代明星,全學軍,徐 飛,羅 丹,吳 俊,李瑞恒,謝清偉
(重慶理工大學 化學化工學院,重慶 400054)
陣列式直通道填料塔用于氨氮廢水吹脫的性能研究
代明星,全學軍,徐 飛,羅 丹,吳 俊,李瑞恒,謝清偉
(重慶理工大學 化學化工學院,重慶 400054)
空氣吹脫;脫氨;傳質系數(shù);陣列式直通道填料塔
1.1 陣列式填料塔的設計
本工作提出的新型陣列式直通道填料塔,結構如圖1所示。空氣進氣口位于塔體下端,液體經(jīng)過塔體中上部的噴淋管,均勻噴射入陣列式方形直通道填料中。主要設備參數(shù)如下:塔體總長L為1 950 mm,內徑D為100 mm;噴淋管直徑d1為25 mm,并于噴淋管下方周向每30°設置1~2 mm的射流噴孔,噴淋管設置高度HL為1 400 mm;噴淋管上方每隔150 mm設置一層篩板,共3層;進氣口高度hg為125 mm,直徑d2為50 mm;上端排氣口直徑d為50 mm。填料設計如圖2所示,為了便于觀察填料中氣液兩相的流態(tài),填料由2 mm厚的透明有機玻璃板相互垂直鑲嵌排列成邊長a為8 mm、長度H為1 000 mm的整體式陣列矩形直通道。這樣,整個填料就由多個相互獨立的邊長為8 mm的直通道群組成,可為氣液相間傳質提供較大的傳質面積。在每個直線通道中,快速上升的氣流與下降的液膜相互作用,由于液膜表面的不斷更新,可實現(xiàn)氣液兩相間的高效傳質。
圖1 陣列式直通道填料塔結構
圖2 陣列式直通道填料圖
1.2 氨氮吹脫實驗系統(tǒng)
從水溶液中分離氨氮的實驗系統(tǒng)如圖3所示。系統(tǒng)主由陣列式直通道填料塔、廢水儲槽、液體循環(huán)泵和供氣系統(tǒng)等組成。壓縮空氣由空壓機6產生,并引入塔體之中形成強烈向上的空氣流場。將一定濃度的氨氮廢水貯存在儲液槽7中,并由循環(huán)水泵1輸入陣列式方形直通道填料塔5上部,由噴淋管4實現(xiàn)循環(huán)噴射,氨氮廢水沿著多個矩形通道內壁下流鋪展成液膜。由塔體中上部廢氣帶出的微小液滴經(jīng)篩板實現(xiàn)分離并流回儲槽中,由塔頂產生的氨通過尾氣吸收裝置吸收。氣、液兩相的流量由轉子流量計3測定,進入系統(tǒng)的空氣和廢水的流量由閥門2進行調節(jié)。
1.循環(huán)水泵; 2.閥門; 3.轉子流量計; 4.噴淋管; 5.陣列式方形直通道填料塔; 6.空氣壓縮機;7.儲液槽
圖3 實驗裝置流程示意圖
Fig.3 Schematic diagram of experimental setup
1.3 實驗方法
參照電鍍工業(yè)廢水中氨氮的濃度,每次實驗配制15 L濃度約為12 000 mg/L高濃度氨水溶液,并在溶液中加入250 g Ca(OH)2以確保吹脫實驗過程中的pH值始終保持11以上。將配制好的氨水溶液攪拌均勻后倒入液體儲槽中,開啟循環(huán)泵,調節(jié)液體流速至預定值,讓其穩(wěn)定循環(huán)5 min,然后在取樣口采取初始樣。取樣完畢,打開風機調至預設定的氣速后開始計時,進行氨氮廢水吹脫實驗。每次實驗進行90 min,前30 min每隔5 min采樣一次,后60 min每隔10 min采樣一次。樣品經(jīng)過離心分離后,上清液馬上采用納氏試劑分光光度法在420 nm處對樣品進行NH3-N濃度測定。實驗考察了氨氮廢水循環(huán)流速和進口氣速對填料塔的吹脫性能影響。在整個實驗過程中,通過外加空調系統(tǒng)維持體系的溫度,使其保持在25℃左右。相同條件的實驗重復一次,所得結果取平均值。
本實驗重點研究了過程的工藝參數(shù)(空氣流量QG、廢水循環(huán)流量QL)對脫氨在吹脫過程動力學和脫氨過程傳質系數(shù)的影響。為了掌握吹脫過程的工藝參數(shù)對過程傳質的影響規(guī)律,同時便于比較不同吹脫設備的傳質性能,有必要從吹脫過程的動力學數(shù)據(jù)計算出傳質系數(shù)。傳質系數(shù)的計算參照文獻[19]。
(1)
-lnRf=KLat
(2)
式中,ct(NH3-N)和c0(NH3-N)分別是揮發(fā)性組分氨在t時刻和初始時的濃度(mg·L-1);KLa是吹脫過程的體積傳質系數(shù)(min-1);t是吹脫時間(min)。
2.1 廢水循環(huán)流量對氨氮的吹脫效率和傳質性能影響
廢水循環(huán)流量對吹脫過程中氨氮濃度變化和去除率的影響,結果如圖4所示。在初始氨氮濃度一定,溫度維持在25℃,空氣流速為60 m3/h(泛點值以下)時,隨著液體流量的增加,氨氮去除率也隨之增加,吹脫時間90 min后氨氮濃度降低至313.2 mg/L,且最大去除率達97.39%。在進口空氣流量一定條件下,研究廢水循環(huán)流量對吹脫過程動力學及體積傳質系數(shù)的影響,如圖5所示。
圖4 廢水循環(huán)流量對氨氮濃度變化和去除率的影響
圖5 廢水循環(huán)流量對吹脫過程動力學及體積傳質系數(shù)的影響
將這些動力學實驗數(shù)據(jù)采用式(1)進行線性擬合,擬合直線線性度較好,相關系數(shù)R2可達0.98以上。由圖可知:在一定空氣流速(泛點值以下)條件下,隨著液體流速的增加,傳質系數(shù)KLa也隨之增大。這與此類新型填料塔的設計結構有關,噴淋管下方周向每30度設置1~2 mm的射流噴孔能在塔頂均勻的分散液體沿填料流下,避免了填料層內液流沿塔壁流下形成壁流[20]。陣列式直通道填料以鑲嵌的方式將反應塔體分隔成多個反應室,液體以一定流速自上而下流動時沿反應室壁鋪展成較大面積的液膜,以較大空氣流速自下而上吹脫時,隨液體流速的增大避免了在填料表面流動的液體部分形成溝流,使得填料表面能夠充分潤濕。此外,隨著液體噴淋速度的增加,液體湍動程度增大,液膜與氣相之間作用更加強烈,提高了氣液傳質效率。
2.2 空氣流量對氨的吹脫效率和傳質性能影響
在初始氨氮濃度一定、溫度維持在25℃、液體流量QL為2.5 m3/h時,進口空氣流量對吹脫過程中氨氮濃度變化和去除率的影響如圖6所示??梢钥闯觯弘S著空氣流量值(泛點值以下)的增加氨氮去除率也隨之增加,相同時刻氨氮濃度隨著空氣流量的增加而降低。在液體流量一定的條件下,研究進口空氣流量對吹脫過程動力學及體積傳質系數(shù)的影響,結果如圖7所示。由圖可知:在一定液體流速條件下,隨著空氣循環(huán)流量值(泛點值以下)的增加,傳質系數(shù)KLa也隨之明顯增加,最高可達到0.041 1 min-1。這是由于氣液兩相在填料表面進行逆流接觸時,陣列式直通道填料提供了更多的氣液兩相接觸的傳質面積,新型填料的特殊結構提供了氣體流動較大的通道,因而氣體在塔體填料間流動一般處于湍流狀態(tài),氣速的增加使得兩相在塔體填料表面作用劇烈翻涌,氣液相界面的湍動程度和傳質接觸面積增大[21-22]。但在一定液體流量下,氣體流量過大,液膜所受的阻力亦隨之增大,不利于塔體間氣液兩相的傳質。因此,增大氣速時必須避免液泛現(xiàn)象,最大氣速值保持在泛點以下。
2.3 不同設備傳質性能的對比
圖6 空氣流量對氨氮濃度變化和去除率的影響
圖7 空氣流量對吹脫過程動力學及體積傳質系數(shù)的影響
EquipmentStrippingconditionsKLa/min-1Ref.ArraystraightchannelpackedtowerVL=15dm3,QG=60m3·h-1pH=11.0,temperature=25℃,QL=2.5m3/h0.0411ThisworkPackedtowerVL=1m3,QG=1500m3·h-1pH=11.0,temperature=15℃,QL=0.5m3/h0.0070[23]WSAVL=10dm3,QG=7m3·h-1pH=11.0,temperature=25℃,QL=1.2m3/h0.0200[24]TankVL=50cm3,QG=0.27m3·h-1pH=12.0,temperature=20℃0.0080[25]
空氣吹脫法廣泛用于高濃度氨氮廢水的預處理,實現(xiàn)該過程通常選用攪拌槽或填料塔。針對工業(yè)化普遍采用填料塔預處理高濃度氨氮廢水設備復雜、能耗較大、氨氮去除率較低,課題組提出了新型陣列式方形直通道填料塔。研究表明:此類填料塔比傳統(tǒng)氣液傳質設備有更高的傳質性能,當廢水溫度處于25℃時,隨著液體流速、氣體流速(泛點值以下)的增加氨氮去除率和傳質系數(shù)均明顯增加。在最佳操作條件下,體積傳質系數(shù)達0.041 1 min-1,吹脫90 min氨的去除率達97.39%。此外,陣列式直通道填料塔避免了傳統(tǒng)方式的填料由于隨機堆積、流道曲折等因素,在較長時間的實際運行中易引起結垢堵塞嚴重的問題,且塔體易清洗、易于實現(xiàn)工業(yè)化放大。
[3] LIU B,GIANNIS A,ZHANG J,et al.Air stripping process for ammonia recovery from source-separated urine:modeling and optimization[J].Journal of Chemical Technology & Biotechnology,2014,90(12):2208-2217.
[4] CALLI B,MERTOGLU B,INANC B.Landfill leachate management in Istanbul:applications and alternatives.[J].Chemosphere,2005,59(6):819-29.
[5] WANG J,LU H,CHEN G H,et al.A novel sulfate reduction,autotrophic denitrification,nitrification integrated (SANI) process for saline wastewater treatment[J].Water Research,2009,43(9):2363-72.
[6] JEONG Y K,HWANG S J.Optimum doses of Mg and P salts for precipitating ammonia into struvite crystals in aerobic composting[J].Bioresource Technology,2005,96(1):1-6.
[7] ULUDAG-DEMIRER S,DEMIRER G N,CHEN S.Ammonia removal from anaerobically digested dairy manure by struvite precipitation[J].Process Biochemistry,2005,40(12):3667-3674.
[8] QUAN X,YE C,XIONG Y,et al.Simultaneous removal of ammonia,P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping[J].Journal of Hazardous Materials,2010,178(178):326-32.
[9] TAN X,TAN S P,TEO W K,et al.Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water[J].Journal of Membrane Science,2006,271(1-2):59-68.
[10]KOCHERGINSKY N M,QIAN Y.Big Carrousel mechanism of copper removal from ammoniacal wastewater through supported liquid membrane[J].Separation & Purification Technology,2007,54(1):104-116.
[11]SABBAH I,BARANSI K,MASSALHA N,et al.Efficient ammonia removal from wastewater by a microbial biofilm in tuff-based intermittent biofilters[J].Ecological Engineering,2013,53(2):354-360.
[12]LAHAV O,SCHWARTZ Y,NATIV P,et al.Sustainable removal of ammonia from anaerobic-lagoon swine waste effluents using an electrochemically-regenerated ion exchange process[J].Chemical Engineering Journal,2013,218(3):214-222.
[14]QUAN X,YE C,XIONG Y,et al.Simultaneous removal of ammonia,P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping[J].Journal of Hazardous Materials,2010,178(178):326-32.
[15]FERRAZ F M,POVINELLI J,VIEIRA E M.Ammonia removal from landfill leachate by air stripping and absorption[J].Environmental Technology,2013,34(15):2317-2326.
[16]LIU G,WANG Z,WEI Y,et al.Experimental study and modeling for ammonia desulphurization in spray tower[J].Ciesc Journal,2010,61(9):2463-2467.
[17]QUAN X,WANG F,ZHAO Q,et al.Air stripping of ammonia in a water-sparged aerocyclone reactor[J].Journal of Hazardous Materials,2009,170(2/3):983-988.
[18]趙清華,全學軍,項錦欣,等.水力噴射空氣旋流器的氣相壓降特性[J].化工學報,2011,62(9):2507-2511.
ZHAO Qinghua,QUAN Xuejun,XIANG Jingxin,et al.Gas phase pressure drop characteristics in a water-sparged aerocyclone[J].Ciesc Journal,2011,62(9):2507-2511.
[19]MATTER-MüLLER C,GUJER W,GIGER W,et al.Transfer of volatile substances from water to the atmosphere[J].Water Research,1981,15(11):1271-1279.
[20]WANG J,ZOU H K,CHU G W,et al.Study of Flue Gas Desulfurization in Rotating Packed Bed[J].Journal of Chemical Engineering of Chinese Universities,2011,25(1):168-171.
[21]郭烈錦.兩相與多相流動力學[M].西安:西安交通大學出版社,2002.
GUO Liejing.Two Facies Multiphase Flow Mechanics[M].Xi ’an:Xi ’an Jiaotong University Press,2002.
[22]趙清華,全學軍,程治良,等.水力噴射-空氣旋流器中氣液傳質特性及其機理[J].化工學報,2013,64(10):3652-3657.
ZHAO Qinghua,QUANG Xuejun,CHENG Zhiliang et al.Mass transfer characteristics and mechanism in a water-sparged aerocyclone[J].CIESC Journal,2013,64(10):3652-3657.
[23]LUN L I,WANG H W,JIA-HONG L U.Nitrogen Removal Using Air Stripping Tower in Urban Wastewater Treatment Plant[J].China Water & Wastewater,2006,22(17):92-95.
[24]王富平,全學軍,趙清華,等.水力噴射空氣旋流分離器脫氨[J].化工學報,2009,60(5):1186-1192.
WANG Fuping,QUANGH Xuejun,ZHAO Qinghua,et al.Water-sparged aerocyclone separator for ammonia removal from wastewater[J].Journal of the Chemical Industry & Engineering Society of China,2009,60(5):1186-1192.
(責任編輯 劉 舸)
Air Stripping of Ammonia Using a Packed Tower with Array Straight Channel Filler
DAI Ming-xing, QUAN Xue-jun, XU Fei, LUO Dan, WU Jun, LI Rui-heng, XIE Qing-wei
(College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054,China)
Air stripping is widely used in the removal of ammonia from wastewate, and the usually used mass transfer equipment is mainly packed tower. In order to improve the efficiency of this process, air stripping of ammonia from water was performed in batch mode in a newly designed packed tower: an array straight channel packed tower. The effect of main process parameters on ammonia removal and mass transfer coefficient was investigated. The new packed tower exhibited excellent mass transfer coefficient compared with traditional stripping tanks and packed towers. Under a certain temperature, liquid flow rate and air flow rate were the main factors affecting the mass transfer coefficient. Volumetric mass transfer coefficients increased with the increasing of air flow rate and liquid circulation flow rate rapidly. Experiments show that when the air flow rateQGwas 60 m3/h and liquid flow rateQLwas 2.5 m3/h, the mass transfer coefficient reached 0.041 1 min-1, ammonia removal rate reached 97.39% after 90 min of operation. The air stripping process could be operated continuously for a longer time because there was no congestion, and there is an important significance for industrial application.
air stripping; ammonia removal; mass transfer coefficient; packed tower
2016-11-18 基金項目:國家自然科學基金資助項目(21176273);重慶市百名工程技術高端人才培養(yǎng)計劃項目(渝科委發(fā)[2014]5號)
代明星(1987—),男,碩士研究生,主要從事環(huán)境化工方向的研究;通訊作者 全學軍,博士,教授,主要從事環(huán)境化工和分離工程領域的研究,E-mail:hengjunq@cqut.edu.cn。
代明星,全學軍,徐飛,等.陣列式直通道填料塔用于氨氮廢水吹脫的性能研究[J].重慶理工大學學報(自然科學),2017(3):90-96.
format:DAI Ming-xing, QUAN Xue-jun, XU Fei, et al.Air Stripping of Ammonia Using a Packed Tower with Array Straight Channel Filler[J].Journal of Chongqing University of Technology(Natural Science),2017(3):90-96.
10.3969/j.issn.1674-8425(z).2017.03.013
TQ028; X505
A
1674-8425(2017)03-0090-07