• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Life prediction and test period optimization research based on small sample reliability test of hydraulic pumps①

    2017-03-28 09:47:39GuoRuiNingChaoZhaoJingyiWangPingShiYuZhouJinshengLuoJing
    High Technology Letters 2017年1期
    關(guān)鍵詞:電解陽極電場

    Guo Rui(郭 銳), Ning Chao, Zhao Jingyi, Wang Ping, Shi Yu, Zhou Jinsheng, Luo Jing

    (*Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Qinhuangdao 066004, P.R.China) (**Huachuang Tianyuan Industrial Developing Co., Ltd, Langfang 065000, P.R.China) (***College of Art and Design, Yanshan University, Qinhuangdao 066004, P.R.China) (****Beijing Research Institute of Automation for Machinery Industry, Beiing 100120, P.R.China)

    Life prediction and test period optimization research based on small sample reliability test of hydraulic pumps①

    Guo Rui(郭 銳)②*, Ning Chao**, Zhao Jingyi*, Wang Ping***, Shi Yu*, Zhou Jinsheng*, Luo Jing****

    (*Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Qinhuangdao 066004, P.R.China) (**Huachuang Tianyuan Industrial Developing Co., Ltd, Langfang 065000, P.R.China) (***College of Art and Design, Yanshan University, Qinhuangdao 066004, P.R.China) (****Beijing Research Institute of Automation for Machinery Industry, Beiing 100120, P.R.China)

    Hydraulic pumps belong to reliable long-life hydraulic components. The reliability evaluation includes characters such as long test period, high cost, and high power loss and so on. Based on the principle of energy-saving and power recovery, a small sample hydraulic pump reliability test rig is built, and the service life of hydraulic pump is predicted, and then the sampling period of reliability test is optimized. On the basis of considering the performance degradation mechanism of hydraulic pump, the feature information of degradation distribution of hydraulic pump volumetric efficiency during the test is collected, so an optimal degradation path model of feature information is selected from the aspect of fitting accuracy, and pseudo life data are obtained. Then a small sample reliability test of period constrained optimization search strategy for hydraulic pump is constructed to solve the optimization problem of the test sampling period and tightening end threshold, and it is verified that the accuracy of the minimum sampling period by the non-parametric hypothes is tested. Simulation result shows it could possess instructional significance and referenced value for hydraulic pump reliability life evaluation and the test’s research and design.

    hydraulic pump, small sample test, volumetric efficiency, degradation path model, life span, period optimal

    0 Introduction

    Hydraulic pump with characteristics of high reliability and long-life is the key hydraulic component in the hydraulic system and as “Three Basic” mechanical basis belonging to the mechanical field. Its level directly determines many major equipment and the host of product performance, quality and reliability. However, there are many problems, such as large power, long test period, high costly testing, closed-end transmission of power, poor measurability of parameters, and diversity of failure mechanism. The situation of zero-failure data may occur in the conventional or accelerated reliability life test of hydraulic pump. Therefore, Reliability assessment and growth of the key fundamental parts and components with high reliability and long-life, represented by hydraulic pump, has become one of the key techniques to be solved urgently in engineering field[1,2].

    At present, the test of reliability life usually takes a long life test in developed countries, and there is a big disparity with the situation of our country. In the United States, the hydraulic pump life test standards has been developed from MIL-P-19692D, MIL-P-19692E, MIL-P-19692C to SAE-ASI19292A, which marks the important development of the relevant standards[3]. Hydraulic transmission laboratory of Sundstron Company was equipped with hydraulic pump test system, and began the full-life-test of hydraulic pumps as early as in 1964. Since the introduction of the micro-computer in 1974, At present, the test of reliability life usually takes a long life test in developed countries, and there is a big disparity with the situation of our country. UK National Laboratory developed ISO standard hydraulic pump test rig, and then studied the reliability of the hydraulic pump. The Institute of Metallurgical Machinery in Korea developed the reliability test and data processing system of the hydraulic pump. The Research Center of Mechanical Industry (ETIT) in France developed the experimental platform of hydraulic pump[4-8]. In recent years, a lot of life experiment researches have been conducted in China, and have achieved periodic achievement. Sanyi Heavy Industry and Xuzhou Construction Machinery Group carried out the on-board test for their own matching pump. Harbin Industrial University conducted a study of the test method of life and reliability for hydraulic components[9,10]. Shanghai Jiaotong University evaluated the life characteristics of 25CY14-1B type axial piston pump[11]. Huazhong University of Science and Technology developed a reliability test for ceramic plunger of water hydraulic pump[12]. Zhejiang Ocean University focused on the research of 32 hydraulic pumps and got the comprehensive estimation of the hydraulic pump reliability without failure data after the introduction of the failure information[13]. Extensive reliability test studies were conducted for the factors effecting the reliability of the hydraulic devices of multi-industries and multi-fields[14,15], Yanshan University has published the “reliability engineering of the hydraulic system”[16].Those studies involved the acquisition of the failure information under conventional test and accelerated test and the reliability assessment based on small sample and performance degradation, but the related researches, which makes use of the principles of performance degradation to predict the reliability life and optimize the test period, are still lacking.

    By introducing the performance degradation theory of hydraulic pump, the reliability test of small sample size is designed. Through the screening of degradation model, the reliability of hydraulic pump is predicted. Test period optimization of hydraulic pump small sample reliability test is achieved. It has great value in academic and engineering area to research reliability assessment of hydraulic pump. The structure and principle of A4V series hydraulic pump and the main failure modes after testing are shown in Fig.1.

    Fig.1 The principle of the axial piston pump reliability test rig operation

    1 Degradation model selection and life prediction based on performance degradation theory

    1.1 Performance degradation data structure and model

    The population is sampled for the degradation test, and the random simple size is n. The degradation test was carried out at given k time points, t1

    yij=φ(tij, w1i, w2i, wmi)+εij

    (1)

    where i=1,2,…,n; j=1,2,…,φ(tij, w1i, w2i, wmi) is the degradation path of the No.i sample at time tj, εij~N(0, σ2) is error measurement.

    In the range of the errors permitted, product performance degradation parameters and time series vector can be fitted effectively by adopting the following five kinds of models, which can be considered as the actual degradation of product performance parameters.

    Liner: yi=αit+βi

    (2)

    Exponential: yi=αieβit

    (3)

    Power: yi=αitβi

    (4)

    Logarithmic: yi=αiln(t)+βi

    (5)

    (6)

    where αi, βiare unknown parameters in the degradation model, yiis the target value, i is the number of samples under a certain stress level, and t is test time.

    1.2 Degradation path fitting method

    The nonlinear degenerate models as Eqs(2)~(6) would be expressed as y=F(X, α)+ε, where α is the model coefficient vector, X is a matrix of model design, F is a function of α and X, ε is the error vector, and y is response vector data. Solution of the nonlinear regression models can be fitted by a nonlinear least square method.

    (7)

    where F(x, xdata) is the vector valued function, xdata is the independent variable vector, xdata=[t1, t2,…, tm], ydata is dependent variable vector, ydata=[yi1, yi2,…, yim](i=1, 2,…,n).

    1.3 Optimal degradation path search strategy

    1.3.1 Degradation path search decision matrix

    Suppose n degenerate path equations can be achieved by the fitting of the degradation data, m impact properties of search scheme need to be considered. X=[X1, X2, …, Xn] is a set of n alternative degradation paths. Y=[Yi1, Yi2, …, Yim] is a set of No.i path and No. j(j=1, 2, …,m) property. Attribute Yijis expressed by objective function

    Yij=fi(Xi)

    (8)

    The attribute values of each path scheme can be expressed as the search decision matrix A.

    (9)

    The weighted normalized decision matrix is got by the weight of the search decision matrix.

    (10)

    where λjis the weight coefficient, i=1, 2, … ,n ,j=1, 2, …,m.

    2.3.2 Algorithm for solving the optimal degradation path

    According to the TOPSIS theory that the method of evaluating the similarity degree of the object and the ideal target, an optimal solution and the worst solution are firstly determined, the scheme that the best solution to the nearest and farthest from the best solution would be selected as ideal optimization scheme.

    The optimal solution of X+and the worst solution X-are defined as

    (11)

    where J is a set of benefit type attribute, J′ is a set of cost attribute.

    The distance of each solution to the optimal solution is

    (12)

    The distance of each solution to the worst solution is

    (13)

    In order to judge the solution, the relative similarity degree is introduced to measure the distance between two kinds of distance. The relative similarity degree to the optimal solution is defined.

    (14)

    According to the search strategy of the optimal degradation model and the fitting results from section 2.3, comparatively accurate hydraulic pump volumetric efficiency test data degradation model would be got. According to the programme, the mean error square and fitting goodness index matrix of the actual degradation data and optimal degradation trajectory in specific timing interval can be acquired. And that is selected to construct test period constrained optimization search strategy of the hydraulic pump reliability short-time test for search index fitting goodness. According to the algorithm introduced in the Section 1.3, the fitting search for the twice time is carried, and then the optimal truncated threshold of the minimum sampling period and the performance degradation would be acquired.

    2 Small sample reliability test of hydraulic pump

    2.1 The design of test system and program

    In the laboratory the existing condition’s foundation, the small sample reliability test rig of hydraulic pump based on the energy saving and power recovery principle is designed.

    Test hydraulic system and test rig are shown in Fig.2 and Fig.3.

    1、3- Test subjects of axial plunger pump; 2、4- Test subjects of axial piston motor; 5-Flowmeter; 6-Screw pump oil compensator; 7、13-Overflow valve; 8、10- Torque Tachometer; 9- Biaxial stretch Motor; 11- Pressure gauge; 12-Electromagnetic relief valve;

    Fig.2 The principle of the axial piston pump reliability

    test rig operation

    Fig.3 Test rig pictures

    The reliability test subjects are A4VS series axial piston pumps that were produced by a domestic enterprise.The nominal rated pressure of A4VS series productions is 35MPa, and the peak pressure is 40MPa.The four samples selected include open circuit hydraulic pump whose displacement is 250ml/r, closed loop hydraulic pump whose displacement is 250ml/r, open circuit hydraulic pump whose displacement is 125ml/r, and closed loop hydraulic pump whose displacement is 125ml/r.

    2.2 Failure detection and judgment

    (2)電解過程中,由于電場作用和離子交換膜限制,陽極室的H+穿過陽膜擴(kuò)散至產(chǎn)品室,原料室的穿過陰膜擴(kuò)散至產(chǎn)品室,H+和H2PO-2在產(chǎn)品室反應(yīng)生成H3PO2

    The volumetric efficiency is selected as the main performance appraisal parameter, in addition, dynamical sealing capacity, outlet pressure oscillation and sealing property are detected during the test. And failure judgment criteria are shown in Table 1.

    Table 1 The failure judgment criteria of hydraulic pump

    2.3 Experimental data processing

    2.3.1 The analysis of experiment result

    The working condition of the hydraulic pump is tested in real time. The life time and failure mode of hydraulic pump are recorded when the performance parameter monitored is below the predetermined index value. The fulfillment of test is shown in Table 2.

    Table 2 The fulfillment of the reliability accelerated life test of hydraulic pump

    2.3.2 The determination of volumetric efficiency degradation path

    The four samples volumetric efficiency degradation data are fitted by using nonlinear least squares, the sum square error of them is selected as the evaluation result. Based on the search strategy in Section 2.3, according to the search strategy in Section 2.3, the original search decision matrix A is established according to Eq.(9), the effects of their weighting assignment could be ignored, which means that λj=1. So normalized matrix B would be got according to Eq.(10).

    (15)

    (16)

    (17)

    According to the relative similarity degree matrix, a conclusion is drawn that the fitting of the performance degradation data and the linear degradation model yi=αit+βiis the best, whose solution most accurately describes the optimal solution, the relative similarity degree is 0.9682. As a result, the linear model is used as the degradation path of hydraulic pump volumetric efficiency, and the model parameters can be obtained by the nonlinear least square method. The model parameters can be obtained from 4 samples.

    y1=-1.255×10-5t+0.9481

    (18)

    y2=-2.4464×10-5t+0.9484

    (19)

    y3=-5.7492×10-5t+0.9607

    (20)

    y4=-1.5222×10-5t+0.9445

    (21)

    Such regulation is formulated that the corresponding test time is the life of the hydraulic pump when the volumetric efficiency of the test sample is reduced to the limit of 87% in the condition of 35MPa. In Fig.4,

    Fig.4 Test sample life estimation

    the horizontal line is the limit value, and the dotted line is the curve of the volumetric efficiency. It is conclued that the volumetric efficiency of hydraulic pump shows a downward trend over time as a whole. The corresponding time of intersection of the degradation path curve and the horizontal line is the life prediction of the hydraulic pump. It is shown in Table 3 that the predicted life of the hydraulic pump, which is the degradation rate of the volumetric efficiency is fitted.

    Table 3 Test sample forecast life data

    3 Hydraulic pump small sample reliability test period optimization

    3.1 Test period optimization search decision matrix

    According to the search strategy of the optimal degradation model and the fitting results, the mean error square and fitting goodness index matrix of the actual degradation data and optimal degradation trajectory in specific timing interval can be acquired, as shown in Table 4.

    Table 4 The minimum sampling period search index

    According to Table 4,the test period constrained optimization search matrix A of the hydraulic pump reliability short-term experiments is established, the effects of their weighting assignment could be ignored, which means that the λj=1. So the normalized matrix B would be got.

    3.2 The minimum sampling period algorithm

    According to matrix of relative degree of approximation, it could be found that fitting precision would be 85.85% when the sampling period reaches 1100 hours, which could meet the requirement of engineering practice. So the minimum sampling period of hydraulic pump reliability short time test as 1100 hours is preliminarily determined.

    The optimal truncated threshold of the performance degradation would be acquired just as shown in Table 5.

    Table 5 The optimal truncation threshold of performance degradation of hydraulic pump reliability short time test

    3.3 Nonparametric tests of the minimum sampling period

    The minimum sampling period is T=1100h by the above calculation. As to the life data from the minimum sampling period method or the complete life test data from the reliability test, its reliability is to be verified by using nonparametric K-S test model. That would assess the accuracy of the minimum sampling period.

    The linear degradation model of four hydraulic pumps Eqs(22)~(25) can be obtained by the data from the former 1100h.Pseudo failure life time of four hydraulic pumps can be calculated by Matlab, just as shown in Table 6.

    y=-1.069×10-5x+0.9454

    (22)

    y=-2.491×10-5x+0.9495

    (23)

    y=-5.116×10-5x+0.9597

    (24)

    y=-1.182×10-5x+0.9428

    (25)

    According to K-S two-sample test method, suppose the small sample life reliability test data acquired is seen as the complete life test data, so distribution function is got, called F(x). And life distribution function that is got by fitting with volumetric efficiency degradation trajectory is called G(x). The null hypothesis is put forward:

    H0: F(x)=G(x)

    (26)

    And corresponding alternative hypothesis:

    H1: F(x)≠G(x)

    (27)

    Table 6 Pseudo failure lifetime of four hydraulic pumps

    Table 7 Analysis of test results

    4 Conclusion

    Hydraulic pump with characteristics of high reliability and long-life is taken as research objects. For hydraulic pump life prediction and reliability test period optimization, the small sample reliability test of the hydraulic pump was carried out, which selected the volumetric efficiency as the main performance appraisal parameter.

    (1) The test period optimize method of the hydraulic pump reliability test is put forward, and test period optimization search strategy for reliability test is built. The optimal truncated threshold of the minimum sampling period and the performance degradation is acquired. Then non-parametric hypothesis test proves that the minimum sampling period is right.

    (2) Through building the model of feature information degradation path sequence, the optimization of degradation path of the hydraulic pump small sample reliability test is determined, and hydraulic pump life is predicted. The results show that performance of hydraulic pump nearly has reached the same level as that abroad.

    (3) The small sample hydraulic pump reliability test rigs based on the energy-saving and power recovery principle are designed and built. And according to the experimental program, two-stage step stress accelerated life test is completed, so a full life test data is got.

    [1] George E Totten, Victor J De Negri.Handbook of Hydraulic Fluid Technology.Florida:CRC Press, 2011. 1-10

    [2] Zhou R S, Jiao Z X, Wang S P. Current research and developing trends on fault diagnosis of hydraulic system. Chinese Journal of Mechanical Engineering, 2006, 42(9):6-14 (In Chinese)

    [3] Elliott C, Vijayakumar V, Zink W, et al. National Instruments LabVIEW: A programming environment for laboratory automation and measurement, Journal of the Association for Laboratory Automation, 2007,12(1): 17-24

    [4] Rawnsley D J, Hummels D M, Segee B E. A virtual instrument bus using network programming. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada, 1997, 1: 694-699

    [5] Hubert C G, Mcjames S W, Mecham I, et al. Digital imaging system and virtual instrument Platform for measuring hydraulic conductivity of vascular endothelial monolayers. Mlerovaseular Researeh, 2006,71(2):135-140

    [6] Nakano K, Tanaka Y. Energy saving type electro-hydraulic servo system. Journal Fluid Control, 1988,(3):35-51

    [7] Tanaka Y, Nakano K, Yamamoto N. Energy saving hydraulic power source using inverter-motor drive. In: Proceedings of the 1st JHPS International Symposium on Fluid Power, 2011. 95-102. doi:10.5739/isfp.1989. 95

    [8] Wang S P, Li P Q. Synthetic stress life testing for hydraulic pump. Journal of Beijing Universityof Aeronautics and Astronautics, 2000, 26(1):38-40 (In Chinese)

    [9] Sun Y G. Hydraulic pump reliability test method research. Journal of Civil Aviation Universityof China, 2000, 18(1):6-9 (In Chinese)

    [10] Sun Y G, Xu Y M. Experimental study on hydraulic friction limit value [PV]. Hydraulics Pneumatics & Seals, 1994, (3):9-10 (In Chinese)

    [11] Chen Z N, Wang J G, Yu J H. 25SCY14-1B type axial piston pump failure mechanism research and life improvement. Journal of Shanghai Jiaotong University, 1994, 28(2):31-38 (In Chinese)

    [12] Yu Z Y, Li Z Y, Nie S L. Design on the reliability of ceramic plunger in water hydraulic plunger pump. Journal of Machine Design, 2003, 20(4):12-14 (In Chinese)

    [13] Han Ming. Reliability analysis of a hydraulic pump. Chinese Journal of Mechanical Enigineering, 2002, 38(1): 101-104 (In Chinese)

    [14] Guo R, Zhang M X, Zhao J Y. Fault tree research of hydraulic self-actuated platform vehicle system based on grey theory. Chinese Hydraulics & Pneumatics, 2013, (4):60-63 (In Chinese)

    [15] Zhao J Y, Yao C Y. Hydraulic System Reliability Engineering. Beijing: Machinery Industry Press, 2011. 50-70 (In Chinese)

    [16] Yao C Y, Zhao J Y. Reliability-based design and analysis on hydraulic system for synthetic rubber press. Chinese Journal of Mechanical Engineering, 2005,18(2): 159-162

    Guo Rui, born in 1980. He is currently an associate professor in mechatronic engineering at Yanshan University, China. He received his Ph.D degree from the Department of Mechanical Engineering of Yanshan University, Qinhuangdao, China, in 2010. His research interests include innovative design and reliability of complex electromechanical products.

    10.3772/j.issn.1006-6748.2017.01.009

    ①Supported by the National Natural Science Foundation of China (No. 51405424, 11673040) and the Special Scientific Research Fund of Public Welfare for Quality Inspection (No. 201510202).

    ②To whom correspondence should be addressed. E-mail: guorui@ysu.edu.cn Received on Dec. 29, 2015

    猜你喜歡
    電解陽極電場
    降低回轉(zhuǎn)式陽極爐天然氣爐前單耗的生產(chǎn)實(shí)踐
    化工管理(2022年14期)2022-12-02 11:44:06
    巧用對(duì)稱法 妙解電場題
    浸漬涂布法制備陽極支撐型固體氧化物燃料電池的研究
    輕輕松松學(xué)“電解”
    高強(qiáng)化平行流電解提高A級(jí)銅表面質(zhì)量實(shí)踐
    山東冶金(2018年6期)2019-01-28 08:15:06
    電場強(qiáng)度單個(gè)表達(dá)的比較
    釹在[BMP]Tf2N離子液體中的陽極行為
    電場中六個(gè)常見物理量的大小比較
    海船犧牲陽極陰極保護(hù)設(shè)計(jì)計(jì)算探討
    電解制氫設(shè)備開發(fā)入選“863”
    低溫與特氣(2014年4期)2014-03-20 13:36:50
    五月玫瑰六月丁香| 免费黄频网站在线观看国产| 97精品久久久久久久久久精品| 97在线人人人人妻| 精品少妇黑人巨大在线播放| 精品人妻一区二区三区麻豆| 国产综合精华液| 99热国产这里只有精品6| 亚洲国产成人一精品久久久| 女的被弄到高潮叫床怎么办| 国产伦在线观看视频一区| 丝瓜视频免费看黄片| 深爱激情五月婷婷| 最新中文字幕久久久久| 国产黄片视频在线免费观看| 少妇人妻精品综合一区二区| 成人综合一区亚洲| 黑丝袜美女国产一区| 亚洲伊人久久精品综合| 日韩欧美精品免费久久| 国产大屁股一区二区在线视频| 免费av不卡在线播放| 久久久久精品久久久久真实原创| 久久 成人 亚洲| 99热这里只有精品一区| 少妇高潮的动态图| 日韩不卡一区二区三区视频在线| 美女福利国产在线 | 九九久久精品国产亚洲av麻豆| 毛片一级片免费看久久久久| 精品亚洲乱码少妇综合久久| 精品国产一区二区三区久久久樱花 | a级毛片免费高清观看在线播放| 国产人妻一区二区三区在| 亚洲丝袜综合中文字幕| 人体艺术视频欧美日本| 97超视频在线观看视频| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 一级毛片黄色毛片免费观看视频| 高清日韩中文字幕在线| 王馨瑶露胸无遮挡在线观看| 在线观看人妻少妇| 1000部很黄的大片| 国产精品爽爽va在线观看网站| 国产成人aa在线观看| 国产精品人妻久久久久久| 国产成人免费观看mmmm| 大码成人一级视频| 一本色道久久久久久精品综合| 一级a做视频免费观看| 国产午夜精品久久久久久一区二区三区| 99国产精品免费福利视频| 老熟女久久久| 欧美精品亚洲一区二区| 国产精品一二三区在线看| 一区二区av电影网| 国产av一区二区精品久久 | 一级毛片我不卡| 日韩av不卡免费在线播放| 国产69精品久久久久777片| 亚洲国产精品专区欧美| av专区在线播放| 久久精品久久精品一区二区三区| 国产熟女欧美一区二区| 插逼视频在线观看| 精品少妇黑人巨大在线播放| 精品亚洲乱码少妇综合久久| 久久久久精品性色| 观看美女的网站| 又粗又硬又长又爽又黄的视频| 少妇的逼好多水| 久久久久久伊人网av| 国产成人一区二区在线| 免费观看的影片在线观看| freevideosex欧美| 直男gayav资源| 国产亚洲最大av| 欧美最新免费一区二区三区| 色婷婷久久久亚洲欧美| 日日啪夜夜撸| 国产大屁股一区二区在线视频| 久久久久人妻精品一区果冻| 久久久久久久久久久免费av| 国产成人aa在线观看| 男女下面进入的视频免费午夜| 日日啪夜夜爽| 青春草亚洲视频在线观看| 人人妻人人澡人人爽人人夜夜| 男人和女人高潮做爰伦理| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美亚洲二区| 舔av片在线| 亚洲欧美精品自产自拍| 国产精品久久久久久久久免| 啦啦啦在线观看免费高清www| 亚洲欧美日韩东京热| 最后的刺客免费高清国语| 久久99蜜桃精品久久| 免费少妇av软件| 亚洲色图综合在线观看| 在线观看av片永久免费下载| 丝瓜视频免费看黄片| 亚洲国产精品一区三区| 亚洲精品aⅴ在线观看| 精品亚洲乱码少妇综合久久| 国产精品女同一区二区软件| 亚洲av国产av综合av卡| 美女视频免费永久观看网站| 亚洲自偷自拍三级| 亚洲国产日韩一区二区| av女优亚洲男人天堂| 草草在线视频免费看| 亚洲精品一二三| 一本一本综合久久| 亚洲美女视频黄频| 亚洲久久久国产精品| 国产精品一区www在线观看| 国产精品国产三级专区第一集| 国模一区二区三区四区视频| 黑丝袜美女国产一区| 男人爽女人下面视频在线观看| 一区二区av电影网| 欧美人与善性xxx| 亚洲精品第二区| 在线观看三级黄色| 人人妻人人澡人人爽人人夜夜| 欧美3d第一页| 国产亚洲91精品色在线| 波野结衣二区三区在线| 免费看日本二区| 日韩强制内射视频| 午夜福利高清视频| 亚洲精品一区蜜桃| 啦啦啦中文免费视频观看日本| 免费av不卡在线播放| 蜜桃亚洲精品一区二区三区| 亚洲精品国产成人久久av| 国内少妇人妻偷人精品xxx网站| 一级爰片在线观看| 18禁裸乳无遮挡免费网站照片| 久久久久精品久久久久真实原创| 亚洲久久久国产精品| 韩国高清视频一区二区三区| 丰满乱子伦码专区| 国产乱人视频| av专区在线播放| 人妻少妇偷人精品九色| 中文精品一卡2卡3卡4更新| 精品国产露脸久久av麻豆| 高清在线视频一区二区三区| 久久午夜福利片| 精品久久久久久电影网| 国产精品.久久久| 大话2 男鬼变身卡| 亚洲精品自拍成人| 国产乱人视频| 午夜福利高清视频| 中文字幕av成人在线电影| 永久免费av网站大全| 99热国产这里只有精品6| 一级a做视频免费观看| 久久久久精品久久久久真实原创| av天堂中文字幕网| 亚洲国产毛片av蜜桃av| 水蜜桃什么品种好| 欧美性感艳星| 欧美日韩视频精品一区| 女人久久www免费人成看片| 欧美高清性xxxxhd video| 97热精品久久久久久| 五月玫瑰六月丁香| 中文字幕av成人在线电影| 插逼视频在线观看| 亚洲欧美成人综合另类久久久| 久久99热这里只有精品18| 美女国产视频在线观看| 3wmmmm亚洲av在线观看| 国产精品av视频在线免费观看| 国产成人91sexporn| 丰满乱子伦码专区| 一区在线观看完整版| 亚洲成人av在线免费| 国产淫语在线视频| 啦啦啦啦在线视频资源| 91久久精品国产一区二区成人| 99久久精品热视频| 精品熟女少妇av免费看| 午夜免费观看性视频| a级毛色黄片| 国产又色又爽无遮挡免| 全区人妻精品视频| 中文字幕久久专区| 少妇熟女欧美另类| 最近中文字幕高清免费大全6| 精品一区二区免费观看| 欧美xxⅹ黑人| 国产精品不卡视频一区二区| 国产精品蜜桃在线观看| 国产在视频线精品| 国产精品欧美亚洲77777| 国产午夜精品久久久久久一区二区三区| 成人免费观看视频高清| 久久久a久久爽久久v久久| 久久久久精品性色| 色视频在线一区二区三区| 99久久精品热视频| 中文天堂在线官网| 91狼人影院| 新久久久久国产一级毛片| 亚洲欧美一区二区三区国产| 人人妻人人添人人爽欧美一区卜 | 日韩制服骚丝袜av| 成人毛片a级毛片在线播放| 免费看不卡的av| 亚洲人成网站在线播| 2021少妇久久久久久久久久久| 国产精品一区二区在线不卡| 亚洲欧洲国产日韩| 1000部很黄的大片| 十八禁网站网址无遮挡 | 亚洲人与动物交配视频| 高清不卡的av网站| 国产成人精品婷婷| 欧美精品一区二区免费开放| 一级毛片久久久久久久久女| 亚洲av不卡在线观看| 亚洲成色77777| 欧美日韩一区二区视频在线观看视频在线| 久久这里有精品视频免费| 午夜精品国产一区二区电影| 国产片特级美女逼逼视频| 黄色怎么调成土黄色| 爱豆传媒免费全集在线观看| 久久久午夜欧美精品| 国产高清不卡午夜福利| kizo精华| tube8黄色片| 成人二区视频| 毛片女人毛片| 国产精品女同一区二区软件| 国产视频首页在线观看| 亚洲美女黄色视频免费看| 国产有黄有色有爽视频| 国产综合精华液| 麻豆乱淫一区二区| 久久午夜福利片| 丰满迷人的少妇在线观看| 在线观看一区二区三区| 91午夜精品亚洲一区二区三区| 久久鲁丝午夜福利片| 国产成人a区在线观看| 亚洲欧美一区二区三区黑人 | 天天躁夜夜躁狠狠久久av| 亚洲精品亚洲一区二区| 久久精品久久久久久噜噜老黄| 国产成人免费观看mmmm| 色哟哟·www| 欧美xxxx黑人xx丫x性爽| 国产精品精品国产色婷婷| 一本色道久久久久久精品综合| 精品人妻视频免费看| 午夜福利在线观看免费完整高清在| 欧美+日韩+精品| 日韩视频在线欧美| 欧美成人精品欧美一级黄| 黄色视频在线播放观看不卡| 少妇猛男粗大的猛烈进出视频| 成人影院久久| 九色成人免费人妻av| 国产精品一及| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美在线精品| 国产在线免费精品| 日韩一本色道免费dvd| 亚洲伊人久久精品综合| 国产精品爽爽va在线观看网站| 亚洲高清免费不卡视频| 一级黄片播放器| 赤兔流量卡办理| 日韩视频在线欧美| 国产高清三级在线| 国产久久久一区二区三区| 国产乱来视频区| 在线免费十八禁| 春色校园在线视频观看| 99久久综合免费| 国产黄片视频在线免费观看| 日韩强制内射视频| 97在线视频观看| 久久人人爽人人爽人人片va| 国内揄拍国产精品人妻在线| av播播在线观看一区| 午夜福利在线在线| 亚洲精品乱码久久久久久按摩| 肉色欧美久久久久久久蜜桃| 亚洲,欧美,日韩| videos熟女内射| 欧美成人午夜免费资源| 国产乱来视频区| 最近的中文字幕免费完整| 一区二区三区乱码不卡18| 校园人妻丝袜中文字幕| 成人特级av手机在线观看| 五月玫瑰六月丁香| 一级毛片 在线播放| 看非洲黑人一级黄片| 汤姆久久久久久久影院中文字幕| 亚洲国产高清在线一区二区三| 国产在线免费精品| 久久av网站| 蜜桃在线观看..| 久久这里有精品视频免费| 国产成人a区在线观看| av黄色大香蕉| 国产精品蜜桃在线观看| 国产精品一二三区在线看| 亚洲人与动物交配视频| 男人和女人高潮做爰伦理| 国产成人免费无遮挡视频| 国产黄片视频在线免费观看| 深爱激情五月婷婷| 夫妻午夜视频| 国产亚洲最大av| 深爱激情五月婷婷| 校园人妻丝袜中文字幕| 亚洲欧美日韩卡通动漫| 观看美女的网站| 国产av国产精品国产| 好男人视频免费观看在线| 亚洲va在线va天堂va国产| 一区二区三区乱码不卡18| 日本一二三区视频观看| 久久久久网色| 久久久久精品性色| 国产成人aa在线观看| 最近2019中文字幕mv第一页| 人妻系列 视频| 国产精品久久久久久精品古装| 天堂俺去俺来也www色官网| 国产v大片淫在线免费观看| 久久久久久人妻| 亚洲国产精品国产精品| 久久久久久久亚洲中文字幕| 久久精品国产a三级三级三级| 99热这里只有精品一区| 亚洲av在线观看美女高潮| 亚洲av在线观看美女高潮| 国产综合精华液| 偷拍熟女少妇极品色| 亚洲aⅴ乱码一区二区在线播放| 欧美zozozo另类| 毛片一级片免费看久久久久| 日本一二三区视频观看| 熟女人妻精品中文字幕| 麻豆精品久久久久久蜜桃| 成人二区视频| 亚洲不卡免费看| 久久久久久久亚洲中文字幕| av视频免费观看在线观看| 久久久久久久久久成人| 国产白丝娇喘喷水9色精品| 欧美日韩一区二区视频在线观看视频在线| 国产免费一级a男人的天堂| 亚洲av欧美aⅴ国产| 日本av免费视频播放| 亚洲伊人久久精品综合| 国产亚洲欧美精品永久| 中国国产av一级| 久久97久久精品| 亚洲精品国产av成人精品| 在线免费观看不下载黄p国产| 晚上一个人看的免费电影| 国产亚洲av片在线观看秒播厂| 联通29元200g的流量卡| 色5月婷婷丁香| 久久国产精品大桥未久av | 精品一品国产午夜福利视频| 欧美人与善性xxx| 插逼视频在线观看| 午夜日本视频在线| 亚洲美女视频黄频| 亚洲国产欧美人成| 亚洲aⅴ乱码一区二区在线播放| 一本一本综合久久| 干丝袜人妻中文字幕| 新久久久久国产一级毛片| 亚洲成色77777| 国产精品一区二区在线不卡| 日本黄色片子视频| kizo精华| 看非洲黑人一级黄片| 六月丁香七月| 伊人久久国产一区二区| 国产精品久久久久久久电影| 成人18禁高潮啪啪吃奶动态图 | 在现免费观看毛片| 亚洲国产成人一精品久久久| 精品一品国产午夜福利视频| 国产白丝娇喘喷水9色精品| 国产熟女欧美一区二区| 少妇人妻一区二区三区视频| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩卡通动漫| 亚洲国产色片| 国产久久久一区二区三区| 午夜免费男女啪啪视频观看| 免费av不卡在线播放| 自拍偷自拍亚洲精品老妇| 久久99热这里只频精品6学生| 国产成人a区在线观看| 精品人妻偷拍中文字幕| 成人漫画全彩无遮挡| 极品教师在线视频| 免费av不卡在线播放| av又黄又爽大尺度在线免费看| 水蜜桃什么品种好| 在线精品无人区一区二区三 | 亚洲国产最新在线播放| 蜜桃亚洲精品一区二区三区| 午夜视频国产福利| h日本视频在线播放| 国产精品无大码| 免费av中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 国产v大片淫在线免费观看| 80岁老熟妇乱子伦牲交| 网址你懂的国产日韩在线| 国产亚洲5aaaaa淫片| 在线观看三级黄色| 欧美xxxx黑人xx丫x性爽| 久热久热在线精品观看| 国产成人午夜福利电影在线观看| 免费观看在线日韩| 日本wwww免费看| 欧美日韩视频高清一区二区三区二| 一本一本综合久久| 精品人妻一区二区三区麻豆| 国产在线免费精品| 亚洲av男天堂| 超碰av人人做人人爽久久| 一本一本综合久久| 老师上课跳d突然被开到最大视频| 成人高潮视频无遮挡免费网站| 国产极品天堂在线| 国产亚洲午夜精品一区二区久久| 插阴视频在线观看视频| 老熟女久久久| 欧美激情极品国产一区二区三区 | 欧美日本视频| 日韩欧美 国产精品| 亚洲自偷自拍三级| 18禁裸乳无遮挡免费网站照片| 久久久久久人妻| 岛国毛片在线播放| av免费观看日本| 精品少妇久久久久久888优播| 一级黄片播放器| 国产精品国产av在线观看| 亚洲成人av在线免费| 99热网站在线观看| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩一区二区三区在线 | 超碰av人人做人人爽久久| 国产精品99久久99久久久不卡 | 久久久久久久精品精品| 啦啦啦啦在线视频资源| 尾随美女入室| 欧美亚洲 丝袜 人妻 在线| 国产高清国产精品国产三级 | 三级经典国产精品| 日韩精品有码人妻一区| 国产免费视频播放在线视频| 国产v大片淫在线免费观看| 久久精品国产亚洲av涩爱| 日本与韩国留学比较| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| 亚洲无线观看免费| 欧美日韩在线观看h| 美女xxoo啪啪120秒动态图| 欧美丝袜亚洲另类| 小蜜桃在线观看免费完整版高清| 天天躁夜夜躁狠狠久久av| 欧美另类一区| 建设人人有责人人尽责人人享有的 | av不卡在线播放| 中文字幕久久专区| 永久免费av网站大全| 亚洲国产欧美人成| 三级国产精品片| 国产一区二区三区综合在线观看 | 国产精品一区二区三区四区免费观看| 日本午夜av视频| 嫩草影院入口| av在线老鸭窝| 91久久精品电影网| 激情 狠狠 欧美| 国产无遮挡羞羞视频在线观看| 99re6热这里在线精品视频| 日韩伦理黄色片| 亚洲va在线va天堂va国产| 亚洲第一av免费看| 日韩av在线免费看完整版不卡| 丰满迷人的少妇在线观看| 中文字幕制服av| 美女脱内裤让男人舔精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | av国产精品久久久久影院| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 午夜激情久久久久久久| 久久久久国产精品人妻一区二区| 人人妻人人爽人人添夜夜欢视频 | 涩涩av久久男人的天堂| 成人毛片60女人毛片免费| 成人影院久久| 国产爽快片一区二区三区| 免费观看av网站的网址| 欧美另类一区| 18禁动态无遮挡网站| 插逼视频在线观看| 免费av中文字幕在线| 极品教师在线视频| 精品国产露脸久久av麻豆| 在线观看国产h片| kizo精华| 校园人妻丝袜中文字幕| 在线播放无遮挡| 国产亚洲欧美精品永久| 新久久久久国产一级毛片| av国产免费在线观看| 99热全是精品| 亚洲av欧美aⅴ国产| 中文字幕精品免费在线观看视频 | 亚洲熟女精品中文字幕| 春色校园在线视频观看| 亚洲欧美成人精品一区二区| 一区二区av电影网| 亚洲人与动物交配视频| 亚洲中文av在线| 多毛熟女@视频| 内地一区二区视频在线| 边亲边吃奶的免费视频| 啦啦啦中文免费视频观看日本| 国产成人a区在线观看| 亚洲美女黄色视频免费看| 日本一二三区视频观看| 亚洲性久久影院| 中国三级夫妇交换| 欧美3d第一页| 三级国产精品欧美在线观看| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| a 毛片基地| 亚洲真实伦在线观看| 国产v大片淫在线免费观看| 久久久久久久久大av| 黄色欧美视频在线观看| 伦理电影免费视频| 欧美激情极品国产一区二区三区 | 联通29元200g的流量卡| 成人18禁高潮啪啪吃奶动态图 | 欧美zozozo另类| 精品酒店卫生间| 大香蕉97超碰在线| 亚洲精品亚洲一区二区| 干丝袜人妻中文字幕| 又大又黄又爽视频免费| tube8黄色片| 免费av中文字幕在线| 亚洲,欧美,日韩| 国产精品久久久久久av不卡| 熟女电影av网| 国产成人aa在线观看| 欧美日韩视频精品一区| 欧美高清性xxxxhd video| 久久久成人免费电影| 男人添女人高潮全过程视频| 日本猛色少妇xxxxx猛交久久| 日韩在线高清观看一区二区三区| 日韩成人av中文字幕在线观看| 国产精品一区二区在线观看99| 最近手机中文字幕大全| 中文天堂在线官网| 国产69精品久久久久777片| 日韩伦理黄色片| 亚洲国产毛片av蜜桃av| 亚洲欧洲日产国产| 午夜免费男女啪啪视频观看| 国产高清有码在线观看视频| h日本视频在线播放| 99久国产av精品国产电影| 国产熟女欧美一区二区| 色婷婷久久久亚洲欧美| 亚洲精品久久久久久婷婷小说| 91精品国产九色| 亚洲欧美精品专区久久| 青春草国产在线视频| 国产真实伦视频高清在线观看| 高清在线视频一区二区三区| 深夜a级毛片| 国产精品国产三级国产专区5o| 久久久亚洲精品成人影院| 国产v大片淫在线免费观看| 成人国产麻豆网| 纯流量卡能插随身wifi吗| 久久99蜜桃精品久久| 久久精品国产亚洲av天美| 精品午夜福利在线看| av专区在线播放| 亚洲国产精品一区三区| 色综合色国产| 春色校园在线视频观看| av在线观看视频网站免费|