久 | 啦啦啦在线免费观看视频4| 91成人精品电影| 色精品久久人妻99蜜桃| 亚洲国产欧美网| 天天影视国产精品| 哪个播放器可以免费观看大片| av一本久久久久| 99久国产av精品国产电影| 91成人精品电影| 欧美黑人欧美精品刺激| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 成人18禁高潮啪啪吃奶动态图| 精品国产国语对白av| 晚上一个人看的免费电影| 国产精品久久久久久精品古装| av在线app专区| 80岁老熟妇乱子伦牲交| 大陆偷拍与自拍| 欧美日韩福利视频一区二区| 又粗又硬又长又爽又黄的视频| 亚洲一区中文字幕在线| 在线亚洲精品国产二区图片欧美| 久久天堂一区二区三区四区| 看十八女毛片水多多多| av片东京热男人的天堂| 两个人看的免费小视频| 国产精品一区二区在线不卡| 国产 精品1| 精品亚洲成国产av| 性高湖久久久久久久久免费观看| 制服丝袜香蕉在线| 美女扒开内裤让男人捅视频| 丰满少妇做爰视频| 亚洲av成人不卡在线观看播放网 | 亚洲 欧美一区二区三区| 最近2019中文字幕mv第一页| 久久久久久人妻| 深夜精品福利| 国产精品国产三级专区第一集| 亚洲国产中文字幕在线视频| 老司机影院成人| 天天影视国产精品| 狠狠婷婷综合久久久久久88av| 视频区图区小说| 在线观看免费高清a一片| 飞空精品影院首页| 亚洲精品美女久久av网站| 如日韩欧美国产精品一区二区三区| 两个人看的免费小视频| 日韩中文字幕欧美一区二区 | 亚洲国产日韩一区二区| 日韩一卡2卡3卡4卡2021年| 99久久99久久久精品蜜桃| 午夜影院在线不卡| 亚洲欧美成人综合另类久久久| 免费日韩欧美在线观看| 亚洲av日韩精品久久久久久密 | 菩萨蛮人人尽说江南好唐韦庄| 国产成人av激情在线播放| 老司机深夜福利视频在线观看 | 亚洲精品久久成人aⅴ小说| 69精品国产乱码久久久| 久久久久国产精品人妻一区二区| 狠狠婷婷综合久久久久久88av| 久久综合国产亚洲精品| 国产精品香港三级国产av潘金莲 | 国语对白做爰xxxⅹ性视频网站| 日韩一区二区视频免费看| 99热国产这里只有精品6| 男人爽女人下面视频在线观看| 亚洲精品美女久久久久99蜜臀 | 老司机深夜福利视频在线观看 | 国产午夜精品一二区理论片| 国产成人91sexporn| 建设人人有责人人尽责人人享有的| 老司机影院毛片| 久久久久人妻精品一区果冻| 日韩 欧美 亚洲 中文字幕| 街头女战士在线观看网站| 亚洲av电影在线观看一区二区三区| 国产乱来视频区| 亚洲第一av免费看| 国产精品av久久久久免费| 99香蕉大伊视频| 国产成人a∨麻豆精品| 日日啪夜夜爽| 亚洲第一区二区三区不卡| 亚洲免费av在线视频| 亚洲欧美清纯卡通| tube8黄色片| 在线看a的网站| 男女高潮啪啪啪动态图| 国产亚洲av高清不卡| 亚洲欧美成人精品一区二区| 国产精品一国产av| 亚洲精品久久午夜乱码| 美女视频免费永久观看网站| 在线精品无人区一区二区三| 别揉我奶头~嗯~啊~动态视频 | 国产精品 国内视频| 一级毛片电影观看| 啦啦啦啦在线视频资源| 久久精品人人爽人人爽视色| 最近最新中文字幕免费大全7| av女优亚洲男人天堂| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 操出白浆在线播放| 在线观看www视频免费| 亚洲国产精品一区二区三区在线| av电影中文网址| 亚洲精品美女久久av网站| 久久久精品94久久精品| 精品国产一区二区三区四区第35| 十分钟在线观看高清视频www| 丝袜在线中文字幕| 黄片无遮挡物在线观看| 少妇 在线观看| 狠狠婷婷综合久久久久久88av| 国精品久久久久久国模美| 另类亚洲欧美激情| 一边亲一边摸免费视频| 国产又爽黄色视频| 一本色道久久久久久精品综合| 美女视频免费永久观看网站| 青草久久国产| 麻豆精品久久久久久蜜桃| 亚洲第一区二区三区不卡| 美女福利国产在线| 亚洲国产日韩一区二区| 日本av手机在线免费观看| 人妻 亚洲 视频| 一级毛片 在线播放| 久久久久久人人人人人| 观看av在线不卡| 亚洲精品成人av观看孕妇| 肉色欧美久久久久久久蜜桃| netflix在线观看网站| 久久精品国产亚洲av涩爱| 男女边吃奶边做爰视频| 巨乳人妻的诱惑在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久精品亚洲熟妇少妇任你| 99国产精品免费福利视频| 欧美另类一区| 精品国产一区二区三区四区第35| 自拍欧美九色日韩亚洲蝌蚪91| 自线自在国产av| 亚洲美女黄色视频免费看| 午夜激情av网站| 在线天堂最新版资源| 一二三四中文在线观看免费高清| 19禁男女啪啪无遮挡网站| 亚洲情色 制服丝袜| 赤兔流量卡办理| 一级片'在线观看视频| 高清在线视频一区二区三区| 少妇人妻 视频| 亚洲欧美一区二区三区国产| 九草在线视频观看| 观看av在线不卡| 1024视频免费在线观看| 丰满乱子伦码专区| 男女午夜视频在线观看| 免费人妻精品一区二区三区视频| 精品卡一卡二卡四卡免费| 亚洲精华国产精华液的使用体验| 国产欧美日韩综合在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 赤兔流量卡办理| 各种免费的搞黄视频| 国产爽快片一区二区三区| 亚洲一区二区三区欧美精品| 日韩欧美精品免费久久| 日韩 欧美 亚洲 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 精品国产超薄肉色丝袜足j| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 天天躁夜夜躁狠狠躁躁| 日韩视频在线欧美| 国产国语露脸激情在线看| 亚洲欧美中文字幕日韩二区| 两个人免费观看高清视频| 国产成人免费观看mmmm| 啦啦啦啦在线视频资源| 在线看a的网站| 黄色毛片三级朝国网站| 午夜免费男女啪啪视频观看| 久久这里只有精品19| 建设人人有责人人尽责人人享有的| 久久久国产精品麻豆| 国产日韩一区二区三区精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 最黄视频免费看| 免费黄色在线免费观看| 一级毛片黄色毛片免费观看视频| 一区二区三区四区激情视频| 两个人免费观看高清视频| 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 女性生殖器流出的白浆| 伦理电影免费视频| 99久久人妻综合| 亚洲精品日韩在线中文字幕| 国产精品熟女久久久久浪| 一本一本久久a久久精品综合妖精| 成人国产av品久久久| 欧美精品av麻豆av| 最新在线观看一区二区三区 | 国产精品av久久久久免费| 熟女av电影| 国产一区二区在线观看av| 国产精品99久久99久久久不卡 | 国产精品亚洲av一区麻豆 | 久久久国产精品麻豆| 免费av中文字幕在线| 男女午夜视频在线观看| 国产精品一国产av| 欧美人与性动交α欧美软件| 久久av网站| 精品午夜福利在线看| 超碰97精品在线观看| 成年美女黄网站色视频大全免费| 男女边吃奶边做爰视频| 高清在线视频一区二区三区| 观看av在线不卡| 国产亚洲av高清不卡| 日韩av在线免费看完整版不卡| 国产成人免费无遮挡视频| 不卡视频在线观看欧美| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久久国产精品麻豆| 夫妻午夜视频| 韩国av在线不卡| 亚洲国产精品一区二区三区在线| 国产亚洲欧美精品永久| 最近的中文字幕免费完整| 国产有黄有色有爽视频| 亚洲精品av麻豆狂野| 午夜久久久在线观看| av女优亚洲男人天堂| 岛国毛片在线播放| 国产亚洲最大av| 欧美av亚洲av综合av国产av | 久久精品久久精品一区二区三区| 亚洲精品久久成人aⅴ小说| 国产麻豆69| 啦啦啦啦在线视频资源| 欧美日韩亚洲高清精品| 久久亚洲国产成人精品v| 性少妇av在线| 亚洲国产精品成人久久小说| 五月天丁香电影| 亚洲四区av| 精品亚洲成国产av| 1024视频免费在线观看| 一级片'在线观看视频| 在线观看人妻少妇| 亚洲av成人精品一二三区| 悠悠久久av| 免费人妻精品一区二区三区视频| 欧美日韩av久久| 色网站视频免费| 国产1区2区3区精品| 日韩,欧美,国产一区二区三区| www.熟女人妻精品国产| 男女无遮挡免费网站观看| 大片电影免费在线观看免费| 精品亚洲乱码少妇综合久久| 少妇被粗大猛烈的视频| 国产精品久久久久久久久免| 大香蕉久久成人网| 亚洲精品第二区| 国产成人精品久久久久久| 成年动漫av网址| 亚洲精品一二三| 亚洲国产欧美在线一区| 丝瓜视频免费看黄片| 观看av在线不卡| 卡戴珊不雅视频在线播放| 两个人免费观看高清视频| 精品久久久久久电影网| 乱人伦中国视频| 日本色播在线视频| 久久久久精品性色| 国产福利在线免费观看视频| av在线播放精品| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 色94色欧美一区二区| 一二三四中文在线观看免费高清| 成年人免费黄色播放视频| 啦啦啦在线观看免费高清www| 悠悠久久av| 街头女战士在线观看网站| 最近的中文字幕免费完整| 日韩av在线免费看完整版不卡| 色婷婷久久久亚洲欧美| 老汉色av国产亚洲站长工具| 丰满乱子伦码专区| 精品亚洲成国产av| 一区在线观看完整版| 在线观看www视频免费| 电影成人av| 大片免费播放器 马上看| 一本一本久久a久久精品综合妖精| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| 极品人妻少妇av视频| 侵犯人妻中文字幕一二三四区| 午夜福利免费观看在线| 免费观看性生交大片5| 国产伦理片在线播放av一区| 亚洲国产av影院在线观看| 日韩一卡2卡3卡4卡2021年| 丰满乱子伦码专区| 久久久国产欧美日韩av| 一区在线观看完整版| 韩国av在线不卡| 一级,二级,三级黄色视频| 国语对白做爰xxxⅹ性视频网站| 最近中文字幕2019免费版| 丁香六月欧美| 亚洲在久久综合| 国产精品一区二区在线不卡| 欧美97在线视频| 亚洲欧洲国产日韩| 丰满饥渴人妻一区二区三| 国产精品久久久久久人妻精品电影 | 熟女av电影| 国产精品 欧美亚洲| 乱人伦中国视频| 日韩伦理黄色片| 欧美亚洲日本最大视频资源| 免费观看人在逋| 最近最新中文字幕大全免费视频 | 十分钟在线观看高清视频www| 丝袜脚勾引网站| 制服丝袜香蕉在线| 国产精品熟女久久久久浪| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲 | 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| 黄色一级大片看看| 国产精品无大码| 麻豆乱淫一区二区| 交换朋友夫妻互换小说| 免费日韩欧美在线观看| 大陆偷拍与自拍| 国产免费一区二区三区四区乱码| 国产毛片在线视频| 国产日韩一区二区三区精品不卡| 热99久久久久精品小说推荐| 久久久精品94久久精品| 午夜福利一区二区在线看| 日韩av免费高清视频| 日韩 欧美 亚洲 中文字幕| 777米奇影视久久| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 天天影视国产精品| 可以免费在线观看a视频的电影网站 | 天天影视国产精品| 大片电影免费在线观看免费| 国产精品香港三级国产av潘金莲 | 成人影院久久| 亚洲欧美成人精品一区二区| 亚洲国产中文字幕在线视频| 成年动漫av网址| 国产激情久久老熟女| 精品人妻在线不人妻| 国产精品人妻久久久影院| 精品国产一区二区三区四区第35| 熟女少妇亚洲综合色aaa.| 人妻 亚洲 视频| 成人影院久久| 国产毛片在线视频| 久久精品久久精品一区二区三区| 在线精品无人区一区二区三| 国产av国产精品国产| 亚洲中文av在线| 色播在线永久视频| 国产有黄有色有爽视频| 久久精品亚洲熟妇少妇任你| 男的添女的下面高潮视频| 97人妻天天添夜夜摸| 欧美亚洲 丝袜 人妻 在线| 蜜桃国产av成人99| 国产极品粉嫩免费观看在线| 精品国产露脸久久av麻豆| 午夜免费鲁丝| 国产一区二区激情短视频 | 人成视频在线观看免费观看| 午夜激情av网站| 日韩大码丰满熟妇| 韩国高清视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久国产电影| 久久这里只有精品19| 999久久久国产精品视频| av片东京热男人的天堂| 久久久精品区二区三区| 日本wwww免费看| 在线观看一区二区三区激情| 欧美国产精品一级二级三级| 一本一本久久a久久精品综合妖精| 日日爽夜夜爽网站| 叶爱在线成人免费视频播放| 免费在线观看视频国产中文字幕亚洲 | 国产av国产精品国产| 国产成人精品在线电影| 我要看黄色一级片免费的| 中文天堂在线官网| 啦啦啦啦在线视频资源| 又大又黄又爽视频免费| 欧美av亚洲av综合av国产av | 亚洲第一av免费看| 欧美国产精品一级二级三级| 久久av网站| 免费观看性生交大片5| 人人妻人人澡人人爽人人夜夜| 高清欧美精品videossex| 人成视频在线观看免费观看| 99热全是精品| 欧美日韩一级在线毛片| 新久久久久国产一级毛片| 在线观看三级黄色| 亚洲精华国产精华液的使用体验| 久久久久久久久免费视频了| 国产成人精品福利久久| 一本久久精品| 男女边摸边吃奶| 最近2019中文字幕mv第一页| 亚洲色图 男人天堂 中文字幕| 亚洲图色成人| 成人三级做爰电影| 热99久久久久精品小说推荐| 亚洲色图综合在线观看| 国产有黄有色有爽视频| 一级a爱视频在线免费观看| 日本午夜av视频| 免费黄网站久久成人精品| 亚洲成国产人片在线观看| 秋霞伦理黄片| 久久热在线av| 性高湖久久久久久久久免费观看| 免费在线观看视频国产中文字幕亚洲 | 搡老乐熟女国产| 国产一区二区激情短视频 | 观看av在线不卡| 日本91视频免费播放| 激情五月婷婷亚洲| 亚洲精品美女久久av网站|