• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    突破衍射極限的成像方法綜述

    2017-04-10 15:46烏拉鄭玉祥
    光學儀器 2017年1期
    關鍵詞:柵格分類號顯微鏡

    烏拉 鄭玉祥

    摘要: “衍射極限”實際上不是一個真正的障礙,除非處理遠場和定位精度。這種衍射障礙并不是堅不可摧的,可以利用一些智能技術來突破光學衍射極限。討論了四種技術,近場掃描光學顯微鏡(NSOM)法,受激發(fā)射損耗(STED)顯微鏡法,光激活定位顯微鏡(PALM)法或隨機光學重建顯微鏡(STORM)法和結(jié)構(gòu)照明顯微鏡(SIM)法,并且介紹了各自的基本原則與優(yōu)劣。NSOM利用納米級探測器檢測通過光纖的極小匯聚光斑,從而獲得單個像素的分辨率;PALM和STORM利用熒光探針,實現(xiàn)暗場和熒光的轉(zhuǎn)換,從而觀察到極小的熒光團;SIM則是利用柵格圖案與樣品疊加成像來實現(xiàn)。其中,STORM具有相對較高的潛力,能夠更為有效地突破衍射極限。

    關鍵詞:

    衍射極限; 近場顯微鏡; 三維顯微

    中圖分類號: O 43文獻標志碼: Adoi: 10.3969/j.issn.10055630.2017.01.014

    A review on imaging methods to break the diffraction limit

    Ramzan Ullah1,2, ZHENG Yuxiang1

    (1.Shanghai UltraPrecision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering,

    Fudan University, Shanghai 200433, China;

    2.Department of Physics, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan)

    Abstract:

    Notorious term 'diffraction limit' is not actually a true barrier unless we are dealing with far field and localization precision.This diffraction barrier is not impenetrable and can be broken with some intelligent techniques.We discuss here four powerful techniques,nearfield scanning optical microscopy(NSOM),stimulated emission depletion(STED) microscopy,photoactivated localization microscopy(PALM) & stochastic optical reconstruction microscopy(STORM) and structured illumination microscopy(SIM),along with their underlying principles together with pros and cons.NSOM uses a nanometer scale detector or source which compels the light to pass through the tiny tip of a fiber while keeping the distance between the tip and sample less than λ.At any given moment in a STED microscope,laser light is focused into a small spot by the objective and as a result,all fluorophores within this focused spot radiate fluorescence,which is then gathered by the objective and headed to the detector where it forms a single pixel.Fluorescent probes are employed by STORM/PALM,which are able to toggle between dark states and fluorescent so that with every snapshot taken,only a tiny,optically resolvable portion of the fluorophores is observed.Structured illumination is a wide field technique in which a grid pattern is produced by the interference of diffraction orders which are superimposed on the sample while taking images.STORM has the relatively high potential to effectively break the conventional diffraction barrier with fewer hurdles.

    Keywords:

    diffraction limit; nearfield microscopy; threedimensional microscopy

    Introduction

    A microscope is a device used to see objects in intricate detail usually up to the order ofnanoscale.The main factor in determining the quality of a microscope is its resolution which is fundamentally bounded by diffraction limit.Normally,determining the diffraction limit of an imaging system is based on Abbe and Rayleigh criterions[1] which in turn depend on numerical aperture of the lens and wavelength of light being used.With the advent of new technologies different types of microscopes working beyond the limit of diffraction,have been developed which include electron microscopes[23] using electrons as well as optical microscopes using smart optical techniques.Each type has its own pros and cons.We present a short review of some of these optical microscopes.

    1Nearfield scanning optical microscopy(NSOM)

    NSOM sometimes abbreviated as SNOM for "Scanning Nearfield Scanning Optical Microscopy" was firstly suggested in 1928[4].NSOM uses a very innovative concept to penetrate the diffraction barrier which is to use a detector or source whose size is in nanometer scale.NSOM compels the light to pass through the tiny tip(whose aperture size is on the order of tens of nanometers) of a fiber.Now if this tip is brought very close to the object,the resolution is no more limited by the diffraction,but by the size of the tip aperture as elucidated in Fig 1.So it means the distance between the tip and object must be much smaller than λ.So it breaks the far field resolution limit.Probe resolution is mainly quantified by the diameter of the aperture[5].With the passage of time,more and more advanced techniques have been developed and some are even specific to the type of sample[6].This technique has revolutionized the field of material characterization especially for nano materials[7].So basically NSOM/SNOM utilizes the near field component of the electromagnetic wave whose propagation is limited to very short distance as opposed to far field light which smears out infinitely until absorbed,refracted or scattered whatever is the case.The propagation distance of a near field photon is proportional to the physical dimensions of its source;hence in order to be observable by the nearfield,the objects have to be in very close proximity of the field.The distance between the tip and object must be less than the dimensions of the aperture of the tip.The amplitude of the nearfield light decays exponentially as the negative of the 1st or higher power of the distance from its source.A detailed analysis of the NSOM can be found here[8].Similarly another technique called apertureless near field microscopy reaches beyond the range of simple NSOM[9].

    1.1Advantages

    (1) NSOM offers direct relationship between surfacenano features and optical or electronic characteristics along with concurrent mensuration of the topography as well as optical properties(fluorescence).

    Fig.1Schematic diagram of a NSOM

    (2) NSOM is substantially effective in characterizing the inhomogeneous materials or surfaces,like nano particles,polymer blends,porous silicon,and biological systems[10].

    1.2Disadvantages

    (1) The chief drawback to NSOM is the restricted number of photons coming out of the tiny tip and the miniscule collection efficiency.

    (2) Long scan time for high resolution images or large areas to be scanned.

    (3) Only surface features can be studied.

    2Stimulated emission depletion(STED) microscopy

    A STED microscope is built on the basis of aconfocal laser scanning microscope(CLSM).A layout of a CLSM is shown in Fig.2.At any given moment,laser light is focused into a small spot by the objective and as a result,all fluorophores within this focused spot radiate fluorescence,which is then gathered by the objective and headed to the detector.The detected signal forms a single pixel.Then the scanning mirror moves in XY plane to take the next pixels and this goes on until the whole sample is scanned and as a result whole image of the sample is formed.Sometimes,the sample stage is moveable so sample is moved in the XY plane and whole image is formed.A single pixel is obtained for each location.So in order to get a high resolution image,it would take considerable time.

    Fig.2A schematic diagram of a CLSM

    The intensity of the light at the focused spot spreads out in accordance with the point spread function(PSF).For a circular aperture,the PSF exhibits a pattern called “Airy disk”,whose size is proportional to λ/NA where λ is the wavelength of light & NA is numerical aperture.

    The resolution of CLSM is decided by the size of the PSF:If the focal spot is smaller,so does the each pixel acquired and the resultant image will be crisp and sharp.But if not,resultant image will be blurred.So the main challenge is to achieve smaller and smaller PSF to get better and better resolution.However,there is a natural diffraction limit in doing this like in any other system and this situation was first described in 1870s by a German physicist Ernst Abbe(1840—1905) who indicated that the PSF size has a lower limit which is proportional to λ/NA(circular aperture) due to diffraction.This is called the Abbes diffraction limit.The basic idea behind STED microscopy is the utilization of nonlinear optics to design a smaller PSF below Abbes diffraction limit.

    It was Albert Einstein,who in 1917 theoretically anticipated the occurrence of stimulated emission.Stimulated emission is the basic building block of lasers and it also functions as the foundation of STED that cracks the diffraction limit.

    The STEDmicroscope is largely dependent on two laser pulses which are synchronized.These two synchronized laser pulses are named as 'STED laser' and 'excitation laser' in Fig.3.As can be seen,excitation is carried out by a subpicosecond laser pulse which is tuned to the absorption spectrum of the dye.The excitation pulse is irradiated and focused onto the sample,generating a typical diffraction limited spot of excited molecules.The excitation pulse is instantly chased by a depletion pulse named as STED pulse.The STED pulse is redshifted(increased in wavelength) in frequency to the emission spectrum of the dye,in such a way that its lower energy photons operate only on the excited molecules of the dye under ideal condition,hence,extinguish them to the ground state by stimulated emission.The overall result of the STED pulse is that the influenced excited molecules cannot radiate in the fluorescence regime because their energy is disposed of in the STED pulse.By arranging the STED pulse in doughnut mode spatially,only the molecules in the proximity of the spot are quenched under ideal condition.Fluorescence ideally remains intact at the center of the doughnut,where the STED pulse is evanescing.

    Fig.3Simplified STED scheme

    By increasing the intensity of the STED pulse,the depletion becomes increasingly more functional towards the middle and sufficiently complete at the proximity of the spot.However,the fluorescence is ideally not affected at all at the doughnut hole.Therefore,by increasing the intensity of the doughnutshaped STEDpulse,the fluorescent spot can be gradually shrunk down,theoretically,even up to the size of a single molecule.This intriguing concept is manifesting the fundamental smashing of the diffraction barrier.The crucial element is the saturated diminishing of the fluorescence at any coordinate except the focal point.

    This microscopy technique is unique in a way that presently the well known super resolution methods like multiphoton fluorescence,the confocal or related microscopes,which can never transcend Abbes barrier by more than a factor of 2.In a way,confocal fluorescence and twophoton microscopes just cross the border of the diffraction limitation,without breaking it[11].The resolution of these systems is still restricted by diffraction,as opposed to the STEDmicroscope[12].

    The actual physical reason behind the breakage of the diffraction barrier is not that fluorescence is hindered,but the saturation of the fluorescence diminishing.Fluorescence diminishing alone is not conducive to the breakage of the diffraction barrier since the focused STEDpulse is also limited by diffraction.However,in this context,saturation means that when the fluorescence at the middle of the doughnut is intact,it is completely stopped at the closest proximity of the doughnut.Thus the fluorescent region is gradually shrunk down without any limit[13].

    3Photoactivated localization microscopy(PALM) & stochastic optical reconstruction microscopy(STORM)

    Superresolution optical microscopy technique which is founded on stochastic switching of single molecule fluorescence signal is named as PALM or sometimes also called STORM[14].As in the case of conventional fluorescence microscopy where all fluorophores in the sample are fluorescent and their corresponding images,being diffraction limited,overlap and thus form a smooth but somewhat obscure image.Fluorescent probes are employed by STORM/PALM,which are able to toggle between dark states and fluorescent so that with every snapshot taken,only a tiny,optically resolvable portion of the fluorophores is observed[15].In this way,deduction of their locations with ultra high accuracy from the central locations of the fluorescent spots is possible.With many snapshots of the sample,a final superresolution image can be reenacted from the assembled positions,each catching a random subset of the fluorophores[16].

    Since its inception in 2006,STORM has gathered many more functionalities[17].With either different emission wavelengths or different activation wavelengths,multicolor imaging can be attained with photoswitchable fluorophores.3D imaging has been actualized with the help of several 3D singleparticle localization methods,inclusive of PSF engineering,biplane imaging,astigmatic imaging and interference.A typical STORM /PALM setup is shown in Fig.4 in which multi color lasers were used.The detail can be found[18].Similarly,Nikon made a new STORM microscope which they name NSTORM with superresolution capable to reconstruct 2D and 3D high resolution images with crystal clear clarity.The detail and specifications can be found here[19].

    4Structured illumination microscopy(SIM)

    Structured illumination is awide field technique in which a grid pattern is produced by the interference of diffraction orders which are superimposed on the sample while taking images.The grid pattern is relocated or revolved in steps between recordings of each snapshot set.The snapshot set consists of individual subsets,where each subset is recorded after rotating the grid.Succeeded by the processing with a specially designed algorithm[20],highfrequency information can be extricated from the raw data to develop a reconstructed image with a lateral resolution roughly twice to that of diffractionlimited microscopes[21] and an axial resolution between 150 and 300 nm.

    Fig.4A PALM and STORM layout in which multi color lasers were used taken from reference

    Structuredillumination(SI) leans on both exclusive microscopy procedures and extensive software analysis after exposure.But,because SI is a widefield technique,it is normally capable to capture images at a higher rate than confocalbased schemes like STED[22].The leading concept of SI is to illuminate a sample with patterned light and increase the resolution by measuring the fringes in the Moiré pattern[23] and sample information(which is otherwise unobservable) is extracted from these fringes and computationally reinstated[24].

    There are some limitations associated with SI.Firstly,the saturating excitation powers induce more photo damage and decline fluorophore photo stability.Secondly,sample drift must be retained well below the resolving distance which is also very challenging.The first limitation can be resolved by combining with other microscopy techniques which use some other nonlinearity like reversible photo activation and stimulated emission depletion.The second limitation delimits livecell imaging and may necessitate faster frame rates.In spite of that,SI is undoubtedly,a strong rival in the competition of applications in the field of superresolution microscopy[25].

    A comparison table of pros and cons of all of these microscopy techniques given above together with many others can be found at reference[26].

    5Conclusion

    After discussing these four very powerful techniques,nearfield scanning optical microscopy(NSOM),stimulated emission depletion(STED) microscopy,photoactivated localization microscopy(PALM) & stochastic optical reconstruction microscopy(STORM) and structured illumination microscopy(SIM),of breaking the diffraction limit,we conclude STORM has the high potential to effectively break the conventional diffraction barrier with less hurdles.However,this conclusion is relative as it depends upon the application for which a microscope is required.

    參考文獻:

    [1]PAWLE Y J.Handbook of biological confocal microscopy[M].New York:Plenum Press,1990.

    [2]CLARKED R.Review:transmission scanning electron microscopy[J].Journal of Materials Science,1973,8(2):279285.

    [3]VERNONPARRY K D.Scanning electron microscopy:an introduction[J].IIIVs Review,2000,13(4):4044.

    [4]NOVOTNY L.From nearfield optics to optical antennas[J].Physics Today,2011(7):4752.

    [5]LEWENG D,NAHATA A,LEZEC H J,et al.Surface Plasmonenhanced transmission for high throughput NSOM probes[J/OL].[20150810].http:∥www.foresight.org/Conference/MNT9/Papers/Lewen/index.html.

    [6]MICHAELIS J,HETTICH C,MLYNEK J,et al.Optical microscopy using a singlemolecule light source[J].Nature,2000,405:325328.

    [7]TISLER J,OECKINGHAUS T,STHR R J,et al.Single defect center scanning nearfield optical microscopy on graphene[J].Nano Letters,2013,13(7):31523156.

    [8]DUNN R C.Nearfield scanning optical microscopy[J].Chemical Reviews,1999,99(10):28912928.

    [9]YANG T J,LESSARD G A,QUAKE S R.An apertureless nearfield microscope for fluorescence imaging[J].Applied Physics Letters,2000,76(3):378380.

    [10]HERMAN M A.Scanning nearfield optical microscopy[J].OptoElectronics Review,1997,5(4):295298.

    [11]HUANG B,BATES M,ZHUANG X W.Super resolution fluorescence microscopy[J].Annual Review of Biochemistry,2009,78:9931016.

    [12]HELL S W,WICHMANN J.Breaking the diffraction resolution limit by stimulated emission:stimulatedemissiondepletion fluorescence microscopy[J].Optics Letters,1994,19(11):780782.

    [13]HELL S W.Increasing the resolution of farfield fluorescence light microscopy by pointspreadfunction engineering[M]∥LAKOWICZ J.Topics in fluorescence spectroscopy:volume 5:nonlinear and twophotoninduced fluorescence.New York:Plenum Press,1997:361426.

    [14]HUANG B,BABCOCK H,ZHUANG X W.Breaking the diffraction barrier:superresolution imaging of cells[J].Cell,2010,143(7):10471058.

    [15]HELL S W.Microscopy and its focal switch[J].Nature Methods,2009,6(1):2432.

    [16]HELL S W.Farfield optical nanoscopy[J].Science,2007,316(5828):11531158.

    [17]KAMIYAMA D,HUANG B.Development in the STORM[J].Developmental Cell,2012,23(6):11031110.

    [18]CHEMIE P.Establishment and optimization of superresolution fluorescence microscopy for multicolour studies of biological systems[D].München,2010.

    [19]Nikon instrumants Inc.SupperResolution microscope system offering ten times the resolution of convention optical microscopes[EB/OL].[20160402].http:∥www.nikoninstruments.com/Products/Superresolution/NSTORMSuperResolution.

    [20]BARLOW A L,GUERIN C J.Quantization of widefield fluorescence images using structured illumination and image analysis software[J].Microscopy Research and Technique,2007,70(1):7684.

    [21]NEIL M A A,WILSON T,JUKAITIS R.A light efficient optically sectioning microscope[J].Journal of Microscopy,1998,189(2):114117.

    [22]WILSON T,JUKAITIS R,NEIL M A A,et al.Confocal microscopy by aperture correlation[J].Optics Letters,1996,21(23):18791881.

    [23]CHASLES F,DUBERTRET B,BOCCARA A C.Optimization and characterization of a structured illumination microscope[J].Optics Express,2007,15(24):1613016140.

    [24]JUKAITIS R,WILSON T,NEIL M A A,et al.Efficient realtime confocal microscopy with white light sources[J].Nature,1996,383(6603):804806.

    [25]KARADAGLI D,WILSON T.Image formation in structured illumination widefield fluorescence microscopy[J].Micron,2008,39(7):808818.

    [26]WILSON S M,BACIC A.Preparation of plant cells for transmission electron microscopy to optimize immunogold labeling of carbohydrate and protein epitopes[J].Nature Protocols,2012,7(9):17161727.

    (編輯:張磊)

    猜你喜歡
    柵格分類號顯微鏡
    基于鄰域柵格篩選的點云邊緣點提取方法*
    顯微鏡
    顯微鏡下看沙
    A Study on the Change and Developmentof English Vocabulary
    Translation on Deixis in English and Chinese
    不同剖面形狀的柵格壁對柵格翼氣動特性的影響
    顯微鏡下的奇妙微生物
    基于CVT排布的非周期柵格密度加權陣設計
    動態(tài)柵格劃分的光線追蹤場景繪制
    国产高清三级在线| videossex国产| 国产精品99久久久久久久久| 久久精品夜色国产| 国精品久久久久久国模美| 日韩一本色道免费dvd| 久久鲁丝午夜福利片| 伊人久久国产一区二区| 蜜桃久久精品国产亚洲av| 欧美97在线视频| 岛国毛片在线播放| 成人国产麻豆网| 午夜免费鲁丝| 精品人妻熟女av久视频| 日韩精品免费视频一区二区三区 | 另类亚洲欧美激情| 欧美激情极品国产一区二区三区 | 国产色婷婷99| 欧美 日韩 精品 国产| 丝袜脚勾引网站| 丰满少妇做爰视频| 91精品国产国语对白视频| 日韩人妻高清精品专区| 男女免费视频国产| 久久女婷五月综合色啪小说| 午夜影院在线不卡| 在线观看一区二区三区激情| 欧美人与善性xxx| 永久网站在线| 国产男女内射视频| 99热全是精品| 国产精品久久久久久久久免| 性色avwww在线观看| 国产高清有码在线观看视频| 久久ye,这里只有精品| 欧美精品国产亚洲| 全区人妻精品视频| 熟妇人妻不卡中文字幕| 9色porny在线观看| 国产男人的电影天堂91| 国产日韩一区二区三区精品不卡 | 国产成人91sexporn| 成年女人在线观看亚洲视频| 午夜老司机福利剧场| 久久久久久久久大av| 美女脱内裤让男人舔精品视频| 亚洲人成77777在线视频| 日本免费在线观看一区| 亚洲美女黄色视频免费看| 观看av在线不卡| 极品人妻少妇av视频| 久久久久视频综合| 欧美少妇被猛烈插入视频| 亚洲精品乱久久久久久| 久久久久精品久久久久真实原创| 男的添女的下面高潮视频| 国产成人精品福利久久| 欧美激情极品国产一区二区三区 | 久久久国产精品麻豆| 看非洲黑人一级黄片| 免费观看性生交大片5| 亚洲精品456在线播放app| 高清视频免费观看一区二区| 日本-黄色视频高清免费观看| 91国产中文字幕| 久久久午夜欧美精品| 2022亚洲国产成人精品| 欧美xxⅹ黑人| 欧美xxⅹ黑人| 狠狠婷婷综合久久久久久88av| www.av在线官网国产| 亚洲国产精品一区二区三区在线| 三级国产精品欧美在线观看| a级片在线免费高清观看视频| 女性生殖器流出的白浆| 久久久久精品久久久久真实原创| 一本大道久久a久久精品| 亚洲少妇的诱惑av| 国产伦理片在线播放av一区| 亚洲性久久影院| 国产精品久久久久久久久免| 欧美xxxx性猛交bbbb| 大片免费播放器 马上看| 日韩亚洲欧美综合| 少妇熟女欧美另类| 嘟嘟电影网在线观看| 纯流量卡能插随身wifi吗| 国产精品99久久99久久久不卡 | 国产成人精品一,二区| 国产欧美日韩一区二区三区在线 | 在线天堂最新版资源| 国产精品久久久久久久电影| 亚洲精品视频女| a级毛片免费高清观看在线播放| 亚洲欧美日韩另类电影网站| 黄色配什么色好看| 桃花免费在线播放| 免费观看性生交大片5| 日韩免费高清中文字幕av| 久久韩国三级中文字幕| 一级片'在线观看视频| 黄片播放在线免费| 九色成人免费人妻av| 91久久精品国产一区二区三区| 十分钟在线观看高清视频www| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美中文字幕日韩二区| 国产成人免费无遮挡视频| 最后的刺客免费高清国语| 下体分泌物呈黄色| 精品人妻熟女av久视频| 男人爽女人下面视频在线观看| 天美传媒精品一区二区| 久久 成人 亚洲| 午夜老司机福利剧场| 亚洲成人手机| 综合色丁香网| av在线播放精品| 亚洲av电影在线观看一区二区三区| 一本大道久久a久久精品| 成年女人在线观看亚洲视频| 婷婷色综合大香蕉| 国内精品宾馆在线| 久久久a久久爽久久v久久| 不卡视频在线观看欧美| 欧美激情 高清一区二区三区| 免费看不卡的av| 亚洲精华国产精华液的使用体验| 91精品三级在线观看| 国产一区二区三区综合在线观看 | 精品一品国产午夜福利视频| 亚洲精品自拍成人| 亚洲高清免费不卡视频| h视频一区二区三区| 午夜福利网站1000一区二区三区| 亚洲一区二区三区欧美精品| 大话2 男鬼变身卡| 2022亚洲国产成人精品| 婷婷色综合大香蕉| 制服诱惑二区| 精品国产乱码久久久久久小说| 亚洲熟女精品中文字幕| 亚洲精品久久午夜乱码| 久久久久久久亚洲中文字幕| 91aial.com中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 晚上一个人看的免费电影| 国产深夜福利视频在线观看| 久久久久久久大尺度免费视频| av线在线观看网站| 欧美97在线视频| 免费人成在线观看视频色| 久久久久久久亚洲中文字幕| 精品人妻一区二区三区麻豆| 国产在线免费精品| 免费av中文字幕在线| 国产一级毛片在线| 国产免费一级a男人的天堂| 免费久久久久久久精品成人欧美视频 | 日韩亚洲欧美综合| 欧美日韩av久久| 我要看黄色一级片免费的| 国产精品嫩草影院av在线观看| 99九九在线精品视频| 天堂俺去俺来也www色官网| 人妻制服诱惑在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费高清中文字幕av| 韩国av在线不卡| 免费看av在线观看网站| 蜜桃久久精品国产亚洲av| 久久久a久久爽久久v久久| av专区在线播放| 亚洲成人av在线免费| 2018国产大陆天天弄谢| 国产欧美日韩一区二区三区在线 | 男人爽女人下面视频在线观看| 伦精品一区二区三区| 色婷婷av一区二区三区视频| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 亚洲精品成人av观看孕妇| 在线免费观看不下载黄p国产| 国产一级毛片在线| 99热这里只有精品一区| 亚洲五月色婷婷综合| 国产一级毛片在线| 成人综合一区亚洲| 亚洲久久久国产精品| 你懂的网址亚洲精品在线观看| 看非洲黑人一级黄片| 亚洲伊人久久精品综合| 日韩av免费高清视频| 亚洲情色 制服丝袜| 丝袜脚勾引网站| 天天躁夜夜躁狠狠躁躁| 亚洲视频免费观看视频| 成在线人永久免费视频| 成人黄色视频免费在线看| 中文字幕色久视频| 成人永久免费在线观看视频 | avwww免费| 亚洲成av片中文字幕在线观看| 精品福利永久在线观看| 国产精品秋霞免费鲁丝片| 国产成人免费无遮挡视频| 女人高潮潮喷娇喘18禁视频| 91av网站免费观看| 日本撒尿小便嘘嘘汇集6| 国产高清videossex| 成人精品一区二区免费| 变态另类成人亚洲欧美熟女 | 精品久久久精品久久久| 精品国产超薄肉色丝袜足j| 一进一出好大好爽视频| 无人区码免费观看不卡 | 国产欧美日韩一区二区精品| 一级黄色大片毛片| 日韩熟女老妇一区二区性免费视频| 亚洲国产av新网站| xxxhd国产人妻xxx| 精品福利观看| 在线观看一区二区三区激情| 亚洲成人国产一区在线观看| 国产精品.久久久| 一级片免费观看大全| 日韩有码中文字幕| 最新美女视频免费是黄的| 国产老妇伦熟女老妇高清| 男女无遮挡免费网站观看| 美女高潮到喷水免费观看| 亚洲人成77777在线视频| 久久久久久久久久久久大奶| 国产麻豆69| 成人18禁在线播放| 日日爽夜夜爽网站| 又黄又粗又硬又大视频| 又紧又爽又黄一区二区| av在线播放免费不卡| 交换朋友夫妻互换小说| av一本久久久久| www日本在线高清视频| 亚洲av成人不卡在线观看播放网| 亚洲美女黄片视频| 天堂动漫精品| 一区二区三区精品91| 国产单亲对白刺激| 久久人妻av系列| 免费日韩欧美在线观看| 国产男靠女视频免费网站| 久久久国产精品麻豆| 精品久久久久久电影网| 精品久久久精品久久久| 日韩欧美国产一区二区入口| 亚洲国产毛片av蜜桃av| www.999成人在线观看| 又大又爽又粗| 99久久精品国产亚洲精品| 午夜免费鲁丝| 欧美国产精品va在线观看不卡| 国产精品亚洲一级av第二区| 精品国产一区二区三区四区第35| 国产欧美日韩一区二区精品| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 正在播放国产对白刺激| 国产精品1区2区在线观看. | tocl精华| av又黄又爽大尺度在线免费看| 91老司机精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产成人一精品久久久| 在线观看一区二区三区激情| 成人亚洲精品一区在线观看| 99热网站在线观看| 亚洲国产成人一精品久久久| 日本av免费视频播放| 精品高清国产在线一区| 另类精品久久| 成年动漫av网址| 国产欧美日韩精品亚洲av| a级毛片在线看网站| av福利片在线| 日本av手机在线免费观看| av免费在线观看网站| 午夜免费成人在线视频| 深夜精品福利| 亚洲伊人久久精品综合| 国产一区二区三区视频了| 极品教师在线免费播放| 老司机午夜福利在线观看视频 | 国产免费视频播放在线视频| 亚洲av片天天在线观看| 老司机靠b影院| 十八禁网站网址无遮挡| 久久精品91无色码中文字幕| 国产区一区二久久| 黄色a级毛片大全视频| 美女视频免费永久观看网站| 深夜精品福利| 正在播放国产对白刺激| 午夜精品国产一区二区电影| 十八禁网站网址无遮挡| 久久久久精品国产欧美久久久| 我要看黄色一级片免费的| 国产成人欧美| 欧美黑人欧美精品刺激| 亚洲熟女精品中文字幕| 免费在线观看日本一区| 水蜜桃什么品种好| 欧美亚洲日本最大视频资源| 亚洲精品美女久久久久99蜜臀| 交换朋友夫妻互换小说| 精品午夜福利视频在线观看一区 | 中文字幕人妻丝袜制服| 久久久久精品国产欧美久久久| 亚洲精品国产区一区二| 蜜桃在线观看..| 人人妻人人澡人人爽人人夜夜| 欧美日韩视频精品一区| 国产一区二区 视频在线| 亚洲三区欧美一区| 日韩 欧美 亚洲 中文字幕| 国产福利在线免费观看视频| 欧美另类亚洲清纯唯美| 我要看黄色一级片免费的| 涩涩av久久男人的天堂| 热99re8久久精品国产| 亚洲精品一卡2卡三卡4卡5卡| 黄色视频不卡| 亚洲国产av新网站| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 国产淫语在线视频| 天堂中文最新版在线下载| 亚洲人成电影免费在线| 久久久久久久久免费视频了| 水蜜桃什么品种好| 国产一卡二卡三卡精品| 日本一区二区免费在线视频| 亚洲全国av大片| 精品熟女少妇八av免费久了| 好男人电影高清在线观看| 久久香蕉激情| 伊人久久大香线蕉亚洲五| 桃红色精品国产亚洲av| 咕卡用的链子| 国产主播在线观看一区二区| 亚洲国产欧美一区二区综合| 久久久久视频综合| 亚洲欧美一区二区三区久久| 嫩草影视91久久| 丝袜美腿诱惑在线| 一本色道久久久久久精品综合| 在线观看舔阴道视频| 久久精品国产a三级三级三级| 黄色视频不卡| 亚洲人成电影免费在线| 超碰成人久久| 亚洲成人免费av在线播放| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 国产成人欧美| av有码第一页| 精品久久久久久电影网| 丰满迷人的少妇在线观看| 不卡一级毛片| 国产一区二区三区在线臀色熟女 | 757午夜福利合集在线观看| 波多野结衣av一区二区av| 一级片免费观看大全| 国产免费视频播放在线视频| 国产一区二区三区在线臀色熟女 | 日韩欧美三级三区| 一边摸一边抽搐一进一小说 | 首页视频小说图片口味搜索| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机亚洲免费影院| 亚洲精品美女久久久久99蜜臀| 久久久久国产一级毛片高清牌| 久久久精品区二区三区| 国产一区二区三区综合在线观看| 亚洲熟女精品中文字幕| 一级毛片精品| 亚洲精品在线观看二区| 一级片免费观看大全| 国产成人啪精品午夜网站| 久久久久网色| 考比视频在线观看| 欧美日韩福利视频一区二区| 91老司机精品| 久久精品国产a三级三级三级| 国产精品 国内视频| 日韩免费高清中文字幕av| 精品人妻熟女毛片av久久网站| 精品熟女少妇八av免费久了| 女人爽到高潮嗷嗷叫在线视频| 欧美在线黄色| 亚洲黑人精品在线| 亚洲精品av麻豆狂野| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 国产高清国产精品国产三级| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区三| 99精品久久久久人妻精品| 又紧又爽又黄一区二区| 如日韩欧美国产精品一区二区三区| 亚洲欧美激情在线| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产99精品国产亚洲性色 | 久久av网站| 国产精品成人在线| 99国产精品99久久久久| 韩国精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产一区二区 视频在线| 男女午夜视频在线观看| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 免费看十八禁软件| 无限看片的www在线观看| 黄片小视频在线播放| 亚洲人成电影免费在线| 亚洲欧美一区二区三区久久| 人妻 亚洲 视频| 亚洲熟女精品中文字幕| av国产精品久久久久影院| videos熟女内射| 性色av乱码一区二区三区2| 国产日韩一区二区三区精品不卡| 欧美 日韩 精品 国产| 一二三四在线观看免费中文在| 午夜福利,免费看| 黄色a级毛片大全视频| 亚洲av成人不卡在线观看播放网| 少妇裸体淫交视频免费看高清 | 最新的欧美精品一区二区| 99精品在免费线老司机午夜| 亚洲美女黄片视频| 一区二区三区精品91| av电影中文网址| 蜜桃在线观看..| e午夜精品久久久久久久| 一边摸一边做爽爽视频免费| 高清黄色对白视频在线免费看| 精品久久久精品久久久| 精品少妇黑人巨大在线播放| 人妻久久中文字幕网| 天堂8中文在线网| 亚洲全国av大片| 国产97色在线日韩免费| av线在线观看网站| 女警被强在线播放| 另类精品久久| 麻豆av在线久日| 搡老熟女国产l中国老女人| www.999成人在线观看| 午夜成年电影在线免费观看| 日韩欧美国产一区二区入口| 亚洲色图 男人天堂 中文字幕| 曰老女人黄片| 国产成人精品在线电影| 久久ye,这里只有精品| 色在线成人网| 后天国语完整版免费观看| 欧美精品亚洲一区二区| 黄频高清免费视频| 精品卡一卡二卡四卡免费| 黄频高清免费视频| 亚洲中文字幕日韩| 国产成人一区二区三区免费视频网站| 丁香欧美五月| av网站在线播放免费| 午夜福利视频在线观看免费| 国产成人av教育| 在线亚洲精品国产二区图片欧美| 日韩欧美免费精品| 国产av国产精品国产| 国产免费av片在线观看野外av| 桃花免费在线播放| 激情视频va一区二区三区| 一级,二级,三级黄色视频| 夜夜骑夜夜射夜夜干| 精品人妻熟女毛片av久久网站| av一本久久久久| h视频一区二区三区| 中文字幕色久视频| 男女无遮挡免费网站观看| 黑人欧美特级aaaaaa片| 精品乱码久久久久久99久播| 欧美大码av| av欧美777| 在线av久久热| 老司机靠b影院| 色精品久久人妻99蜜桃| 在线十欧美十亚洲十日本专区| 91av网站免费观看| 欧美久久黑人一区二区| 国产日韩欧美在线精品| 中文字幕人妻熟女乱码| 亚洲欧美激情在线| 久久久久久久久久久久大奶| 午夜日韩欧美国产| 啦啦啦 在线观看视频| 免费在线观看日本一区| 亚洲久久久国产精品| 久久人妻av系列| 一区二区日韩欧美中文字幕| 久久久久久亚洲精品国产蜜桃av| 另类精品久久| 一级片免费观看大全| 757午夜福利合集在线观看| 精品国产一区二区三区久久久樱花| 91老司机精品| 久久狼人影院| 亚洲avbb在线观看| 国产深夜福利视频在线观看| 在线观看免费日韩欧美大片| 999久久久精品免费观看国产| 中国美女看黄片| 一边摸一边抽搐一进一出视频| 精品国产乱码久久久久久男人| netflix在线观看网站| 五月开心婷婷网| 日日夜夜操网爽| 高清视频免费观看一区二区| 精品第一国产精品| 两个人免费观看高清视频| 久久久精品94久久精品| 19禁男女啪啪无遮挡网站| 咕卡用的链子| 男女之事视频高清在线观看| 色婷婷久久久亚洲欧美| 成人亚洲精品一区在线观看| 啦啦啦视频在线资源免费观看| 啦啦啦 在线观看视频| 高潮久久久久久久久久久不卡| 欧美黄色片欧美黄色片| svipshipincom国产片| 国产又爽黄色视频| 亚洲免费av在线视频| 国产在线一区二区三区精| 久久这里只有精品19| 欧美+亚洲+日韩+国产| 欧美日韩视频精品一区| 亚洲专区中文字幕在线| 国产亚洲午夜精品一区二区久久| 国产一区二区激情短视频| 欧美精品亚洲一区二区| 一区在线观看完整版| 久久久久久久国产电影| 在线观看免费午夜福利视频| 侵犯人妻中文字幕一二三四区| 中亚洲国语对白在线视频| 国产精品一区二区精品视频观看| 亚洲国产精品一区二区三区在线| 亚洲专区字幕在线| 亚洲人成77777在线视频| 啦啦啦中文免费视频观看日本| 91精品三级在线观看| 国产免费视频播放在线视频| 亚洲中文av在线| 真人做人爱边吃奶动态| 国产精品一区二区在线观看99| 午夜激情av网站| 别揉我奶头~嗯~啊~动态视频| 日本五十路高清| 人妻久久中文字幕网| 在线永久观看黄色视频| 伦理电影免费视频| 考比视频在线观看| 亚洲欧洲精品一区二区精品久久久| 久久国产精品男人的天堂亚洲| 国产亚洲欧美精品永久| 国产免费av片在线观看野外av| svipshipincom国产片| 欧美变态另类bdsm刘玥| 黄色丝袜av网址大全| 两个人免费观看高清视频| 最新美女视频免费是黄的| 中文字幕人妻丝袜一区二区| 免费在线观看日本一区| 91成年电影在线观看| 高清欧美精品videossex| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 视频在线观看一区二区三区| 亚洲成人免费电影在线观看| 国产黄频视频在线观看| 欧美日韩黄片免| 在线观看免费午夜福利视频| 午夜免费成人在线视频| 亚洲国产av影院在线观看| 99久久人妻综合| 操美女的视频在线观看| av天堂在线播放| 老司机福利观看| 国产免费av片在线观看野外av| 国产一区二区 视频在线| 十八禁网站免费在线| 久久精品国产综合久久久| 亚洲av电影在线进入| 久久国产亚洲av麻豆专区| 国产精品av久久久久免费| 老司机深夜福利视频在线观看| 51午夜福利影视在线观看| 国产精品1区2区在线观看. | 97在线人人人人妻| 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 国产亚洲欧美精品永久| 国产精品免费一区二区三区在线 | 国产97色在线日韩免费| 一区二区日韩欧美中文字幕|