王玉陽,陳亞鵬
(1.中國科學(xué)院新疆生態(tài)與地理研究所荒漠與綠洲生態(tài)國家重點(diǎn)實(shí)驗(yàn)室,新疆 烏魯木齊 830011;2.中國科學(xué)院大學(xué),北京 100049)
植物根系吸水模型研究進(jìn)展
王玉陽1,2,陳亞鵬1*
(1.中國科學(xué)院新疆生態(tài)與地理研究所荒漠與綠洲生態(tài)國家重點(diǎn)實(shí)驗(yàn)室,新疆 烏魯木齊 830011;2.中國科學(xué)院大學(xué),北京 100049)
根系吸水是植物水分傳輸系統(tǒng)的最初端,直接控制著整株植物的水分傳輸量,進(jìn)而影響植物的生命活動。對植物根系吸水的研究不僅是土壤-植物-大氣連續(xù)體(SPAC)中水分運(yùn)移規(guī)律研究的重要內(nèi)容,同時也是水文、氣候、土壤、農(nóng)業(yè)、生態(tài)等多學(xué)科領(lǐng)域交叉研究的重點(diǎn)。根系吸水模型是定量化研究植物根系吸水的數(shù)學(xué)模擬工具。建立合適的根系吸水模型是準(zhǔn)確估算植物根系吸水量的基礎(chǔ),這有助于弄清植物的需水特性和水分來源。本研究在總結(jié)根系吸水模型的基礎(chǔ)上,概述了根系吸水的機(jī)理、不同研究尺度下的根系吸水模型的分類,并重點(diǎn)分析了實(shí)際應(yīng)用較廣泛的宏觀根系吸水模型,且對每種模型應(yīng)用的范圍和局限性做出了說明。最后對現(xiàn)有根系吸水模型中存在的問題進(jìn)行了初步分析,并對其未來研究方向和內(nèi)容進(jìn)行展望。
根系;吸水模型;宏觀;研究進(jìn)展
水對植物的生長必不可少,植物需要通過根系不斷的從土壤中吸收水分來滿足葉片的蒸騰以維持植物有機(jī)體正常的生理活動[1]。根對土壤水分的吸收和輸送是土壤-植物-大氣連續(xù)體系統(tǒng)(SPAC)的重要組成部分[2],定量研究土-根系統(tǒng)中水分的運(yùn)動也是水文過程模擬中的主要環(huán)節(jié)[3]。同時,植物根系對水分的吸收不僅是地表水量平衡的主要部分,而且也是控制地表、大氣和植物生長之間能量交換的重要過程[4]。根對土壤水分的吸收深刻影響著有植被覆蓋的上層土壤水分含量的時空分布[5],植物根系和周圍土壤之間水分傳輸?shù)膹?qiáng)度控制著植物地上部分的水分、氣體和能量交換等生態(tài)生理過程[6]。鑒于植物根系在地圈-生物圈-大氣圈之間相互關(guān)聯(lián)的紐帶作用,許多國際合作項(xiàng)目,諸如國際生物圈地圈計劃(IGBP)、世界氣候研究計劃(WCRP)等都將植物根系吸水作為其項(xiàng)目的核心研究主題,根系吸水模型的構(gòu)建也成為生態(tài)、水文、環(huán)境等科學(xué)領(lǐng)域研究的熱點(diǎn)[7]。
由于根吸收水分對植物生長的重要性,根系吸水模型的構(gòu)建一直是土壤學(xué)家、農(nóng)學(xué)家和生態(tài)水文學(xué)家研究的焦點(diǎn)。但是,根吸收水分的過程很復(fù)雜,不僅受到基因控制、根的構(gòu)型、根的密度分布、根對水分的阻力等內(nèi)在因素的影響,同時也受到土壤水分狀況、土壤對水分傳輸?shù)淖枇?、土壤營養(yǎng)水平、土壤溫度、土壤通氣狀況、植物蒸騰等外在因素的影響[8]。用數(shù)學(xué)模型來模擬根對土壤水分的吸收可以將問題簡單化,并且應(yīng)用準(zhǔn)確的模型可以使研究不需要實(shí)地測量就能得到可靠有效的數(shù)據(jù)[9],但是合適準(zhǔn)確的根系吸水模型的構(gòu)建是十分困難的,因?yàn)楦L在地下難以觀測,進(jìn)行剖面挖掘又會對根系造成破壞,同時控制根吸水生理過程的知識還不夠完善[5],所以根系吸水模型的研究還需進(jìn)一步進(jìn)行下去。
本研究綜述了根系吸水模型的發(fā)展過程,包括微觀模型和宏觀模型,側(cè)重于介紹實(shí)際應(yīng)用較多的宏觀根系吸水模型的發(fā)展,并對相關(guān)模型中存在的局限性進(jìn)行闡述并做出了一定的展望。
根系吸收水分的機(jī)理十分復(fù)雜,植物通過根系從土壤中吸收水分,但根的不同部位對水分的吸收速率并不是一致的,實(shí)際上根主要通過根尖的根毛區(qū)來吸收水分[10]。根的發(fā)育時間,新根和老根的更新速率,根系在土壤區(qū)域中的空間分布,以及土壤的理化性質(zhì)、氣象條件等的不同都會影響根系對水分的吸收[8,11],并導(dǎo)致根系吸水速率隨空間和時間的變化而發(fā)生改變。
植物根系吸水主要有兩種方式,即主動吸水和被動吸水[1]。主動吸水是在蒸騰作用弱的情況下由根內(nèi)外水勢差驅(qū)動的滲透流,主動吸水需要植物消耗能量;被動吸水是蒸騰作用下靠蒸騰拉力驅(qū)動的壓力流來吸收水分,植物主要通過被動吸水的方式來吸收水分。植物通過根系從土壤中吸收水分,然后經(jīng)過根木質(zhì)部向上輸送供給植物的新陳代謝活動,根系從土壤中吸收水分包括兩個途徑,徑向途徑和軸向途徑。徑向途徑即水分由土壤跨過根組織(表皮、皮層、內(nèi)皮層、中柱)到達(dá)根木質(zhì)部,包含了質(zhì)外體運(yùn)輸、共質(zhì)體運(yùn)輸和跨膜運(yùn)輸3個部分,軸向途徑是水分沿著根木質(zhì)部向上輸送的過程[12]。
根據(jù)不同的劃分標(biāo)準(zhǔn),根系吸水模型可以劃分為不同的類型[13],依據(jù)研究尺度的不同,將根系吸水模型主要劃分為微觀和宏觀兩個方面,植物根系吸水模型的發(fā)展與分類見表1。
2.1 微觀的根系吸水模型
微觀的根系吸水模型是描述微觀土壤區(qū)域內(nèi)水分向根的運(yùn)動,是基于物理機(jī)制建立在單根尺度上的,研究流向和進(jìn)入典型單根的徑向流,側(cè)重于描述根吸收水分的過程機(jī)理[8]。微觀模型是以Vandenhonert[14]1948年提出的懸鏈線假說為基礎(chǔ)的。在微觀模型中,土壤水分的流動被描述為柱面坐標(biāo)中的運(yùn)動[3],根附近區(qū)域土壤水分的運(yùn)動方程可表示為:
表1 根系吸水模型的分類和發(fā)展[11-45]
續(xù)表1 Continued
(1)
式中:D是土壤水分的擴(kuò)散率;t是時間;r是距離根木質(zhì)部的徑向距離;θ是土壤含水率。
Gardner[11,15]在1960年建立了單根尺度上的根系吸水的數(shù)學(xué)模型,原理就是用根表面以及距根木質(zhì)部一定距離的合適的邊界條件在方程(1)的基礎(chǔ)上來建立根系吸水的微觀模型。
(2)
該模型基于一系列的假設(shè),認(rèn)為根是無限延伸的圓柱體,任意兩相鄰根之間的距離為2b,根具有一致的半徑a和吸水特性,水分僅通過徑向流入根內(nèi)部,根區(qū)起始的土壤水分狀況相同。式中:Ψb是任意兩相鄰根中間部位土壤的水勢;Ψa是根土界面的水勢;q是單位根長單位時間內(nèi)的吸水速率;k是非飽和土壤的導(dǎo)水率。
微觀根吸水模型還有另外一種表示形式,該模型假設(shè)水分在一定時期內(nèi)在土壤-植物-大氣連續(xù)體(soil-plant-atmosphere-continuum,SPAC)中的運(yùn)動處于穩(wěn)定狀態(tài),SPAC中的水勢是連續(xù)的,并由內(nèi)聚力所控制。因此,可以用模擬電流傳輸?shù)臍W姆定律來描述水分在這個連續(xù)體內(nèi)的運(yùn)動,即SPAC系統(tǒng)中每個模塊的水流通量由該模塊的水勢梯度和水分阻力所決定[16]。這樣就建立了基于水勢梯度的歐姆定律模型:
(3)
式中:q是根吸收水分的速率;Ψsurf是根土界面的水勢;Ψroot是根木質(zhì)部的水勢;rroot是徑向的根組織對水分傳輸?shù)淖枇Α?/p>
微觀尺度的根吸水模型從機(jī)理上闡釋了根對土壤水分的吸收,能夠描述根區(qū)微域內(nèi)土壤水分的運(yùn)動規(guī)律。微觀尺度的定量半定量研究能夠?qū)暧^尺度的根吸水模式存在的潛在誤差進(jìn)行校正和分析[17]。但是此類模型建立的假設(shè)條件有許多都是與實(shí)際情形不相符的,例如認(rèn)為根是無限延伸的圓柱體、吸水特性沿根長不變、具有一致的半徑等,同時由于根系系統(tǒng)的結(jié)構(gòu)很難獲取,并且隨時間發(fā)生變化,同時這種建立在單根尺度上的水分吸收模型很難擴(kuò)展到整個根系系統(tǒng)[8]。因而,微觀根系吸水模型在實(shí)際應(yīng)用中就十分困難。但是微觀的根系吸水模型開創(chuàng)了根系吸水模型研究的先河,并為根系吸水模型的發(fā)展提供了理論依據(jù)和方法。
2.2 宏觀的根系吸水模型
宏觀的根系吸水模型將整個根-土系統(tǒng)看作一個整體,忽略了根的水力特性。在實(shí)際應(yīng)用中宏觀模型比微觀模型有著更多的優(yōu)勢,宏觀模型不需要弄清根吸水的全部過程機(jī)理,這樣就不必去研究那些難以界定的土壤和根的參數(shù)[18]。同時宏觀模型多是經(jīng)驗(yàn)性的,能夠在田間或是野外直接應(yīng)用。
宏觀的根吸水模型的構(gòu)建是在描述土壤水分運(yùn)動的理查德方程上外加一個匯源項(xiàng)來實(shí)現(xiàn)的,該匯源項(xiàng)表示根對水分的吸收速率。
(4)
式中:θ表示土壤體積含水率;t是時間;h是土壤水勢;k是非飽和土壤導(dǎo)水率;H是總的土壤水勢;S是根對水分的吸收速率。
宏觀根吸水模型的分類和發(fā)展就是圍繞著匯源項(xiàng)S(根系吸水項(xiàng))展開的,根據(jù)S的不同構(gòu)建原理和方法,宏觀根吸水模型也劃分為不同的類型。本研究將宏觀模型主要分為兩大類,一類是由微觀模型引申而來的Ⅰ型模型,另一類是基于土壤水勢的經(jīng)驗(yàn)性的Ⅱ型模型。
2.2.1 Ⅰ型模型 基于Gardner建立的描述水分由土壤傳輸?shù)礁奈⒂^尺度的物理方法,Cardon等[19]提出了通用的Ⅰ型模型,其基本表達(dá)形式如下:
S=BKG
(5)
式中:S代表根對水分的吸收速率;K是傳導(dǎo)項(xiàng);G是從土壤到根的水勢梯度;B是描述水分運(yùn)動的幾何參數(shù)。
在很多文獻(xiàn)中都有采用Ⅰ型模型來描述根從土壤中吸收水分[20-21],事實(shí)上微觀的根吸水模型也屬于Ⅰ型模型。宏觀模型中應(yīng)用Ⅰ型模型的典型就是基于水勢梯度的歐姆定律模型,其表達(dá)式如下:
(6)
該模型是在微觀的歐姆定律模型的基礎(chǔ)上升級而得到的,式中:S(z)代表深度z處根對水分的吸收速率;rsoil(z)和rroot分別代表該深度處土壤和根對水分傳輸?shù)淖枇?Hsoil(z)和Hroot分別是深度z處土壤的水勢和根木質(zhì)部的水勢;σ(z)是深度z處有效的根吸水表面積,可由根際半徑和根半徑計算獲取。該模型的應(yīng)用需要量化一系列的土壤和根的參數(shù),包括根長密度、根的平均半徑、根的徑向阻力、非飽和土壤導(dǎo)水率等[22]。
歐姆定律模型的建立是基于一系列簡單的恒定的不隨時間變化的阻力項(xiàng)假設(shè),但是,事實(shí)上植物的根系統(tǒng)極為復(fù)雜,類似于混聯(lián)的傳輸網(wǎng)絡(luò),每一部分的阻力項(xiàng)都不相同。并且根的阻力也受到植物的蒸騰速率以及根木質(zhì)部水勢梯度影響[23],例如氣穴現(xiàn)象會導(dǎo)致根木質(zhì)部導(dǎo)水率的下降,阻力增加[18]。因而,歐姆定律模型在確定阻力項(xiàng)方面存在很大的缺陷,應(yīng)用的準(zhǔn)確性有限。
Ⅰ型模型的水分吸收項(xiàng)對土壤鹽分的含量不敏感,在土壤的鹽濃度增加時植物的蒸騰量并沒有降低。因而在鹽分脅迫下,該模型的應(yīng)用受到局限[19]。
2.2.2 Ⅱ型模型 在根區(qū)土壤剖面內(nèi)部,根對土壤水分的吸收受到根區(qū)土壤水勢的影響,在這個原理的基礎(chǔ)上,F(xiàn)eddes等[24]在1978年提出了基于土壤水勢的經(jīng)驗(yàn)性根系吸水模型,即Ⅱ型模型,其基本模型表達(dá)式如下:
Sa(z)=α[h(z)]Sp(z)
(7)
圖1 土壤水勢響應(yīng)函數(shù)[24]Fig.1 Water stress uptake reduction function of Feddes et al[24]
式中:α[h(z)]是指無量綱的水分脅迫指數(shù)(也稱土壤水勢響應(yīng)函數(shù)),代表深度z處的水分脅迫指數(shù),和根區(qū)土壤的水勢有關(guān),0≤α[h(z)]≤1。α[h(z)]=0時表明根對水分的吸收速率為0,α[h(z)]=1時表明根對水分的吸收速率達(dá)到潛在的最大值。Sa(z)是深度z處實(shí)際的根吸水量,Sp(z)是深度z處潛在的根吸水量,與實(shí)際微氣象條件下植物的潛在蒸騰速率有關(guān)。
在該模型的發(fā)展過程中,出現(xiàn)了多種類型的土壤水勢響應(yīng)函數(shù),包括簡單的2個參數(shù)閾值的S型曲線函數(shù)以及復(fù)雜的包括5個參數(shù)的Feddes類型的函數(shù)(圖1,公式8),應(yīng)用較多的是Feddes模型[25]。
(8)
圖1是公式8的圖形展示,圖1與公式8中的h1表示飽和土壤中的厭氧點(diǎn)水勢(水勢一般為0),h2是氧氣脅迫的臨界水勢,h3是水分脅迫的臨界水勢,h4表示植物萎蔫點(diǎn)的水勢。在區(qū)間[h2,h3]之間,根對水分的吸收速率達(dá)到潛在的最大值。在區(qū)間(h1,h2)和(h3,h4)之間根對水分的吸水速率線性降低,這種變化分別是受到氧氣脅迫和水分脅迫而產(chǎn)生的。當(dāng)h≤h4和h≥h1時根對水分的吸收速率為0。該模型的關(guān)鍵在于確定h2和h3的大小,這兩個數(shù)值隨著植物的類型和土壤質(zhì)地的不同將發(fā)生變化,h2的取值一般接近于0,而h3的取值與植物的蒸騰速率有關(guān),h3high和h3low分別代表植物蒸騰速率高和低時的h3取值。
Ⅱ型模型的基本模型僅考慮了根區(qū)土壤水勢對根吸收水分的影響,但是根對水分的吸收不僅與根區(qū)的土壤水勢有關(guān),同時也與根在土壤中的吸水分布有關(guān)。在水分不受限制的土壤剖面中,根對水分的吸收和根在土壤中的密度分布密切相關(guān);而在水分缺乏的土壤剖面中,根對土壤水分的吸收和土壤的水勢呈正比。另外,土壤水勢影響函數(shù)不僅與氧氣濃度、土壤水勢有關(guān),同時也與土壤的鹽分濃度有關(guān),這些因素都應(yīng)該考慮在內(nèi)。
1) 引入根系吸水分布參數(shù)的模型
考慮到在整個根區(qū)根系潛在吸水速率的非均一性分布,在基本模型中引入根吸水分布參數(shù)項(xiàng)后,就得到了升級的根吸水衰減模型,其表達(dá)式如下:
Sa(z)=β(z)α[h(z)]Tp
(9)
式中:Tp是植物潛在的蒸騰量;β(z)表示根在土壤剖面中的分布函數(shù),是一個相對值,其滿足
∫ΩRβ(z)dR=1
(10)
(11)
式中:ΩR代表整個根區(qū);R(z)代表深度z處的根長密度,根系在土壤剖面中的密度分布函數(shù)如圖2所示[26-28]。
該模型同時考慮了根在土壤剖面中的吸水分布與土壤水勢對根吸收水分的影響。但是,該模型也存在著不足。首先,模型中根吸水分布的參數(shù)大都是依據(jù)根長密度分布建立的。事實(shí)上,研究表明控制根對水分吸收的是根的表面積而不是根長密度,并且根吸水的主要部位僅位于根尖的一定部位[29],同時根有效的吸水分布項(xiàng)并不是常數(shù),它隨著根的生長和衰敗而不斷的發(fā)生變化,也就是說根的吸水分布項(xiàng)是動態(tài)的[18]。而這種建立在靜態(tài)的僅以根長密度來替代根在土壤中吸水分布的參數(shù)還需進(jìn)一步的修正。其次是模型假設(shè)有效吸水根與土壤剖面中的根密度分布以及土壤的水勢呈正比。這也就是說根對水分的吸收是一個被動的過程,僅僅受到大氣條件以及可利用土壤水分的分布和根的密度分布的影響。但是,事實(shí)上瞬時的根吸水速率的空間分布和根密度的分布并不呈顯著的相關(guān)關(guān)系,這種情況在異質(zhì)性的土壤結(jié)構(gòu)中更加顯著。同時,對于那些具有水力再分配的植物,應(yīng)用這種模型時就忽略了根在植物水分吸收過程中的調(diào)節(jié)作用,很可能低估了異質(zhì)性土壤中植物的蒸騰[30]。因此,在根系吸水模型中應(yīng)考慮植物根系對土壤水分再分配這一過程。
圖2 不同的根長密度分布函數(shù)[3]Fig.2 Various root length density distribution functions[3]
2) 蒸騰分割模型
根系吸收水分的動力可以理解為由葉片的蒸騰失水引起的,正是這種蒸騰散失水分的速率在很大程度上決定了根系吸收水分的速率,蒸騰分割模型就是依據(jù)根吸收水分的因果關(guān)系建立的[7]。植物通過根系吸收的水分90%以上被植物的蒸騰散失掉,只有很少一部分用于植物自身的新陳代謝和生長需要,因此可以將潛在的蒸騰量定義為整個根區(qū)深度L范圍內(nèi)根吸收水分的積分。
(12)
式中:Tp是植物的潛在蒸騰量;L是根區(qū)的深度;Sp(z)代表根在土壤深度z處潛在的水分吸收量。根據(jù)方程(12)可以得到蒸騰分割模型的一般表達(dá)式即:
Sp(z)=β(z)Tp
(13)
該模型的建立是將潛在的蒸騰量Tp按一定的權(quán)重因子分配到不同深度的根系,權(quán)重因子β(z)一般用根長密度分布來代替,然后得到根在每層土壤中潛在的水分吸收量Sp(z)。
根系的吸水強(qiáng)度隨土壤剖面的變化很大程度上與根系密度在土壤中的分布有關(guān),根系在土壤中的分布類型有線性的、非線性的、指數(shù)型的等。因此蒸騰分割模型也可劃分為相應(yīng)的線性、非線性和指數(shù)模型等。
蒸騰分割模型其實(shí)也是Ⅱ型模型中的一種,對于引入根系吸水分布參數(shù)的模型,即公式Sa(z)=β(z)α[h(z)]Tp,當(dāng)α[h(z)]=1,即植物在整個根區(qū)不受到水分脅迫時,就得到了蒸騰分割模型。
蒸騰分割模型理論清晰,經(jīng)驗(yàn)性較強(qiáng)。但是也存在著明顯的不足,首先,根的吸水分布參數(shù)仍是基于根長密度建立的,其次是假設(shè)植物不受到脅迫限制,這樣就大大限制了模型的應(yīng)用范圍。因此,蒸騰分割模型還有很大的發(fā)展空間,可以將脅迫項(xiàng)以及根在吸水過程中的調(diào)節(jié)作用考慮在內(nèi),建立符合實(shí)際情形的模型并擴(kuò)大應(yīng)用范圍。
3) 帶有補(bǔ)償機(jī)制的根系吸水模型
一些植物能夠通過其根系來調(diào)整植物的吸水方式來應(yīng)對土壤水分的異質(zhì)性分布,也就是說植物在面對根區(qū)非一致的水分脅迫時,其根系能夠從脅迫低的土壤區(qū)域增加水分吸收來補(bǔ)償高脅迫的土壤區(qū)域[31],這種根吸水的機(jī)制稱之為補(bǔ)償機(jī)制。補(bǔ)償機(jī)制事實(shí)上就是根對土壤水分的再分配,即根作為有效的水力傳導(dǎo)組織通過連接不同的土壤區(qū)域來深刻影響土壤剖面中水分的分布[32]。根對土壤水分的再分配包括水力提升、水分通過根的側(cè)向輸送和向下輸送。
在灌溉或者排水產(chǎn)生的根區(qū)非一致的水分脅迫情形下,補(bǔ)償機(jī)制的根系吸水在其中可能起著重要的作用,這些情況包括虧缺灌溉、部分根區(qū)干燥等[33]。補(bǔ)償機(jī)制的根吸水模型有很多,最早提出補(bǔ)償機(jī)制的根吸水模型的是Jarvis[31]。帶有補(bǔ)償機(jī)制的宏觀根吸水模型可以表示為:
Sa(z)=Tpα[h(z)]β(z)φ
(14)
式中:φ是補(bǔ)償吸水方程。
(15)
式中:ω是加權(quán)的植物的水分脅迫指數(shù)(0<ω<1)。
(16)
式中:Ta和Tp分別代表植物實(shí)際蒸騰量和潛在蒸騰量。ωc是植物水分脅迫的臨界閾值,它的取值依賴于植物的潛在蒸騰、根的半徑和根長密度分布以及土壤的水力特性。加權(quán)的水分脅迫指數(shù)ω與土壤水勢影響函數(shù)α[h(z)]的不同之處在于,α[h(z)]是描述局部的水分脅迫指數(shù),與根區(qū)土壤深度z處的水勢和根土之間的水分傳導(dǎo)阻力有關(guān),而ω是反映植物應(yīng)對干旱時整體的脅迫響應(yīng)參數(shù),是建立在整個根區(qū)之上的[34]。
圖3 實(shí)際蒸騰和潛在蒸騰的比率與脅迫指數(shù)ω的關(guān)系[25]Fig.3 Ratio of the actual to potential transpiration as a function of the stress index ω[25]箭頭指向的即為相應(yīng)的軸線,其中,左軸代表補(bǔ)償作用下的根對水分的吸收,右軸代表非補(bǔ)償作用下根對水分的吸收。Arrows point towards the corresponding axis; the left axis is for compensated uptake, while the right axis is for uncompensated uptake.
由圖3可知,在補(bǔ)償?shù)奈畽C(jī)制中,只要加權(quán)的脅迫指數(shù)ω大于規(guī)定的閾值ωc(ω>ωc),植物的實(shí)際蒸騰就維持在潛在的水平。通過在整個根區(qū)乘以系數(shù)1/ω來獲得潛在的吸水量,即整個根區(qū)增加吸水的效應(yīng)相同。但是事實(shí)上,增加最大的吸水效應(yīng)區(qū)域發(fā)生在脅迫小、根密度大的地方,相反則增加的吸水效應(yīng)可以忽略。因此,根區(qū)脅迫區(qū)域的根對水分的吸收從其他區(qū)域得到了充分的補(bǔ)償。當(dāng)根區(qū)遭受的脅迫較大(ω<ωc)時,補(bǔ)償僅存在于部分根區(qū),整個根區(qū)的補(bǔ)償吸收項(xiàng)通過乘以系數(shù)1/ωc來獲得。
對于具有水力再分配的植物,在根區(qū)土壤水分呈現(xiàn)不一致的分布時,補(bǔ)償性的根系吸水機(jī)制在模擬土壤水分向根輸送的過程中起著重要的作用,若遺漏補(bǔ)償吸收項(xiàng)將會導(dǎo)致對異質(zhì)性土壤中植物蒸騰量的低估。另外,先前的研究都認(rèn)為根吸水的補(bǔ)償機(jī)制是植物在遭受水分脅迫下產(chǎn)生的,但是Albasha等[8]的研究表明,根吸水的補(bǔ)償機(jī)制與植物的水分脅迫是獨(dú)立的,只要存在異質(zhì)性的土壤水勢分布,即使是在相對濕潤的土壤中,植物的根系也會產(chǎn)生補(bǔ)償作用。
現(xiàn)在應(yīng)用的補(bǔ)償機(jī)制的根吸水模型也存在著不足。首先,脅迫閾值ωc很難獲取,同時該模型也存在著概念上的缺陷。為了彌補(bǔ)補(bǔ)償機(jī)制概念上的缺陷,Peters[34]對該模型進(jìn)行了修正,使得補(bǔ)償機(jī)制的根吸水模型在均質(zhì)性脅迫的土壤、均質(zhì)性根分布以及部分根區(qū)根的分布趨近為0時的模型模擬準(zhǔn)確性都大大提升。
4) 引入基質(zhì)通量勢的根吸水模型
由于上述補(bǔ)償機(jī)制的根吸水模型經(jīng)驗(yàn)性較強(qiáng),同時對機(jī)理方面的知識描述太少,并且涉及的參數(shù)難以獲取。因而引入了基質(zhì)通量勢的方法建立了基于物理機(jī)制的補(bǔ)償根吸水模型。這種基于物理機(jī)制方法的一個最重要的優(yōu)點(diǎn)就是在經(jīng)驗(yàn)?zāi)P椭袩o量綱的脅迫參數(shù)和可測量的系統(tǒng)參數(shù)之間建立了明確的相關(guān)關(guān)系,這些可獲取的系統(tǒng)參數(shù)包括根長密度參數(shù)和根的導(dǎo)水參數(shù)等[35]。
基質(zhì)通量勢是某一土體非飽和導(dǎo)水率的積分,是線性化的描述水分徑向流入到根的土壤導(dǎo)水特性的參數(shù),和土壤水分運(yùn)動、根對水分的吸收以及受限制的土壤水力條件緊密相關(guān)的土壤的物理特性[36]。
(17)
式中:h和hw分別代表當(dāng)前的土壤水勢和永久萎蔫點(diǎn)的水勢,K是土壤的導(dǎo)水率。選擇萎蔫點(diǎn)的水勢作為下限表明當(dāng)h=hw時,M=0。
基于基質(zhì)通量勢的宏觀根吸水模型可以表示為:
Sa(z)=ρ(M-M0)
(18)
式中:Sa(z)是根在土壤深度z處的水分吸收量;M是該層土壤的基質(zhì)通量勢;ρ是依賴于根長密度和根半徑的復(fù)合參數(shù);M0是根表面的基質(zhì)通量勢(假設(shè)其在整個根區(qū)為常數(shù))。根在每層土壤中吸收的水分與該層土壤的基質(zhì)通量勢和根表面的基質(zhì)通量勢有關(guān)[37-38]。
用基質(zhì)通量勢的參數(shù)將經(jīng)驗(yàn)性根吸水補(bǔ)償機(jī)制模型中的相關(guān)參數(shù)進(jìn)行替換,便得到了基于物理機(jī)制的宏觀補(bǔ)償機(jī)制的根吸水模型。這種替換包括,例如:ωc=Ep/[(∑iρiΔzi)Mmax],α[h(z)]=M/Mmax等[39]。這種建立在物理機(jī)制上的補(bǔ)償根吸水模型機(jī)理性更強(qiáng)也更加有說服力,使得那些難以獲取的參數(shù)有了計算的標(biāo)準(zhǔn),同時也說明了經(jīng)驗(yàn)性的補(bǔ)償吸水模型是機(jī)理性吸水模型的一種簡化形式[39]。
2.3 其他根系吸水模型
2.3.1 多維度根吸水模型的發(fā)展 早期的根系吸水模型聚焦于簡單的一維形式,如Gardner的單根徑向流動模型。近年來模型的發(fā)展越來越涉及復(fù)雜的根結(jié)構(gòu)和相關(guān)的土壤和植物過程的二維和三維模型[5,39-40]。一維模型代表根對土壤水分的線性吸收,二維模型代表面狀吸收,三維模型代表根在土壤剖面中的立體吸收。三維根吸水模型是根吸水模型發(fā)展的趨勢,因?yàn)樗钅芊从掣谕寥乐形账值膶?shí)際情況,同時隨著計算機(jī)模擬技術(shù)和相應(yīng)的生物物理技術(shù)的發(fā)展使得深入研究三維根吸水模型成為了可能。應(yīng)用較廣的三維模型有Hydrus-3D,R-SMWS模型等[5,40]。
2.3.2 水鹽脅迫下的根吸水模型 在干旱半干旱區(qū),植物常遭遇水分和鹽分的共同脅迫,水鹽脅迫都會使根對水分的吸收減少,并且相對于單獨(dú)水、鹽脅迫,植物在水鹽共脅迫下需要消耗更多能量來吸收水分[41]。宏觀根系吸水模型很少涉及水鹽共同脅迫下的根系吸水機(jī)制,這種模型在干旱半干旱區(qū)應(yīng)用中必然受到一定的局限性。然而水鹽脅迫下根系吸水的定量研究,對于干旱半干旱區(qū)農(nóng)作物產(chǎn)量的提升和水資源的管理尤為重要[42]。
水鹽共脅迫對根系吸水的影響主要體現(xiàn)在根系細(xì)胞的滲透勢方面。水分脅迫和鹽分脅迫交互作用下對根吸收水分的影響包括兩個假設(shè)。第一,水分和鹽分脅迫對根吸收水分的影響效應(yīng)是相加的;第二,這種交互作用的影響效應(yīng)是相乘的[43]。最初的水鹽共脅迫模型是建立在Feddes模型之上,將鹽分脅迫對根吸水的影響引入到水勢響應(yīng)函數(shù)中。盡管水鹽共脅迫的根吸水模型經(jīng)過了很多年的發(fā)展,但是怎樣將水分脅迫效應(yīng)和鹽分脅迫效應(yīng)進(jìn)行結(jié)合仍然是該類模型發(fā)展面臨的最主要挑戰(zhàn)。
根系吸水模型雖然經(jīng)過了幾十年的發(fā)展,分類更加健全完善,模擬效果也越來越好。但是,由于根生長在地下,受到觀測手段的局限性以及相關(guān)理論知識的缺乏,已有的根系吸水模型在模擬的準(zhǔn)確性方面還有相當(dāng)程度的不足。一個準(zhǔn)確的應(yīng)用廣泛的根系吸水模型應(yīng)當(dāng)具備兩個特點(diǎn):科學(xué)性和簡潔性。即在機(jī)理性上模型應(yīng)當(dāng)考慮的更加全面深入,而在模型的組成上應(yīng)趨向于簡單,精簡模型中的參數(shù),只考慮對模型貢獻(xiàn)最大的相關(guān)參數(shù),當(dāng)模型具備了這兩個特性才能決定其應(yīng)用的普遍性。在未來根系吸水模型的發(fā)展面臨的挑戰(zhàn)和展望包括以下幾個方面。
3.1 根系吸收水分參數(shù)的準(zhǔn)確界定
在很多根系吸水模型中都有涉及根土界面的水勢、根和土壤對水分傳輸?shù)淖枇Φ葏?shù),這些參數(shù)的完善對建立準(zhǔn)確的根系吸水模型十分重要。但是現(xiàn)在對這些參數(shù)的界定有著一定的局限性,因?yàn)檫@些參數(shù)都是微觀尺度上的,準(zhǔn)確的界定需要高精度靈敏的測量技術(shù)的發(fā)展。
3.2 夜間根系吸水的重要性
大多數(shù)的土壤-植物-大氣連續(xù)體模型都假設(shè)夜間沒有發(fā)生根對水分的吸收,因?yàn)榇藭r的蒸騰速率為0[44]。但是很早就有研究知道景天酸(CAM)類的植物夜間的氣孔是開放的。另外一些C3和C4類型的植物也具有夜間蒸騰,這就要求應(yīng)當(dāng)深入研究夜間根對土壤水分的吸收,進(jìn)而來完善根系吸水模型的發(fā)展[9]。
3.3 動態(tài)的根系吸水模型的建立
現(xiàn)有的根吸水模型都是在根的靜態(tài)基礎(chǔ)上建立的,但是實(shí)際上根在土壤中隨著時間的變化而不斷的生長,進(jìn)行著老根死亡新根產(chǎn)生的更新。因而,根吸水模型的建立應(yīng)將動態(tài)的根生長狀況考慮在內(nèi),以達(dá)到與實(shí)際情形的符合。
3.4 宏觀與微觀模型相結(jié)合
宏觀的根吸水模型側(cè)重于經(jīng)驗(yàn)性和應(yīng)用性,模型的參數(shù)也較為簡化,均是在描述土壤水分運(yùn)動的理查德方程上外加一個根系吸水項(xiàng)來表示。但是幾乎所有的吸水項(xiàng)的建立都是將根系統(tǒng)進(jìn)行簡化,對根系統(tǒng)的詳細(xì)剖析相當(dāng)缺乏,同時對于根吸水的機(jī)理方面考慮也不夠充分。微觀的根吸水模型是建立在單根尺度上的,對根吸水的生理機(jī)理方面闡釋得很清晰,但是很難將這種建立在單根尺度上的模型擴(kuò)展到整個根系統(tǒng)或者是更大的尺度上,實(shí)際的應(yīng)用性受到局限。因而,將宏觀和微觀的根吸水模型進(jìn)行整合建立復(fù)合的根吸水模型更能準(zhǔn)確的描述植物根系對水分的吸收情況,這也是根系吸水模型發(fā)展的趨勢[45]。
3.5 樹木和草類根系吸水模型的建立
多數(shù)的根系吸水模型都是有關(guān)農(nóng)作物的,例如小麥(Triticumaestivum)、玉米(Zeamays)等,而有關(guān)樹木和草類的根系吸水模型在現(xiàn)有的文獻(xiàn)中并不多見。由于樹木根系吸水模型研究的復(fù)雜性,使得多數(shù)研究都側(cè)重于直徑不大的小樹,但是,樹木根系吸水必定會在其生長周期的不同階段發(fā)生變化。因而,伴隨著相關(guān)技術(shù)和理論知識的發(fā)展,樹木的根系吸水模型應(yīng)當(dāng)會受到關(guān)注并不斷完善。草原面積約占我國土地總面積的49.04%,同時面臨著不同程度的草場退化、沙漠侵蝕、面積萎縮、草場質(zhì)量下降等問題[46]。建立樹木和草類根系的吸水模型,弄清樹木和草類的需水規(guī)律在保護(hù)干旱半干旱地區(qū)植物,維系脆弱的生態(tài)環(huán)境方面具有重要意義。
由于根系吸水模型研究的重要性和現(xiàn)有模型應(yīng)用的局限性,使得根系吸水模型有待于進(jìn)一步發(fā)展。伴隨著相應(yīng)的先進(jìn)觀測手段和實(shí)驗(yàn)方法的突破,以及有關(guān)根系吸水理論的進(jìn)一步完善,根吸水模型的構(gòu)建一定會有重大的進(jìn)展。
References:
[1] Taiz L, Zeiger E. Plant Physiology[M]. Song C P, Wang X L, trans. Fourth Edition. Beijing: Science Press, 2009. Taiz L, Zeiger E. 植物生理學(xué)[M]. 宋純鵬, 王學(xué)路, 譯. 第四版. 北京: 科學(xué)出版社, 2009.
[2] Feddes R A, Hoff H, Bruen M,etal. Modeling root water uptake in hydrological and climate models. Bulletin of the American Meteorological Society, 2001, 82(12): 2797-2809.
[3] Kumar R, Shankar V, Jat M K. Evaluation of root water uptake models-a review. ISH Journal of Hydraulic Engineering, 2015, 21(2): 115-124.
[4] Jarvis N J. Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences. Hydrology and Earth System Sciences, 2011, 15(11): 3431-3446.
[5] Javaux M, Schroder T, Vanderborght J,etal. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone Journal, 2008, 7(3): 1079-1088.
[6] Quijano J C, Kumar P, Drewry D T,etal. Competitive and mutualistic dependencies in multi-species vegetation dynamics enabled by hydraulic redistribution. Water Resources Research, 2012, 48: 1-22.
[7] Ji X B, Kang E S, Chen R S,etal. Research advances about water-uptake models by plant roots. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(5): 1079-1086. 吉喜斌, 康爾泗, 陳仁升, 等. 植物根系吸水模型研究進(jìn)展. 西北植物學(xué)報, 2006, 26(5): 1079-1086.
[8] Albasha R, Mailhol J C, Cheviron B. Compensatory uptake functions in empirical macroscopic root water uptake models-Experimental and numerical analysis. Agricultural Water Management, 2015, 155: 22-39.
[9] Green S R, Kiskham M B, Clothier B E. Root uptake and transpiration: From measurements and models to sustainable irrigation. Agricultural Water Management, 2006, 86(1/2): 165-176.
[10] Marzec M, Melzer M, Szarejko I. Root hair development in the grasses: what we already know and what we still need to know. Plant Physiology, 2015, 168(2): 407-414.
[11] Gardner W R. Dynamic aspects of water availability to plants. Soil Science, 1960, 89(2): 63-73.
[12] Steudle E, Peterson C A. How does water get through roots. Journal of Experimental Botany, 1998, 49: 775-788.
[13] Yang P L, Hao Z Y. Development of plant root uptake models. Journal of China Agricultural University, 1999, 4(2): 67-73. 楊培嶺, 郝仲勇. 植物根系吸水模型的發(fā)展動態(tài). 中國農(nóng)業(yè)大學(xué)學(xué)報, 1999, 4(2): 67-73.
[14] Vandenhonert T H. Water transport in plants as a catenary process. Discussions of the Faraday Society, 1948, 3: 146-153.
[15] Gardner W R. Dynamic aspects of soil-water availability to plants. Annual Review of Physiology, 1965, 16: 323-342.
[16] Campbell G S. Soil Physics with BASIC: Transport Models for Soil-plant Systems[M]. Amsterdam: Elsevier, 1985.
[17] Shao M A. A model of soil moisture extraction by plant roots. Progress in Soil Science, 1986, 3: 6-15, 28. 邵明安. 植物根系吸收土壤水分的數(shù)學(xué)模型. 土壤學(xué)進(jìn)展, 1986, 3: 6-15, 28.
[18] Hopmans J W, Bristow K L. Current capabilities and future needs of root water and nutrient uptake modeling. Advance in Agronomy, 2002, 77: 103-183.
[19] Cardon G E, Letey J. Plant water uptake terms evaluated for soil water and solute movement models. Soil Science Society of America Journal, 1992, 56(6): 1876-1880.
[20] Feddes R A, Bresler E, Newman S P. Field test of a modified numerical model for water uptake by root systems. Water Resources Research, 1974, 10(6): 1199-1206.
[21] Nimah M N, Hanks R J. Model for estimating soil water, plant, and atmospheric interrelations. I. Description and sensitivity. Soil Science of America Journal, 1973, 37(4): 522-527.
[22] Vogel T, Dohnal M, Dusek J,etal. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil water redistribution. Vadose Zone Journal, 2013, 12(1): 1-12.
[23] Passioura J B. Water transport in and to roots. Annual Review of Plant Physiology and Molecular Biology, 1988, 39: 245-265.
[24] Feddes R A, Kowalik P J, Zaradny H. Simulation of Field Water Use and Crop Yield[M]. Wageningen: Centre for Agricultural Publishing and Documentation, 1978.
[26] Hoogland J C, Feddes R A, Belmans C. Root water uptake model depending on soil water pressure head and maximum extraction rate. Acta Horticulturae, 1981, 119: 123-136.
[27] Li K Y, Boisvert J B, De Jong R. An exponential root water uptake model. Canadian Journal of Soil Science, 1999, 79(2): 333-343.
[28] Prasad R. A liner root water uptake model. Journal of Hydrology, 1988, 99(3/4): 297-306.
[29] Varney G T, Canny M J. Rates of water uptake into the mature root system of maize plants. New Phytologist, 1993, 123(4): 775-786.
[30] Kuhlmann A, Neuweiler I, Helmig R,etal. Influence of soil structure and root water uptake strategy on unsaturated flow in heterogeneous media. Water Resources Research, 2012, 48: 229-235.
[31] Jarvis N J. A simple empirical model of root water uptake. Journal of Hydrology, 1989, 107(1/4): 57-72.
[32] Nadezhdina N, David T S, David J S,etal. Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology, 2010, 3(4): 431-444.
[33] Leib B G, Caspari H W, Redulla C A,etal. Partial root zone drying and deficit irrigation of ‘Fuji’ apples in a semi-arid climate. Irrigation Science, 2006, 24(2): 85-99.
[34] Peters A. Modified conceptual model for compensated root water uptake-A simulation study. Journal of Hydrology, 2016, 534: 1-10.
[35] Jarvis N. Comment on “Macroscopic root water uptake distribution using a matric flux potential approach”. Vadose Zone Journal, 2010, 9(2): 499-502.
[36] Raats P A C. Laterally confined, steady flows of water from sources and to sinks in unsaturated soils. Soil Science Society of America Journal, 1977, 41(2): 294-304.
[37] van Lier Q D, Metselaar K, van Dam J C. Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation. Vadose Zone Journal, 2006, 5(4): 1264-1277.
[38] van Lier Q D, van Dam J C, Metselaar K. Macroscopic root water uptake distribution using a matric flux potential approach. Vadose Zone Journal, 2008, 7(3): 1065-1078.
[39] Vrugt J A, van Wijk M T, Hopmans J W. One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resources Research, 2001, 37(10): 2457-2470.
[40] Heinen M. Compensation in root water uptake models combined with three-dimensional root length density distribution. Vadose Zone Journal, 2014, 13(2): DOI:10.2136/vzj2013.08.0149.
[41] Sepaskhah A R, Yarami N. Evaluation of macroscopic water extraction model for salinity and water stress in saffron yield production. International Journal of Plant Production, 2010, 4(3): 175-186.
[42] Li H J, Yi J, Zhang J G,etal. Modeling of soil water and salt dynamics and its effects on root water uptake in Heihe arid wetland, Gansu, China. Water, 2015, 7(5): 2382-2401.
[43] Skaggs T H, van Genuchten M T, Shouse P J,etal. Macroscopic approaches to root water uptake as a function of water and salinity stress. Agricultural Water Management, 2006, 86(1/2): 140-149.
[44] Coelho M B, Villalobos F J, Mateos L. Modeling root growth and the soil-plant-atmosphere continuum of cotton crops. Agricultural Water Management, 2003, 60(2): 99-118.
[45] Schroder T, Javaux M, Vanderborght J,etal. Implementation of a microscopic soil-root hydraulic conductivity drop function in a three-dimensional soil-root architecture water transfer model. Vadose Zone Journal, 2009, 8(3): 783-792.
[46] Zhang S Q, Yan W G. Problems of grassland ecosystems and their countermeasures in western China. Acta Prataculturae Sinica, 2006, 15(5): 11-18. 張?zhí)K瓊, 閻萬貴. 中國西部草原生態(tài)環(huán)境問題及其控制措施. 草業(yè)學(xué)報, 2006, 15(5): 11-18.
Research progress in water uptake models by plant roots
WANG Yu-Yang1,2, CHEN Ya-Peng1*
1.StateKeyLaboratoryofDesertandOasisEcology,XinjiangInstituteofEcologyandGeography,ChineseAcademyofSciences,Urumqi830011,China; 2.UniversityofChineseAcademyofSciences,Beijing100049,China
The uptake of water by roots is the beginning of water transport within a plant, with such uptake directly controlling the amount of water available for transporting and, as a result, strongly affecting the life of the plant. Research on this uptake is thus not only a key to understanding the process of water transfer in the soil-plant-atmosphere continuum, but also an important topic for interdisciplinary research in such areas as hydrology, climate, soil, agriculture and ecology. Models for root uptake of water provide a numerical tool for quantitatively understanding this plant process. The establishment of a suitable model will provide not only a basic tool for estimating the amount of water absorbed but will also help to discover the water sources and requirements of plants. It can thus assist the development of effective agricultural water management programs, with far-reaching significance for restoring vegetation in extremely arid regions. In this paper, we review the development of models for root uptake of water, sum up the mechanisms identified and classify the models into different types at macroscopic and microscopic scales. We analyze the macroscopic models in detail, including Ohm’s law model, Feddes model, Transpiration segment model, Hybrid model, Compensatory root uptake water model and the Matric flux potential model, which are widely used in practical experiments. We illustrate the application range and discuss the limitations of existing models. We conclude with three suggestions for future research: 1) the establishment of dynamic models for root uptake of water, 2) the combination of microscopic and macroscopic models, and 3) the development of models for trees and herbages.
root system; root water uptake models; macroscopic scale; recent advances
2016-04-05;改回日期:2016-06-13
國家支撐計劃課題(2014BAC15B02)和國家自然科學(xué)基金項(xiàng)目(41371515,41371503)資助。
王玉陽(1991-),男,河南南陽人,在讀碩士。E-mail: wangyuyang14@mails.ucas.ac.cn*通信作者Corresponding author. E-mail: chenyp@ms.xjb.ac.cn
10.11686/cyxb2016146 http://cyxb.lzu.edu.cn
王玉陽, 陳亞鵬. 植物根系吸水模型研究進(jìn)展. 草業(yè)學(xué)報, 2017, 26(3): 214-225.
WANG Yu-Yang, CHEN Ya-Peng. Research progress in water uptake models by plant roots. Acta Prataculturae Sinica, 2017, 26(3): 214-225.