• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulation of neuronal dynamic range using two different adaptation mechanisms

    2017-04-07 03:36:40
    關(guān)鍵詞:淺黃色長(zhǎng)途旅行石屋

    Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China

    Modulation of neuronal dynamic range using two different adaptation mechanisms

    Lei Wang*, Ye Wang, Wen-long Fu, Li-hong Cao

    Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China

    How to cite this article:Wang L, Wang Y, Fu WL, Cao LH (2017) Modulation of neuronal dynamic range using two different adaptation mechanisms. Neural Regen Res 12(3):447-451.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    Funding:This research was supported by a grant from Beijing Municipal Commission of Science and Technology of China, No. Z151100000915070.

    Graphical Abstract

    The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents) in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms,i.e. subthreshold and suprathreshold (spike-triggered) adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in,e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.

    nerve regeneration; dynamic range; subthreshold adaptation; suprathreshold adaptation; noise; neuron; adaptive exponential integrate-and-fire model; ion currents; computer simulation; neural regeneration

    Introduction

    In natural systems, the dynamic range serves as a good measure to characterize the capability of systems to discriminate between intensity of external stimulus. For example, in neuronal systems, this ability is important for biological cells to avoid danger. Tus, a larger dynamic range indicates a greater probability for neuronal survival (Gollo et al., 2012).

    In past decades, several factors have been identified to modulate the dynamic range of neurons. Theoretical investigations suggest that a major effect of active dendritic conductance is to enhance the neuronal dynamic range, further revealing that neurons with larger dendritic trees may exhibit higher levels of dynamic range (Gollo et al., 2009). Trough the construction of computational network models of mammalian retina, researchers have shown that electrical synapses between rod-rod, along with appropriate values of rod Ih(hyperpolarization-activated cation current) conduc-tance, could enhance the dynamic range of retinal ganglion cells (Publio et al., 2009). Additionally, our recent model study demonstrated that intrinsic channel fluctuations exhibit a potent effect in modulating the neuronal dynamic range (Wang et al., 2013).

    A prominent feature in biological neurons is their ability to adapt to processing afferent signals, called spike-frequency adaptation (SFA) (Chen et al., 2014; Wang et al., 2014c; Keller and Takahashi, 2015; King et al., 2015; Buonocore et al., 2016; Cui et al., 2016; Roach et al., 2016). Past studies focused on the ability of neurons to adapt to changes in incoming stimuli. In collision-detecting neurons, SFA has been shown to significantly contribute to neuronal tuning behaviors by selectively lowering the responses to non-preferred stimuli (Peron and Gabbiani, 2009). Experimental results on electroreceptor afferents showed that SFA helps separate transient signals from slower oscillatory signals in the background (Benda et al., 2005). Moreover, some studies suggested that SFA plays pivotal roles in defining neuronal population rhythms (Fuhrmann et al., 2002), spike timing precisions (Teka et al., 2014; Keller and Takahashi, 2015; Liu and Gollisch, 2015), and synchronous behaviors (Crook et al., 1998; van Vreeswijk and Hansel, 2001; Li et al., 2012; Pakdaman et al., 2014; Wang et al., 2014b; Norman et al., 2016).

    Based on different generation mechanisms, adaptation can be classified into two types: subthreshold adaptation and suprathreshold (spike-triggered) adaptation. Previous reports demonstrated that these two adaptation mechanisms play differential functions in modulating neuronal spiking variability (Ladenbauer et al., 2014; Colliaux et al., 2015), regulating the correlation between sequential interspike intervals (Chacron et al., 2003; Shiau et al., 2015), and population synchronizations (Hansen and Dragoi, 2011; Ladenbauer et al., 2012).

    In this study, we investigated how different SFA mechanisms (subthreshold and spike-triggered) influence the dynamic range of neurons. We also analyzed the effect of adaptation currents with stochastic fluctuations.

    Materials and Methods

    Neuronal model with adaptation currents

    The model we employed to investigate was the adaptive exponential integrate-and-fire (aEIF) model, which has been widely used in previous model studies (Schwalger et al., 2010; Ladenbauer et al., 2012) to analyze SFA features in neurons (Hert?g et al., 2014; Buchin et al., 2016; Kobayashi and Kitano, 2016). The model includes the following equations and a reset condition (Schwalger et al., 2010; Ladenbauer et al., 2012):

    with ancillary after-spike resetting according to the following equation (4):

    whereCis the membrane capacitance,Vis the membrane potential of neuron,wis the adaptation variable,ηis an additional noise embedded in the adaptation dynamics, andIis the synaptic input.σcharacterizes the noise intensity of the adaptation current, andξ(t) denotes the Gaussian white noise.aquantifies the conductance that mediates subthreshold adaptation, andbquantifies suprashreshold adaptation through the increment in Eq. (4).Vcutrepresents the “cutoff” or maximum value ofV, andVrrepresents the resting potential ofV. Detailed explanations and values for the model parameters have been previously described (Schwalger et al., 2010; Ladenbauer et al., 2012). Specifically, gLis the leak conductance,VLis the leak reversal potential,ΔTis the threshold slop factor,VTis the threshold potential,τwis the adaptation time constant, and Nais the number of stochastic adaptation channels.

    To characterize the dynamic range of a neuron, we introduced a widely used measure adopted from (Publio et al., 2009):

    where,I90andI10represent the stimulus intensity for which the firing frequency of neuron is 10 percent below the maximum and 10 percent above the minimum, respectively.

    Simulation method

    Simulations were performed using Matlab software (R2010a) (The MathWorks, Natick, MA, USA), and the first-order Euler algorithm was employed to calculate the membrane potential with a time integration of 0.25 ms.

    Results

    Firing behaviors of an aEIF neuron

    Figure 1demonstrates firing behaviors of an aEIF neuron under different adaptation states. Whena= 0 andb= 0, the neuron fired continuously with nearly identical interspike intervals, and no adaptation phenomenon was observed (Figure 1A). However, ifb= 0 anda> 0, ora= 0 andb> 0, the neuron fires spikes with apparent adaptation phenomena, suggesting that the firing frequency decreased and the interspike intervals were larger (Figure 1B,C).

    Figure 2presents diagrams showing the variation of firing frequencies under different values ofaandb. Results showed that the increase ofamaintained the slope (gain) of the F-I (frequency-stimulus) curve, but the rheobase changed from low to high (Figure 2A). Although the increase inbmaintained the rheobase, the slope of the F-Icurve changed from high to low (Figure 2B). The variations of the F-I curves, which were due to the adaptation variablesaandb, were consistent previous reports (Ladenbauer et al., 2012).

    Figure 1 Membrane potential and adaptation current of a typical adaptive exponential integrate-and-fire neuron.

    Figure 2 Frequency-stimulus (F-I) curves of adaptive exponential integrate-andfire neuron under different adaptation mechanisms.

    Figure 3 Two-parameter dependence of neuronal dynamic range on the two adaptation mechanisms.

    Figure 4 Membrane potential, adaptation current, and noisy current of an adaptive exponential integrate-and-fire neuron.

    Figure 5 Variation of neuronal dynamic range with respect to noise intensity under different adapting states (repeating 50 times).

    Dynamic range of neurons under different adaptation mechanisms

    The variations of neuronal dynamic range with respect toaandbare demonstrated inFigure 3. Results show that sub-threshold adaptationaalways decreased the dynamic range of neurons, irrespective of the value ofb; while suprathreshold adaptationbhad little influence on the dynamic range when the value ofawas small. However, whenawas larger, the increase inbalso reduced the neuronal dynamic range.

    Figure 6 Two-parameter dependence of neuronal dynamic range on noise intensity and adaptation mechanisms (repeating 50 times).

    Influence of noise on neuronal dynamic range

    Noise is ubiquitous in natural systems, especially in neuronal systems (Andreeva, 2015; Béhuret et al., 2015; Mokri et al., 2015; Antal and Herrmann, 2016; Lee et al., 2016; Zylberberg et al., 2016). A previous study suggests that noise embedded in adaptation currents affects the shaping interspike interval histograms of spike trains and neuronal correlations (Schwalger et al., 2010). Terefore, we analyzed whether adaptation noise influenced the neuronal dynamic range.

    Figure 4shows several examples of firing behavior of an aEIF neuron under different adaptation states. Compared with results fromFigure 1, the effect of noise on neuronal spikes was significant.Figure 5shows that the variations in neuronal dynamic range varied with increased noise intensity. The presence of noise always enhanced the neuronal dynamic range, regardless of the neuronal state (adaptive or non-adaptive).

    The two-parameter dependence of neuronal dynamic range on noise intensity and variablesaandbis demonstrated inFigure 6. The reduction trend of neuronal dynamic range induced by an increasedawas always observed, regardless of the value of noise intensity. However, for fixed values ofa, the increased noise intensity reliably enhanced the dynamic range of neurons. Results fromFigure 6Bshowed that the variation trend of neuronal dynamic range induced by an increasedbalways persisted when the noise intensity varied. However, for fixed values ofb, the increased noise intensity also undoubtedly enhanced the neuronal dynamic range.

    Discussion

    SFA has been described as a prominent property in many neurons in the brain (Chen et al., 2014; Wang et al., 2014c; Keller and Takahashi, 2015; King et al., 2015; Buonocore et al., 2016; Cui et al., 2016; Roach et al., 2016). Previous studies revealed that SFA plays significant roles in neural information processing,e.g. modulating looming stimulus selectivity (Peron and Gabbiani, 2009), separating transient signals from background oscillations (Benda et al., 2005), mediating synchronous behaviors (Crook et al., 1998; van Vreeswijk and Hansel, 2001; Li et al., 2012; Pakdaman et al., 2014; Wang et al., 2014b; Norman et al., 2016), and reducing the variability of neuronal population activity (Schwalger et al., 2010). Results from the present study suggested that SFA exhibited crucial roles in regulating neuronal dynamic range. Moreover, the detailed regulations behave differently under the two adaptation mechanisms.

    In the present paper, we performed a computational study to investigate whether adaptation mechanisms exerted influence on the dynamic range of biological neurons. Based on the aEIF model neuron, which includes two different adaptation mechanisms (subthreshold and suprathreshold), our results indicated that the two adaptation mechanisms had different roles in modulating the neuronal dynamic range: subthreshold adaptation decreased the dynamic range of neurons, while suprathreshold adaptation had little impact on the neuronal dynamic range. These results also suggested that noise embedded in the adaptation current efficiently adjusted the dynamic range of neurons, regardless of the neuronal state. Accordingly, these results could provide a better understanding about the factors that modulate the dynamic range of biological neurons.

    Noise is a non-ignorable factor in natural systems, especially in neural systems (Andreeva, 2015; Béhuret et al., 2015; Mokri et al., 2015; Antal and Herrmann, 2016; Lee et al., 2016; Zylberberg et al., 2016). Previous studies have suggested a role for noise in processing neural information (Wang et al., 2014a; Nobukawa and Nishimura, 2015; Lücken et al., 2016). One recent study showed that noise embedded in adaptation currents performs critically in shaping the interspike interval histograms of spike trains and neuronal correlations (Schwalger et al., 2010). Results from the present study showed that adaptation currents with stochastic noise always enlarged the dynamic range of neurons.

    It should be noted that we only discuss the effect of adaptation currents on modulating neuronal dynamic range in a single model neuron, but did not consider synaptic connections with many other neurons. In the nervous system, neurons are organized in networks or populations. Therefore, future studies should analyze the variations in dynamic range in neuronal networks.

    Author contributions:All authors participated in the design, implementation, evaluation and data analysis of this study, and approved the final version of the paper.

    Conflicts of interest:None declared.

    Plagiarism check:This paper was screened twice using CrossCheck to verify originality before publication.

    Peer review:This paper was double-blinded and stringently reviewed by international expert reviewers.

    Andreeva E (2015) The relationship of tuning and noise correlations in macaque auditory cortex. J Neurosci 35:12974-12976.

    Antal A, Herrmann CS (2016) Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast 2016:3616807.

    Béhuret S, Deleuze C, Bal T (2015) Corticothalamic synaptic noise as a mechanism for selective attention in thalamic neurons. Front Neural Circuits 9:80.

    Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25:2312-2321.

    Buchin A, Rieubland S, H?usser M, Gutkin BS, Roth A (2016) Inverse stochastic resonance in cerebellar Purkinje cells. PLoS Comp Biol 12:e1005000.

    Buonocore A, Caputo L, Pirozzi E, Carfora MF (2016) A leaky integrate-and-fire model with adaptation for the generation of a spike train. Math Biosci Eng 13:483-493.

    Chacron MJ, Pakdaman K, Longtin A (2003) Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Comput 15:253-278.

    Chen S, Benninger F, Yaari Y (2014) Role of small conductance Ca2+-activated K+channels in controlling CA1 pyramidal cell excitability. J Neurosci 34:8219-8230.

    Colliaux D, Yger P, Kaneko K (2015) Impact of sub and supra-threshold adaptation currents in networks of spiking neurons. J Comput Neurosci 39:255-270.

    Crook SM, Ermentrout GB, Bower JM (1998) Spike frequency adaptation affects the synchronization properties of networks of cortical oscillations. Neural Comput 10:837-854.

    Cui Y, Wang YV, Park SJH, Demb JB, Butts DA (2016) Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells. Elife 5:e19460.

    Fuhrmann G, Markram H, Tsodyks M (2002) Spike frequency adaptation and neocortical rhythms. J Neurophysiol 88:761-770.

    Gollo LL, Kinouchi O, Copelli M (2009) Active dendrites enhance neuronal dynamic range. PLoS Comp Biol 5:e1000402.

    Gollo LL, Mirasso C, Eguíluz VM (2012) Signal integration enhances the dynamic range in neuronal systems. Phys Rev E Stat Nonlin SoftMatter Phys 85:040902.

    從廣州出發(fā)飛 行了16個(gè)小時(shí),再坐上2小時(shí)的大巴,穿越一片片平坦開闊的葡萄園、橄欖園,路過一棟棟白色或淺黃色的石屋,終于抵達(dá)普利亞產(chǎn)區(qū)的中心城市:曼杜里亞。此時(shí)接近正午,陽光正好,清勁的海風(fēng)撲面而來,一下子驅(qū)散了長(zhǎng)途旅行的不適??諝庵袕浡蠙煜?、泥土香,暖暖的,非常愜意。放眼望去,都是狹窄的石頭街道、古老的石頭房子和教堂,街上行人寥寥。

    Hansen BJ, Dragoi V (2011) Adaptation-induced synchronization in laminar cortical circuits. Proc Natl Acad Sci U S A 108:10720-10725. Hert?g L, Durstewitz D, Brunel N (2014) Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise. Front Comput Neurosci 8:116.

    Keller CH, Takahashi TT (2015) Spike timing precision changes with spike rate adaptation in the owl’s auditory space map. J Neurophysiol 114:2204-2219.

    King JL, Lowe MP, Crowder NA (2015) Contrast adaptation is spatial frequency specific in mouse primary visual cortex. Neuroscience 310:198-205.

    Kobayashi R, Kitano K (2016) Impact of slow K(+) currents on spike generation can be described by an adaptive threshold model. J Comput Neurosci 40:347-362.

    Lücken L, Popovych OV, Tass PA, Yanchuk S (2016) Noise-enhanced coupling between two oscillators with long-term plasticity. Phys Rev E 93:032210.

    Ladenbauer J, Augustin M, Obermayer K (2014) How adaptation currents change threshold, gain, and variability of neuronal spiking. J Neurophysiol 111:939-953.

    Ladenbauer J, Augustin M, Shiau L, Obermayer K (2012) Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons. PLoS Comp Biol 8:e1002478.

    Lee J, Joshua M, Medina Javier F, Lisberger Stephen G (2016) Signal, noise, and variation in neural and sensory-motor latency. Neuron 90:165-176.

    Li H, Liu WZ, Liang PJ (2012) Adaptation-dependent synchronous activity contributes to receptive field size change of bullfrog retinal ganglion cell. PLoS One 7:e34336.

    Liu JK, Gollisch T (2015) Spike-triggered covariance analysis reveals phenomenological diversity of contrast adaptation in the retina. PLoS Comp Biol 11:e1004425.

    Mokri Y, Worland K, Ford M, Rajan R (2015) Effect of background noise on neuronal coding of interaural level difference cues in rat inferior colliculus. Eur J Neurosci 42:1685-1704.

    Nobukawa S, Nishimura H (2015) Enhancement of spike-timing-dependent plasticity in spiking neural systems with noise. Int J Neural Syst 26:1550040.

    Norman SE, Butera RJ, Canavier CC (2016) Stochastic slowly adapting ionic currents may provide a decorrelation mechanism for neural oscillators by causing wander in the intrinsic period. J Neurophysiol 116:1189-1198.

    Pakdaman K, Perthame B, Salort D (2014) Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation. J Math Neurosci 4:14.

    Peron S, Gabbiani F (2009) Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat Neurosci 12:318-326.

    Publio R, Oliveira RF, Roque AC (2009) A computational study on the role of gap junctions and rod Ih conductance in the enhancement of the dynamic range of the retina. PLoS One 4:e6970.

    Roach JP, Sander LM, Zochowski MR (2016) Memory recall and spike-frequency adaptation. Phys Rev E 93:052307.

    Schwalger T, Fisch K, Benda J, Lindner B (2010) How noisy adaptation of neurons shapes interspike interval histograms and correlations. PLoS Comp Biol 6:e1001026.

    Shiau L, Schwalger T, Lindner B (2015) Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation. J Comput Neurosci 38:589-600.

    Teka W, Marinov TM, Santamaria F (2014) Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comp Biol 10:e1003526.

    van Vreeswijk C, Hansel D (2001) Patterns of synchrony in neural networks with spike adaptation. Neural Comput 13:959-992.

    Wang L, Zhang PM, Liang PJ, Qiu YH (2013) Enhancement of the neuronal dynamic range by proper intensities of channel noise. Chin Phys Lett 30:070506-070509.

    Wang L, Liang PJ, Zhang PM, Qiu YH (2014a) Ionic mechanisms underlying tonic and phasic firing behaviors in retinal ganglion cells: a model study. Channels (Austin) 8:298-307.

    Wang L, Zhang PM, Liang PJ, Qiu YH (2014b) Effects of spike frequency adaptation on synchronization transitions in electrically coupled neuronal networks with scale-free connectivity. Chin Phys Lett 31:070501.

    Wang L, Liang PJ, Zhang PM, Qiu YH (2014c) Adaptation-dependent synchronization transitions and burst generations in electrically coupled neural networks. Int J Neural Syst 24:1450033.

    Zylberberg J, Cafaro J, Turner Maxwell H, Shea-Brown E, Rieke F (2016) Direction-selective circuits shape noise to ensure a precise population code. Neuron 89:369-383.

    Copyedited by Cooper C, de Souza M, Yu J, Li CH, Qiu Y, Song LP, Zhao M

    *Correspondence to: Lei Wang, Ph.D., wanglei_nc@163.com.

    orcid: 0000-0003-3460-1069 (Lei Wang)

    10.4103/1673-5374.202931

    Accepted: 2017-01-09

    猜你喜歡
    淺黃色長(zhǎng)途旅行石屋
    一次與眾不同的“長(zhǎng)途旅行”
    高山流水·松林里的紅色石屋
    動(dòng)物也春運(yùn) 長(zhǎng)途旅行品鑒會(huì)
    我是小小快遞員
    山林石屋,北京城邊的田園生活
    好日子(2018年9期)2018-10-12 09:57:22
    秋詞(其二)
    優(yōu)雅出行
    風(fēng)的兼差
    只偷一次
    中老年健康(2015年6期)2015-05-30 06:10:35
    HOT!熱溫迷情
    優(yōu)雅(2009年5期)2009-07-16 09:33:56
    五月玫瑰六月丁香| 久久久久久久亚洲中文字幕| 午夜免费鲁丝| 制服丝袜香蕉在线| 国产高清有码在线观看视频| 亚洲精品亚洲一区二区| 亚洲久久久国产精品| 欧美日韩亚洲高清精品| 丰满人妻一区二区三区视频av| 欧美激情极品国产一区二区三区 | 欧美人与善性xxx| 在线观看www视频免费| 啦啦啦中文免费视频观看日本| 五月开心婷婷网| 99热6这里只有精品| 黄色毛片三级朝国网站 | av卡一久久| 国产精品偷伦视频观看了| 久久精品国产亚洲av涩爱| 99久久人妻综合| 简卡轻食公司| 狂野欧美激情性xxxx在线观看| 亚洲精品,欧美精品| 丝袜喷水一区| 黄色视频在线播放观看不卡| 久久精品国产a三级三级三级| 日本爱情动作片www.在线观看| 69精品国产乱码久久久| 国产欧美亚洲国产| 中文字幕免费在线视频6| 久久午夜福利片| 国产精品国产三级国产av玫瑰| 夜夜看夜夜爽夜夜摸| 国产免费又黄又爽又色| 狂野欧美白嫩少妇大欣赏| 青春草亚洲视频在线观看| 日本av免费视频播放| 久久久久国产网址| 日日啪夜夜爽| 精品一区二区三区视频在线| 97在线视频观看| 亚洲精品日韩av片在线观看| 国产成人午夜福利电影在线观看| 91久久精品国产一区二区成人| 777米奇影视久久| 一级,二级,三级黄色视频| 国产成人精品一,二区| 99九九在线精品视频 | 免费在线观看成人毛片| 中文字幕av电影在线播放| 国产成人91sexporn| 美女大奶头黄色视频| 亚洲国产日韩一区二区| av黄色大香蕉| 夜夜骑夜夜射夜夜干| 国产男女内射视频| 久久久亚洲精品成人影院| 人体艺术视频欧美日本| 美女中出高潮动态图| 建设人人有责人人尽责人人享有的| 国产免费一区二区三区四区乱码| 99久久中文字幕三级久久日本| 熟女电影av网| 看十八女毛片水多多多| 一级毛片aaaaaa免费看小| 六月丁香七月| 亚洲精品亚洲一区二区| 国产白丝娇喘喷水9色精品| 久久久a久久爽久久v久久| 国产免费视频播放在线视频| 七月丁香在线播放| 亚洲av欧美aⅴ国产| 不卡视频在线观看欧美| 日韩成人伦理影院| 青春草视频在线免费观看| 51国产日韩欧美| 亚洲成人手机| 成人18禁高潮啪啪吃奶动态图 | 国产欧美日韩精品一区二区| 狂野欧美激情性bbbbbb| 亚洲欧洲精品一区二区精品久久久 | 尾随美女入室| 纯流量卡能插随身wifi吗| 最近手机中文字幕大全| 男女国产视频网站| av福利片在线| 两个人的视频大全免费| 欧美日本中文国产一区发布| 一个人免费看片子| 麻豆精品久久久久久蜜桃| 亚洲高清免费不卡视频| √禁漫天堂资源中文www| 99久久精品热视频| 美女大奶头黄色视频| 性高湖久久久久久久久免费观看| 日韩,欧美,国产一区二区三区| 亚洲精华国产精华液的使用体验| 日韩一区二区三区影片| 午夜福利影视在线免费观看| 亚洲av电影在线观看一区二区三区| 久久久国产一区二区| 久久久久视频综合| 蜜臀久久99精品久久宅男| 永久免费av网站大全| 亚洲成色77777| 国产精品一二三区在线看| 一区二区三区四区激情视频| 亚洲国产精品专区欧美| 亚洲一区二区三区欧美精品| 熟女电影av网| av有码第一页| 免费大片黄手机在线观看| 亚洲人成网站在线观看播放| 男女无遮挡免费网站观看| 美女视频免费永久观看网站| 51国产日韩欧美| 成人无遮挡网站| 王馨瑶露胸无遮挡在线观看| 在线观看国产h片| 国产一区二区在线观看日韩| 99视频精品全部免费 在线| 国产成人freesex在线| 亚洲国产毛片av蜜桃av| 国产精品一二三区在线看| 夜夜骑夜夜射夜夜干| 久久97久久精品| 亚洲精品国产成人久久av| 高清av免费在线| 久久久久视频综合| 少妇人妻 视频| 欧美亚洲 丝袜 人妻 在线| 永久免费av网站大全| 国产av码专区亚洲av| 蜜桃在线观看..| 新久久久久国产一级毛片| 欧美3d第一页| 国产精品一区www在线观看| 精品久久久精品久久久| 国产精品女同一区二区软件| 国产男人的电影天堂91| 草草在线视频免费看| 欧美日韩视频精品一区| 汤姆久久久久久久影院中文字幕| 久久久久久久久久人人人人人人| 国产伦在线观看视频一区| 久久国产精品男人的天堂亚洲 | 成年美女黄网站色视频大全免费 | 久久亚洲国产成人精品v| 国产色爽女视频免费观看| 丁香六月天网| 免费黄色在线免费观看| 久久久久精品性色| 黄色视频在线播放观看不卡| 免费黄色在线免费观看| 99九九在线精品视频 | 少妇精品久久久久久久| 久久精品国产亚洲av天美| 国产色爽女视频免费观看| 成人综合一区亚洲| 亚洲国产精品999| 欧美高清成人免费视频www| 午夜影院在线不卡| 国产日韩欧美亚洲二区| 午夜影院在线不卡| 中文字幕久久专区| 欧美精品高潮呻吟av久久| 久久久久久人妻| 建设人人有责人人尽责人人享有的| 国产 精品1| av女优亚洲男人天堂| 国产精品国产三级国产专区5o| 色视频www国产| 下体分泌物呈黄色| 亚洲欧美中文字幕日韩二区| 亚洲精品国产av成人精品| 日韩欧美精品免费久久| 精品久久久精品久久久| 亚洲va在线va天堂va国产| 亚洲色图综合在线观看| 啦啦啦在线观看免费高清www| 欧美bdsm另类| www.色视频.com| 爱豆传媒免费全集在线观看| 亚洲国产av新网站| 亚洲天堂av无毛| 哪个播放器可以免费观看大片| 观看av在线不卡| av福利片在线| 一区二区av电影网| 精品一区二区免费观看| 极品人妻少妇av视频| 日本wwww免费看| 婷婷色综合大香蕉| 成人国产麻豆网| 国产精品福利在线免费观看| 91久久精品电影网| 日本黄大片高清| 丁香六月天网| 免费黄色在线免费观看| 欧美xxxx性猛交bbbb| 最近2019中文字幕mv第一页| 国产精品久久久久久精品电影小说| 简卡轻食公司| 简卡轻食公司| 亚洲国产精品成人久久小说| 国产精品国产三级国产专区5o| 亚洲国产欧美日韩在线播放 | 99国产精品免费福利视频| 亚洲无线观看免费| 免费看光身美女| h日本视频在线播放| 亚洲第一区二区三区不卡| 亚洲经典国产精华液单| 你懂的网址亚洲精品在线观看| 免费观看在线日韩| 欧美精品一区二区免费开放| 亚洲欧美成人综合另类久久久| 婷婷色综合大香蕉| 午夜日本视频在线| a级毛片在线看网站| 日韩欧美 国产精品| 国产真实伦视频高清在线观看| 国产成人91sexporn| 欧美国产精品一级二级三级 | 国产精品麻豆人妻色哟哟久久| 国产精品国产av在线观看| kizo精华| 色5月婷婷丁香| 亚洲av二区三区四区| 日韩欧美 国产精品| 少妇人妻一区二区三区视频| 亚洲激情五月婷婷啪啪| 三级经典国产精品| 国产白丝娇喘喷水9色精品| 国产有黄有色有爽视频| a级毛片在线看网站| 日本免费在线观看一区| 欧美日韩综合久久久久久| 欧美日韩一区二区视频在线观看视频在线| 精品国产露脸久久av麻豆| 成人毛片a级毛片在线播放| 国产精品成人在线| 草草在线视频免费看| 一边亲一边摸免费视频| 亚洲av电影在线观看一区二区三区| 日本爱情动作片www.在线观看| 日日爽夜夜爽网站| 免费观看的影片在线观看| 午夜福利视频精品| 天美传媒精品一区二区| 久久6这里有精品| 男男h啪啪无遮挡| 婷婷色综合www| 下体分泌物呈黄色| 国产精品国产三级国产专区5o| 三级国产精品片| 久久久久久久大尺度免费视频| 亚洲不卡免费看| 18+在线观看网站| 天堂中文最新版在线下载| 欧美日韩一区二区视频在线观看视频在线| 在线播放无遮挡| 高清视频免费观看一区二区| 色网站视频免费| 这个男人来自地球电影免费观看 | 精品卡一卡二卡四卡免费| 国产 精品1| 十八禁高潮呻吟视频 | 美女主播在线视频| 国产伦精品一区二区三区视频9| 日韩强制内射视频| 婷婷色综合www| 中文字幕亚洲精品专区| 亚洲国产毛片av蜜桃av| 新久久久久国产一级毛片| 亚洲第一av免费看| 午夜影院在线不卡| 精品少妇黑人巨大在线播放| 插逼视频在线观看| 一区在线观看完整版| 成人国产av品久久久| 久久热精品热| 中文欧美无线码| 国产成人免费观看mmmm| 七月丁香在线播放| 国产欧美另类精品又又久久亚洲欧美| 久久久久人妻精品一区果冻| 久久国产亚洲av麻豆专区| 日韩 亚洲 欧美在线| 少妇 在线观看| 欧美3d第一页| 欧美日韩亚洲高清精品| 欧美一级a爱片免费观看看| 国产精品国产av在线观看| 少妇人妻一区二区三区视频| xxx大片免费视频| 亚洲,一卡二卡三卡| 简卡轻食公司| 国产深夜福利视频在线观看| 亚洲国产精品999| 高清午夜精品一区二区三区| 男女啪啪激烈高潮av片| 亚洲天堂av无毛| 亚洲av成人精品一二三区| 最近最新中文字幕免费大全7| 午夜激情久久久久久久| 黄色毛片三级朝国网站 | 欧美老熟妇乱子伦牲交| 久久女婷五月综合色啪小说| 国产成人精品久久久久久| 观看av在线不卡| 亚洲一级一片aⅴ在线观看| 久久午夜综合久久蜜桃| 精品久久久精品久久久| 在线观看免费日韩欧美大片 | 一级毛片久久久久久久久女| 一区二区三区乱码不卡18| 好男人视频免费观看在线| 韩国高清视频一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 精品久久久噜噜| 精品人妻熟女毛片av久久网站| 精品久久久噜噜| 99久久精品一区二区三区| 免费黄频网站在线观看国产| 精品一区二区三卡| 亚洲国产精品999| 日韩成人伦理影院| 五月开心婷婷网| 黄色配什么色好看| 成年人免费黄色播放视频 | 大香蕉久久网| .国产精品久久| 免费大片黄手机在线观看| 亚洲av日韩在线播放| 国产精品一区二区性色av| 亚洲精品乱码久久久久久按摩| 黄片无遮挡物在线观看| 日韩三级伦理在线观看| 成人漫画全彩无遮挡| 丰满少妇做爰视频| 妹子高潮喷水视频| 免费少妇av软件| 久久亚洲国产成人精品v| 欧美日韩综合久久久久久| 日韩欧美 国产精品| av不卡在线播放| 亚洲精品成人av观看孕妇| 免费黄网站久久成人精品| 99久久精品一区二区三区| www.av在线官网国产| 国内少妇人妻偷人精品xxx网站| 免费观看a级毛片全部| 国产精品国产三级国产av玫瑰| 少妇裸体淫交视频免费看高清| 国模一区二区三区四区视频| 丰满饥渴人妻一区二区三| 国产色婷婷99| 精品国产一区二区三区久久久樱花| 2022亚洲国产成人精品| 成人国产av品久久久| 色5月婷婷丁香| 美女脱内裤让男人舔精品视频| 日韩av不卡免费在线播放| 国内揄拍国产精品人妻在线| 免费不卡的大黄色大毛片视频在线观看| av天堂久久9| 欧美 亚洲 国产 日韩一| 熟妇人妻不卡中文字幕| 亚洲性久久影院| 欧美xxⅹ黑人| 国产成人91sexporn| 欧美日韩视频高清一区二区三区二| 一区二区三区乱码不卡18| 日本黄色片子视频| 一级毛片aaaaaa免费看小| 国产高清不卡午夜福利| 亚洲美女黄色视频免费看| 免费av中文字幕在线| 人妻人人澡人人爽人人| 三上悠亚av全集在线观看 | 五月玫瑰六月丁香| 日本爱情动作片www.在线观看| 亚洲av免费高清在线观看| 极品教师在线视频| av黄色大香蕉| 国产在线视频一区二区| 男女边摸边吃奶| av又黄又爽大尺度在线免费看| 久久99热这里只频精品6学生| 下体分泌物呈黄色| 亚洲第一av免费看| 看十八女毛片水多多多| 2022亚洲国产成人精品| 国产精品免费大片| 美女cb高潮喷水在线观看| 国产欧美日韩一区二区三区在线 | 久久久国产欧美日韩av| 看免费成人av毛片| 亚洲一区二区三区欧美精品| 亚洲欧美成人综合另类久久久| 综合色丁香网| 纯流量卡能插随身wifi吗| 麻豆成人av视频| 男人舔奶头视频| 成人特级av手机在线观看| 久久精品夜色国产| 国产在线男女| 三级国产精品欧美在线观看| 99热网站在线观看| 天堂8中文在线网| 免费在线观看成人毛片| 国产色婷婷99| 国产av码专区亚洲av| 人人妻人人澡人人看| 中国国产av一级| 91精品伊人久久大香线蕉| 国产乱来视频区| 日韩电影二区| 国产黄片美女视频| 美女主播在线视频| 一级二级三级毛片免费看| 日本欧美国产在线视频| av在线app专区| 亚洲经典国产精华液单| 观看av在线不卡| 成人18禁高潮啪啪吃奶动态图 | 国产成人免费观看mmmm| 日本av手机在线免费观看| 少妇人妻精品综合一区二区| 免费人成在线观看视频色| 天堂中文最新版在线下载| 一本色道久久久久久精品综合| 丰满少妇做爰视频| 国产在线一区二区三区精| 日本黄色日本黄色录像| 69精品国产乱码久久久| 国产日韩一区二区三区精品不卡 | 七月丁香在线播放| 天美传媒精品一区二区| 青春草国产在线视频| 久久婷婷青草| 男女啪啪激烈高潮av片| 日本wwww免费看| 男人爽女人下面视频在线观看| 蜜桃在线观看..| 亚洲av.av天堂| 在线免费观看不下载黄p国产| 亚洲成人av在线免费| 亚洲欧洲日产国产| 国产91av在线免费观看| 欧美精品人与动牲交sv欧美| 啦啦啦视频在线资源免费观看| 成人美女网站在线观看视频| 五月伊人婷婷丁香| 欧美精品亚洲一区二区| 岛国毛片在线播放| √禁漫天堂资源中文www| 亚洲欧洲国产日韩| 亚洲欧美日韩卡通动漫| 国产又色又爽无遮挡免| 日韩中文字幕视频在线看片| 免费黄网站久久成人精品| 亚洲真实伦在线观看| 亚洲国产最新在线播放| 国产欧美日韩精品一区二区| 最新中文字幕久久久久| 亚洲精品日本国产第一区| 看免费成人av毛片| 亚洲国产欧美在线一区| 中文字幕免费在线视频6| 亚洲国产精品一区二区三区在线| 少妇裸体淫交视频免费看高清| av黄色大香蕉| 欧美日韩视频精品一区| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 免费久久久久久久精品成人欧美视频 | 简卡轻食公司| 色94色欧美一区二区| 我要看日韩黄色一级片| 久久久久久久亚洲中文字幕| 欧美日韩在线观看h| 人妻少妇偷人精品九色| 看十八女毛片水多多多| 伦理电影免费视频| 成人美女网站在线观看视频| 亚洲美女视频黄频| 国产日韩欧美视频二区| 亚洲国产精品一区二区三区在线| 亚洲色图综合在线观看| 男女无遮挡免费网站观看| 草草在线视频免费看| 国产精品99久久99久久久不卡 | 国产高清三级在线| 亚洲精品日韩av片在线观看| 少妇 在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久青草综合色| 97超碰精品成人国产| 亚洲av.av天堂| 免费黄网站久久成人精品| 一区二区三区精品91| 曰老女人黄片| 欧美区成人在线视频| 嫩草影院新地址| 国产午夜精品一二区理论片| 亚洲自偷自拍三级| 国产无遮挡羞羞视频在线观看| 国内少妇人妻偷人精品xxx网站| 美女cb高潮喷水在线观看| 国产黄片美女视频| 午夜免费鲁丝| 蜜桃在线观看..| 精品久久国产蜜桃| 极品少妇高潮喷水抽搐| 看非洲黑人一级黄片| 天堂俺去俺来也www色官网| 国产免费一级a男人的天堂| 国产免费一区二区三区四区乱码| 国产成人一区二区在线| 有码 亚洲区| 精品人妻一区二区三区麻豆| 午夜av观看不卡| 免费黄色在线免费观看| 永久网站在线| av国产久精品久网站免费入址| 人妻制服诱惑在线中文字幕| 搡老乐熟女国产| av专区在线播放| 3wmmmm亚洲av在线观看| 男人狂女人下面高潮的视频| 22中文网久久字幕| 日韩欧美精品免费久久| a级片在线免费高清观看视频| 一本色道久久久久久精品综合| 99久久人妻综合| 亚洲真实伦在线观看| 下体分泌物呈黄色| 免费观看在线日韩| 免费观看性生交大片5| 欧美高清成人免费视频www| 国产成人精品婷婷| 久久久a久久爽久久v久久| 日本wwww免费看| 亚洲不卡免费看| 欧美日韩在线观看h| 一级黄片播放器| 亚洲国产精品一区二区三区在线| 国产免费视频播放在线视频| 高清视频免费观看一区二区| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 极品人妻少妇av视频| 成人二区视频| 亚洲av国产av综合av卡| 99久久精品国产国产毛片| 欧美人与善性xxx| 精品一区在线观看国产| 精品亚洲成国产av| 美女主播在线视频| 丝袜在线中文字幕| 蜜臀久久99精品久久宅男| 日本欧美国产在线视频| 夫妻性生交免费视频一级片| 人人澡人人妻人| 亚洲精品一二三| 亚洲精品国产色婷婷电影| 精品一品国产午夜福利视频| 最近最新中文字幕免费大全7| 国产91av在线免费观看| 深夜a级毛片| 少妇 在线观看| 亚洲激情五月婷婷啪啪| 男人爽女人下面视频在线观看| 人人妻人人澡人人爽人人夜夜| 中文字幕av电影在线播放| 麻豆成人av视频| 丰满迷人的少妇在线观看| 精品视频人人做人人爽| 亚洲精品色激情综合| 少妇精品久久久久久久| 黑人高潮一二区| 丁香六月天网| 一区二区av电影网| 美女视频免费永久观看网站| 在线观看免费日韩欧美大片 | 国产淫片久久久久久久久| av.在线天堂| 插阴视频在线观看视频| 国产精品.久久久| 久久精品久久精品一区二区三区| 在线精品无人区一区二区三| 91久久精品国产一区二区三区| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 丝袜喷水一区| 日韩大片免费观看网站| 免费少妇av软件| 黑人高潮一二区| 欧美一级a爱片免费观看看| 黑人高潮一二区| 久久这里有精品视频免费| 大片电影免费在线观看免费| 日韩电影二区| 一本色道久久久久久精品综合| 亚洲国产毛片av蜜桃av| 成人国产av品久久久| 最近的中文字幕免费完整| 亚洲av欧美aⅴ国产| 我要看黄色一级片免费的| 在线天堂最新版资源| 最近手机中文字幕大全| 美女脱内裤让男人舔精品视频| 我要看黄色一级片免费的|