• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupling methods of global climate models and regional climate models①

    2017-03-28 09:47:44WangYuzhu王玉柱JiangJinrongHeJuanxiong
    High Technology Letters 2017年1期

    Wang Yuzhu (王玉柱), Jiang Jinrong, He Juanxiong

    (*Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, P.R.China) (**Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, P.R.China) (***Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P.R.China)

    Coupling methods of global climate models and regional climate models①

    Wang Yuzhu (王玉柱)***, Jiang Jinrong②**, He Juanxiong***

    (*Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, P.R.China) (**Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, P.R.China) (***Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P.R.China)

    The future climate dynamical downscaling method is that output of general circulation models (GCMs) is employed to provide initial conditions, lateral boundary conditions, sea surface temperatures, and initial land surface conditions to regional climate models (RCMs). There are two methods of downscaling: offline coupling and online coupling. The two kinds of coupling methods are described in detail by coupling the Weather Research and Forecasting model (WRF) with the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model Version 4.0 (IAP AGCM4.0) in the study. And the extreme precipitation event over Beijing on July 21 2012 is simulated by using the two coupling methods. Results show that online coupling method is of great value in improving the model simulation. Furthermore, the data exchange frequency of online coupling has some effect on simulation result.

    coupling method, online coupling, climate model, performance evaluation, torrential rainfall

    0 Introduction

    General circulation models (GCMs) are used for forecasting weather, understanding climate and forecasting climate change. Atmospheric GCMs (AGCMs) numerically solve equations of physics (e.g., dynamics, thermodynamics, radiative transfer, etc.) and chemistry applied to the atmosphere and its constituent components, including greenhouse gases[1]. Due to huge computational cost[2,3], GCMs are usually used to simulate global climate at coarse spatial resolution. Now the resolution of GCMs which is below 100km is still too coarse to be directly used in regional climate impact studies. Therefore, global climate models with coarse resolution have no good simulation ability on a regional spatial scale[4,5], specifically for the topography, eddy processes and have some difficulty in parametrizing subgrid scale processes[6]. Regional climate models (RCMs) with high resolution can resolve more accurately regional variations in orography and land surface characteristics[5,7]. Downscaling of global model results has been used to address this issue by bridging the gap of scales between global and regional climate information[8-10]. That is, GCMs provide initial and lateral boundary conditions to RCMs[11,12]called offline downscaling or coupling. There are many previous studies on coupling regional climate models within global climate models[13,14].

    Because of too long time interval (always several hours) of the GCM outputs, simulations of all the offline couplings suffer from some systematic biases in a way. Some bias correction methods such as correcting GCM outputs by observations have been used for improving the simulation of regional climate downscaling. Meanwhile online coupling RCMs with GCMs has been used at the forefront of model development to decrease time interval of outputs used for lateral boundary conditions. The data exchange frequency of online coupling is much higher than that of offline coupling, so the data exchange frequency can be increased to improve the simulation results. The Institute of Atmospheric Physics (IAP) of Chinese Academy of Sciences (CAS) has designed and developed a new fully coupled climate system model (Chinese Academy of Sciences-Earth System Model, CAS-ESM)[15]. The CAS-ESM system achieves the online coupling of the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model version 4.0 (IAP AGCM4.0) and Weather Research and Forecasting model (WRF) by the coupler.

    Extreme weather and climate events have major impacts on the society, economy and environment. Torrential rainfall is one of the major weather disasters in China. Affected by the summer monsoon, the summer rainfall areas are mainly in southern China, Jianghuai district and northern China. The heavy rain period of northern China with highly intense precipitation mostly occurs in July and August of the summer. Northern China, where China’s capital Beijing is, has varied and complicated topography and dense population. Therefore, if torrential rainfall occurs, it would lead to huge economic loss and endanger people’s lives and property. The heaviest rainfall over 61 years hit Beijing on 21-22 July 2012[16]. The torrential rainfall caused landslides and floods, killed 79 people, and caused direct economic losses of nearly $2 billion[17].

    Many papers usually describe some coupling application of GCMs and RCMs, however, there are no researches on their comparison and implementation details of offline and online couplings. Therefore, the coupling methods and implementation details of GCM and RCM are studied. During assessing simulation ability of offline and online couplings, the study chooses the torrential rainfall event in Beijing as the experiment case. For the offline coupling, the IAP AGCM4.0 model is used to drive WRF. And the CAS-ESM is employed to evaluate the online coupling of IAP AGCM4.0 and WRF.

    The paper is organized as follows. Section 1 mainly introduces the global model IAP AGCM4.0 and regional model WRF. Section 2 describes two kinds of coupling methods and experiment setup. Section 3 analyses and discusses the simulation results of the four experiments. The last Section contains a summary.

    1 Models

    1.1 Atmospheric global circulation model

    An AGCM usually consists of the “dynamics” (dynamical core) and the “physics” (physical process). The dynamical core calculates atmospheric flow and solves the hydrodynamic equations of atmosphere. Then, the physical process parameterizations for subgrid phenomena such as long- and short-wave radiation, moist process, and gravity wave drag[18]. The total frame diagram of an AGCM is presented in Fig.1.

    In the study, the GCM model used is the IAP AGCM4.0 model which uses the Community Atmosphere Model version 3.1 physics package of the National Center for Atmospheric Research is developed by IAP[19]. For the IAP AGCM4.0, the T42 spectral dynamical core with a horizontal resolution of 1.4° latitude by 1.4° longitude and 26 levels in the vertical direction is employed. The initial conditions and lateral boundary conditions are from National Centers for Environmental Prediction (NCEP) re-analysis data.

    Fig.1 Total frame diagram of an AGCM

    1.2 Regional climate model

    The regional climate model is the Advanced Research WRF (ARW) Version 3.2. WRF is often used to forecast weather and simulate climate. The integration domain which covers all of Beijing has 401 grids along the East-West direction and 281 grids along the North-South direction, with the center at 40°N, 116°E. In the WRF, the grid spacing is 30km and vertical direction is 31 sigma levels with the model top at 50hPa. The time step of the WRF is set to 50s. The WRF physics use Rapid Radiation Transfer Model (RRTM) long-wave radiation scheme, Dudhia short-wave radiation scheme, Yonsei University planetary boundary layer scheme, Kain-Fritsch cumulus scheme, Lin microphysics scheme, Monin-Obukuhov surface layer scheme and Noah land surface scheme. The initial conditions and lateral boundary conditions are from NCEP re-analysis data or IAP AGCM4.0 output.

    1.3 CAS-ESM model

    The CAS-ESM is developed from the Community Earth System Model version 1.0. Composed of six separate models simultaneously simulating the Earth’s atmosphere, ocean, land, land-ice, sea-ice and atmospheric chemistry, plus one central coupler component, the CAS-ESM allows researchers to conduct fundamental research for the Earth’s climate states. In the CAS-ESM system, the atmosphere component model used is the IAP AGCM4.0, the ocean component model is the LASG/IAP Climate System Ocean Model (LICOM) version 2.0 developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) of the IAP, the land component model is the Common Land Model (CoLM) developed by Beijing Normal University, the sea-ice component model is the CICE version 4, the land-ice component model is the GLC and the atmospheric chemical component model is the Global Environmental Atmospheric Transport Model (GEATM) developed by IAP.

    Besides the six separate model components, WRF is also put into the CAS-ESM modeling system. Here, WRF is considered as a part of the IAP AGCM4.0 source code. Meanwhile, the four computation models (geogrid, metgrid, real, integration) of WRF are integrated together in order to make the IAP AGCM4.0 drive the WRF online. That means that the IAP AGCM4.0 provides the initial conditions, lateral boundary conditions, surface temperature, and soil moisture online to the WRF. The data exchange between the IAP AGCM4.0 and WRF is achieved through the CAS-ESM Coupler version 7 (CPL7). The model structure of the CAS-ESM system is presented in Fig.2.

    Fig.2 Model structure of the CAS-ESM

    In the study, data ocean model, the prescribed sea-ice model, active land model Community Land Model (CLM) and atmospheric model IAP AGCM4.0 in the CAS-ESM are employed to only evaluate the online coupling of the IAP AGCM4.0 and WRF.

    2 Coupling methods and experiment setup

    2.1 Offline coupling

    The process of offline coupling of GCMs and RCMs is quite simple. A GCM is executed at first, then the output of GCM is used to drive a RCM. However, during the whole offline coupling process, the researchers have to manually perform these operations in turn and implement some data conversion.

    Fig.3 shows the flow chart of the offline coupling of the IAP AGCM4.0 and WRF. The fnl2cam.ncl script is used to read data from the NCEP final analysis (NCEP-FNL) data with GRIB1 format and produce the initial data file for the IAP AGCM4.0. The CAM2WRF software package is used to convert the outputs of the IAP AGCM4.0 to the intermediary format file needed by the WRF Preprocessing System (WPS).

    Fig.3 Flow chart of the offline coupling of the IAP AGCM4.0 and WRF

    2.2 Online coupling

    The aim to online coupling is that a GCM can drive a RCM in real time for many times. Generally, online coupling is achieved by the coupler. Sometimes, the source code of a RCM is considered as a part of a GCM. During the whole online coupling process, the researchers don’t have to manually perform these operations. In online coupling, the time interval of data exchange between GCMs and RCMs could be a few minutes or a few seconds. And yet, the one in offline coupling is 3 hours or 6 hours. Therefore, online coupling can achieve higher data exchange frequency.

    Fig.4 describes the flow chart of time integration of the WRF in the CAS-ESM system, where the coupling time interval between the IAP AGCM4.0 and CPL7 is atm_cpl_dt, and the one between the WRF and CPL7 is wrf_cpl_dt. The wrf_cpl_dt can be set to the IAP AGCM4.0 time step or an integral multiple of the IAP AGCM4.0 and WRF time steps. When the CPL7 sends the data to the WRF at each time step of data exchange, the WRF updates its lateral boundary data set and other data information[20]. The fields that the WRF receives from the CPL7 are listed in Table 1.

    Table 1 Variables received by the WRF from the CPL7

    Fig.4 Flow chart of time integration of the WRF in the CAS-ESM

    2.3 Experiment schemes

    To simulate the extreme precipitation event over Beijing on 21 July 2012 (00:00 universal coordinated time (UTC) 21 July 2012 to 00:00 UTC 22 July 2012), the paper sets four numerical experiments.

    (1) The first experiment only uses the WRF to simulate the event. The 6-hour NCEP-FNL data (from 00:00 UTC 21 July 2012 to 00:00 UTC 22 July 2012) is employed to drive the WRF.

    (2) The second experiment is an offline coupling testing using the IAP AGCM4.0 and WRF. First, the 6-hour NCEP-FNL data at 00:00 UTC 21 July 2012 is employed to drive the IAP AGCM4.0. Then the output of the IAP AGCM4.0 is used to drive the WRF.

    (3) The third experiment is an online coupling testing using the CAS-ESM, where the IAP AGCM4.0 is also driven by the 6-hour NCEP-FNL data at 00:00 UTC 21 July 2012 and the output of the IAP AGCM4.0 is equally used to force the WRF. The time interval of the data exchange between the WRF and CPL7 is 1 hour. That is, the frequency of data exchange is 24 times per day.

    (4) The fourth experiment is also an online coupling testing with 1/3 hour time interval. It means that the frequency of data exchange is 72 times per day.

    The first and second experiments are offline coupling, and the third and fourth experiments are offline coupling.

    2.4 Data

    The observation data including the site precipitation data based on the MICAPS system are provided by the China Meteorological Administration.

    In the first and second experiments, the 6-hour NCEP-FNL data at 1°×1° resolution is used to provide initial conditions for the IAP AGCM4.0 and WRF model. The NCEP-FNL data which corrects GCM outputs by observations is one of the datasets used for real time simulations.

    In the third and fourth experiments, the initial conditions for the IAP AGCM4.0 are generated by interpolating the NCEP-FNL 1°×1° data to the T42 Gaussian grids by using the first-order area-weighted mapping. The CLM is spun up using the atmosphere data model in the CSA-ESM (DATM7) and the surface forcing of Qian et al[21]for 10 years up to the starting date and time of the experiment. The sea surface temperature and sea ice data are from the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation sea surface temperature V2 data set with weekly temporal resolution and 1°×1° spatial resolution.

    3 Results and discussion

    The validation and comparison of the four experiment results are based on the observations. The observations of the daily-accumulated rainfall from 00:00 UTC on 21 July 2012 to 00:00 UTC on 22 July 2012 are shown in Fig.5. The observations indicate that the 24h rainfall of the whole Beijing city is more than 100mm and the intensive precipitation area whose center is Beijing extends from southwest of Beijing to its northeast.

    Fig.5 Accumulated 24 hours observation precipitation

    The daily-accumulated rainfall of all the four simulations is smaller than the observations. However, the rainbands of the four simulations are different. As shown in Fig.6, the first experiment can reproduce the observed precipitation distribution tendency. Comparing with the observations the precipitation center is to the north. Fig.7 shows the daily-accumulated rainfall in the second experiment. There are two rainbands with accumulated rainfall of more than 100mm, but there is only a main rainband in the observations. Fig.8 and Fig.9 show the daily-accumulated rainfall in the third and fourth experiments. Both of the rainbands become one and the rainbands are to the south comparing with the first experiment although the precipitation center is still to the north comparing with the observations. The results show that the online coupling of the IAP AGCM4.0 and WRF can produce better simulation than the offline coupling.

    According to comparing Fig.8 with Fig.9, it is found that the simulation results of the two online couplings are similar, sometimes even better than driving the WRF with NCEP-FNL reanalysis data. However, the data exchange frequency of the online coupling has also some effect on the simulation result and the online

    Fig.6 Rainfall in the first experiment

    Fig.7 Rainfall in the second experiment

    Fig.8 Rainfall in the third experiment

    Fig.9 Rainfall in the fourth experiment

    coupling with higher data exchange frequency does not necessarily produce better result.

    4 Conclusions

    The study introduces offline and online coupling methods of GCMs and RCMs at first, then achieves the offline and online coupling of the IAP AGCM4.0 and WRF. According to employing the offline and online coupling to simulate the extreme precipitation event over Beijing on 21 July 2012, the study draws a conclusion that the online coupling simulates better than the offline coupling. In addition, the data exchange frequency of the online coupling has also some effect on the simulation result. In a word, it is quite meaningful to continue to study and utilize the online coupling of GCMs and RCMs for climate simulation in the future.

    [1] Mann M, Gaudet B. General circulation models. https://www.e-education.psu.edu/meteo469/node/140:The Pennsylvania State University, 2015

    [2] Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498

    [3] Montoya M, Griesel A, Levermann A, et al. The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions. Climate Dynamics, 2005, 25: 237-263

    [4] Giorgi F. Perspectives for regional earth system modeling. Global and Planetary Change, 1995, 10(1): 23-42

    [5] Giorgi F. Simulation of regional climate using a limited area model nested in a general circulation model. Journal of Climate, 1990, 3: 941-963

    [6] Duffy P B, Govindasamy B, Iorio J P, et al. High-resolution simulations of global climate, part 1: present climate. Climate Dynamics, 2003, 21: 371-390

    [7] Anthes R A, Kuo Y H, Low-Nam S, et al. Estimation of skill and uncertainty in regional numerical models. Quarterly Journal of the Royal Meteorological Society, 1989, 115: 763-806

    [8] Seth A, Rauscher S A, Camargo S J, et al. RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Climate Dynamics, 2007, 28: 461-480

    [9] Giorgi F, Hewitson B, Christensen J, et al. Regional Climate Information—Evaluation and Projections. Cambridge: Cambridge University Press, 2001. 583-638

    [10] Bukovsky M S, Karoly D J. A regional modeling study of climate change impacts on warm-season precipitation in the Central United States. Journal of Climate, 2011, 24: 1985-2002

    [11] Cocke S, LaRow T E. Seasonal predictions using a regional spectral model embedded within a coupled ocean-atmosphere model. Monthly Weather Review, 2000, 128: 689-708

    [12] Liang X Z, Pan J, Zhu J, et al. Regional climate model downscaling of the U.S. summer climate and future change. Journal of Geophysical Research: Atmospheres, 2006, 111 (D10)

    [13] Giorgi F, Brodeur C S, Bates G T. Regional climate change scenarios over the United States produced with a nested regional climate model: Spatial and seasonal characteristics. Journal of Climate, 1994, 7: 375-399

    [14] Dickinson R E, Errico R M, Giorgi F, et al. A regional climate model for the western United States. Climatic Change, 1989, 15: 383-422

    [15] Dong X, Su T H, Wang J, et al. Decadal Variation of the Aleutian Low-Icelandic Low Seesaw Simulated by a Climate System Model (CAS-ESM-C). Atmospheric and Oceanic Science Letters, 2014, 7 (2): 110-114

    [16] Liu J, Wang S Y. Analysis of human vulnerability to the extreme rainfall event on 21-22 July 2012 in Beijing, China. Natural Hazards and Earth System Sciences, 2013, 13(11): 2911-2926

    [17] Zhang D L, Lin Y, Zhao P, et al. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophysical Research Letters, 2013, 40(7): 1426-1431

    [18] Mirin A A, Sawyer W B. A scalable implementation of a finite-volume dynamical core in the community atmosphere model. International Journal of High Performance Computing Applications, 2005, 19: 203-212

    [19] Zhang H, Zhang M, Zeng Q. Sensitivity of Simulated Climate to two atmospheric models: interpretation of differences between dry Models and moist models. Monthly Weather Review, 2013, 14: 1558-1576

    [20] He J, Zhang M, Lin W, et al. The WRF nested within the CESM: Simulations of a midlatitude cyclone over the Southern Great Plains. Journal of Advances in Modeling Earth Systems, 2013, 5: 611-622

    [21] Qian T, Dai A, Trenberth K E, et al. Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. Journal of Hydrometeorology, 2006, 7(5): 953-975

    Wang Yuzhu, born in 1988. He received his Ph.D degree from University of Chinese Academy of Sciences in 2015. He also received his B.S. degree from Chongqing University in 2010. Now he is a postdoctor researcher at Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (CAS), Beijing, China. His research interests include parallel algorithm, high performance geo-computing, and development of earth system model.

    10.3772/j.issn.1006-6748.2017.01.013

    ①Supported by the National Natural Science Foundation of China (No. 61602477), China Postdoctoral Science Foundation (No. 2016M601158), and National Key Research and Development Program of China (No. 2016YFB0200804).

    ②To whom correspondence should be addressed. E-mail: jjr@sccas.cn Received on Dec. 23, 2015

    国产不卡一卡二| 超碰成人久久| 国产亚洲av高清不卡| 精品电影一区二区在线| 美女免费视频网站| 最近视频中文字幕2019在线8| 免费观看的影片在线观看| 美女高潮的动态| 精品国内亚洲2022精品成人| 亚洲精品一卡2卡三卡4卡5卡| 香蕉久久夜色| 此物有八面人人有两片| 久久久久久国产a免费观看| 禁无遮挡网站| 淫妇啪啪啪对白视频| 欧美绝顶高潮抽搐喷水| 日韩人妻高清精品专区| 悠悠久久av| 色噜噜av男人的天堂激情| 巨乳人妻的诱惑在线观看| 中文字幕熟女人妻在线| av片东京热男人的天堂| 国产伦一二天堂av在线观看| 成人av一区二区三区在线看| 亚洲精品国产精品久久久不卡| 国产亚洲av嫩草精品影院| av黄色大香蕉| 亚洲 欧美 日韩 在线 免费| 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 亚洲欧洲精品一区二区精品久久久| 欧美日韩瑟瑟在线播放| 国内揄拍国产精品人妻在线| 嫩草影院入口| 日本三级黄在线观看| 亚洲av五月六月丁香网| 国内揄拍国产精品人妻在线| 国产成人影院久久av| 99热这里只有精品一区 | 精品乱码久久久久久99久播| 欧美乱妇无乱码| 在线播放国产精品三级| 国产亚洲精品久久久久久毛片| 在线视频色国产色| 欧美zozozo另类| 性欧美人与动物交配| 亚洲午夜理论影院| 午夜福利18| 极品教师在线免费播放| 亚洲人成伊人成综合网2020| 国产伦在线观看视频一区| 久久久久亚洲av毛片大全| 欧美一区二区国产精品久久精品| 免费在线观看亚洲国产| 欧美日韩国产亚洲二区| 99re在线观看精品视频| 午夜福利在线观看吧| 国产精品久久电影中文字幕| 亚洲专区国产一区二区| 久久这里只有精品中国| 久久久久九九精品影院| 日韩大尺度精品在线看网址| 成人av一区二区三区在线看| 久久久国产精品麻豆| 精品欧美国产一区二区三| 国产又黄又爽又无遮挡在线| 999精品在线视频| 亚洲,欧美精品.| 18禁裸乳无遮挡免费网站照片| av黄色大香蕉| 日韩免费av在线播放| 亚洲熟妇中文字幕五十中出| 午夜精品在线福利| 一级毛片女人18水好多| 悠悠久久av| 19禁男女啪啪无遮挡网站| 久久久久国内视频| 高潮久久久久久久久久久不卡| 夜夜看夜夜爽夜夜摸| 久久中文看片网| a在线观看视频网站| 99久久成人亚洲精品观看| 亚洲色图av天堂| 日本 av在线| 一个人观看的视频www高清免费观看 | 成年女人毛片免费观看观看9| 成人永久免费在线观看视频| 少妇丰满av| 最近最新中文字幕大全免费视频| 亚洲第一电影网av| 免费av不卡在线播放| 99久久精品热视频| 久9热在线精品视频| 日日摸夜夜添夜夜添小说| 日韩免费av在线播放| 久久久精品欧美日韩精品| 一本一本综合久久| 久久热在线av| 岛国在线观看网站| 亚洲午夜精品一区,二区,三区| 亚洲精品一卡2卡三卡4卡5卡| av在线蜜桃| 99re在线观看精品视频| 亚洲熟妇熟女久久| 99国产精品一区二区蜜桃av| 成人性生交大片免费视频hd| 亚洲avbb在线观看| 国产1区2区3区精品| 亚洲专区国产一区二区| 日韩欧美精品v在线| 久久香蕉国产精品| 精品久久久久久久末码| 欧美3d第一页| 天堂网av新在线| 999久久久精品免费观看国产| 免费高清视频大片| 麻豆成人午夜福利视频| 亚洲无线观看免费| 黄色女人牲交| 欧美日韩一级在线毛片| 亚洲自偷自拍图片 自拍| 午夜a级毛片| 18美女黄网站色大片免费观看| 国产aⅴ精品一区二区三区波| 亚洲 欧美 日韩 在线 免费| 亚洲九九香蕉| 亚洲天堂国产精品一区在线| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 亚洲人成网站高清观看| 91字幕亚洲| 听说在线观看完整版免费高清| 国产精品亚洲av一区麻豆| 精品福利观看| 国产成人福利小说| 狂野欧美激情性xxxx| 激情在线观看视频在线高清| 热99在线观看视频| 毛片女人毛片| 国产成+人综合+亚洲专区| 国产一区二区在线观看日韩 | 亚洲成人久久爱视频| 91在线观看av| avwww免费| 日韩高清综合在线| 一本综合久久免费| 国产91精品成人一区二区三区| 日韩高清综合在线| 一本综合久久免费| 国产私拍福利视频在线观看| 很黄的视频免费| 不卡av一区二区三区| 草草在线视频免费看| 18禁裸乳无遮挡免费网站照片| 亚洲 欧美一区二区三区| 日韩精品青青久久久久久| 叶爱在线成人免费视频播放| 国产真实乱freesex| 亚洲精品乱码久久久v下载方式 | 天堂影院成人在线观看| 国产精品久久久久久久电影 | av女优亚洲男人天堂 | 又大又爽又粗| 脱女人内裤的视频| 国产精品综合久久久久久久免费| а√天堂www在线а√下载| 亚洲第一电影网av| 久久人人精品亚洲av| 99久久无色码亚洲精品果冻| 国产探花在线观看一区二区| 91av网一区二区| 黄片大片在线免费观看| 91九色精品人成在线观看| 少妇人妻一区二区三区视频| 久久午夜亚洲精品久久| 日本熟妇午夜| 十八禁网站免费在线| 精品无人区乱码1区二区| 少妇熟女aⅴ在线视频| 美女黄网站色视频| 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| 久久久久久久精品吃奶| 色综合婷婷激情| 午夜福利欧美成人| bbb黄色大片| 国内精品一区二区在线观看| 女生性感内裤真人,穿戴方法视频| 欧美黄色淫秽网站| 一进一出抽搐gif免费好疼| 精品国产乱码久久久久久男人| 欧美中文综合在线视频| 午夜福利在线在线| 男插女下体视频免费在线播放| 精品久久久久久久人妻蜜臀av| 在线视频色国产色| 熟女人妻精品中文字幕| 麻豆成人av在线观看| 国产午夜精品久久久久久| 日本黄色片子视频| 老熟妇仑乱视频hdxx| 黄频高清免费视频| 一级毛片高清免费大全| 亚洲av免费在线观看| 在线免费观看不下载黄p国产 | 青草久久国产| 成年版毛片免费区| 国产精品女同一区二区软件 | a级毛片a级免费在线| 亚洲黑人精品在线| 日韩欧美在线乱码| 美女黄网站色视频| 99热这里只有精品一区 | 最近最新免费中文字幕在线| 亚洲av中文字字幕乱码综合| 香蕉av资源在线| 国产成人一区二区三区免费视频网站| 精品国产亚洲在线| 18禁美女被吸乳视频| 国产 一区 欧美 日韩| 国产视频一区二区在线看| a级毛片a级免费在线| 黄色丝袜av网址大全| 亚洲专区中文字幕在线| 高清毛片免费观看视频网站| www日本在线高清视频| 国产精品一区二区三区四区久久| 国产精品久久电影中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 国产真实乱freesex| 亚洲色图av天堂| 视频区欧美日本亚洲| www.熟女人妻精品国产| 欧美av亚洲av综合av国产av| 非洲黑人性xxxx精品又粗又长| 国产黄片美女视频| 久久亚洲精品不卡| 69av精品久久久久久| 91麻豆av在线| 欧美最黄视频在线播放免费| 午夜福利高清视频| 亚洲国产欧洲综合997久久,| 黄片大片在线免费观看| 久久久精品大字幕| 国产极品精品免费视频能看的| 国产成人福利小说| 亚洲欧美激情综合另类| 9191精品国产免费久久| av中文乱码字幕在线| 成在线人永久免费视频| 老司机午夜福利在线观看视频| 又黄又粗又硬又大视频| 一a级毛片在线观看| 成人无遮挡网站| 国产综合懂色| av在线蜜桃| 综合色av麻豆| 最新在线观看一区二区三区| 欧美精品啪啪一区二区三区| 国产又色又爽无遮挡免费看| 啪啪无遮挡十八禁网站| 国产成人av激情在线播放| 国产精品98久久久久久宅男小说| 亚洲av电影在线进入| 国产av一区在线观看免费| 日本五十路高清| 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| 午夜福利在线观看免费完整高清在 | 一二三四在线观看免费中文在| 久久久久久大精品| 免费在线观看日本一区| 国产一区二区在线观看日韩 | 亚洲男人的天堂狠狠| 久久精品人妻少妇| 欧美日韩一级在线毛片| 我的老师免费观看完整版| 亚洲七黄色美女视频| 少妇丰满av| 在线看三级毛片| 1000部很黄的大片| 成人无遮挡网站| 国产精品乱码一区二三区的特点| 淫秽高清视频在线观看| 麻豆一二三区av精品| 免费av毛片视频| 又爽又黄无遮挡网站| 亚洲 国产 在线| 久久九九热精品免费| 在线国产一区二区在线| 亚洲精品美女久久av网站| 欧洲精品卡2卡3卡4卡5卡区| 国产真人三级小视频在线观看| 在线免费观看不下载黄p国产 | av片东京热男人的天堂| 久久久久亚洲av毛片大全| 真人一进一出gif抽搐免费| 精品福利观看| 母亲3免费完整高清在线观看| 一级毛片高清免费大全| 国产精品九九99| 午夜久久久久精精品| 国产不卡一卡二| 国产69精品久久久久777片 | 美女扒开内裤让男人捅视频| 中文字幕人成人乱码亚洲影| 少妇的丰满在线观看| 999久久久国产精品视频| 毛片女人毛片| 精品国产超薄肉色丝袜足j| 亚洲五月天丁香| 在线十欧美十亚洲十日本专区| 欧美一区二区国产精品久久精品| 脱女人内裤的视频| 九色成人免费人妻av| xxx96com| 国产精品一及| 级片在线观看| 色吧在线观看| 欧美大码av| 99久久精品热视频| 在线播放国产精品三级| 在线永久观看黄色视频| 美女扒开内裤让男人捅视频| 午夜a级毛片| 国产v大片淫在线免费观看| 最好的美女福利视频网| 亚洲欧美激情综合另类| 免费看a级黄色片| 成人性生交大片免费视频hd| 日韩免费av在线播放| 亚洲欧美日韩高清专用| 不卡一级毛片| 精品一区二区三区视频在线 | 精品乱码久久久久久99久播| 真实男女啪啪啪动态图| 男女床上黄色一级片免费看| 日本一本二区三区精品| 精品乱码久久久久久99久播| 亚洲在线自拍视频| 日本精品一区二区三区蜜桃| 中文字幕久久专区| 久久香蕉国产精品| 精品久久久久久久人妻蜜臀av| 天堂√8在线中文| 国产成人av激情在线播放| 国产精品免费一区二区三区在线| 日韩欧美国产在线观看| 亚洲av美国av| 亚洲av成人精品一区久久| 色吧在线观看| 欧美一级a爱片免费观看看| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 一级a爱片免费观看的视频| 欧美色欧美亚洲另类二区| 国产精品影院久久| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 亚洲avbb在线观看| 色综合亚洲欧美另类图片| 天天添夜夜摸| 久久精品国产综合久久久| 亚洲国产欧美人成| 人妻丰满熟妇av一区二区三区| 男女做爰动态图高潮gif福利片| 熟女少妇亚洲综合色aaa.| 国产一区二区在线观看日韩 | 两个人看的免费小视频| 岛国视频午夜一区免费看| 久久久久久久久免费视频了| 日本精品一区二区三区蜜桃| 成人欧美大片| 琪琪午夜伦伦电影理论片6080| 国产激情偷乱视频一区二区| 久久久国产精品麻豆| 麻豆一二三区av精品| 成人特级av手机在线观看| 少妇的逼水好多| 久久久久久国产a免费观看| 天堂av国产一区二区熟女人妻| 天堂√8在线中文| 高潮久久久久久久久久久不卡| 99久久精品热视频| 国产精品一区二区免费欧美| 19禁男女啪啪无遮挡网站| 日日摸夜夜添夜夜添小说| 久久久久久久午夜电影| 欧美高清成人免费视频www| 国产一区二区三区在线臀色熟女| 又黄又粗又硬又大视频| or卡值多少钱| 天堂网av新在线| 国产主播在线观看一区二区| 欧美xxxx黑人xx丫x性爽| 国产1区2区3区精品| 国产不卡一卡二| 成人性生交大片免费视频hd| www日本在线高清视频| 国产午夜精品久久久久久| 日本在线视频免费播放| 人人妻,人人澡人人爽秒播| 国模一区二区三区四区视频 | 精品久久久久久久毛片微露脸| 男女那种视频在线观看| 五月伊人婷婷丁香| 三级毛片av免费| 小说图片视频综合网站| 国产黄色小视频在线观看| 国内精品久久久久精免费| 国产主播在线观看一区二区| 夜夜夜夜夜久久久久| 日本成人三级电影网站| 男人和女人高潮做爰伦理| 一进一出抽搐gif免费好疼| 狂野欧美白嫩少妇大欣赏| av中文乱码字幕在线| 国产成人欧美在线观看| 在线观看一区二区三区| 级片在线观看| 免费高清视频大片| 久久精品国产综合久久久| 国产黄色小视频在线观看| 国产毛片a区久久久久| 午夜福利在线观看吧| 久久精品91蜜桃| 男插女下体视频免费在线播放| 我的老师免费观看完整版| 热99re8久久精品国产| 亚洲乱码一区二区免费版| 久久精品国产99精品国产亚洲性色| 91av网一区二区| 亚洲精品乱码久久久v下载方式 | 好男人在线观看高清免费视频| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区精品| 97碰自拍视频| 精品日产1卡2卡| 他把我摸到了高潮在线观看| 亚洲在线观看片| 床上黄色一级片| 国产亚洲精品av在线| 91av网站免费观看| 三级男女做爰猛烈吃奶摸视频| 欧美成狂野欧美在线观看| 免费在线观看影片大全网站| x7x7x7水蜜桃| 啦啦啦免费观看视频1| 国产激情久久老熟女| 97超视频在线观看视频| 在线国产一区二区在线| 欧美激情在线99| 熟女电影av网| 三级毛片av免费| 97人妻精品一区二区三区麻豆| 丰满人妻熟妇乱又伦精品不卡| 天堂动漫精品| 人人妻人人看人人澡| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女| 在线观看日韩欧美| 成人三级黄色视频| 色尼玛亚洲综合影院| 脱女人内裤的视频| 久久久久久大精品| 国产熟女xx| 免费搜索国产男女视频| 色哟哟哟哟哟哟| 熟女人妻精品中文字幕| 女人高潮潮喷娇喘18禁视频| aaaaa片日本免费| 人人妻,人人澡人人爽秒播| 在线免费观看不下载黄p国产 | 婷婷丁香在线五月| 免费电影在线观看免费观看| 午夜日韩欧美国产| 99国产精品一区二区蜜桃av| 一区二区三区激情视频| 可以在线观看的亚洲视频| 亚洲自拍偷在线| 高清在线国产一区| 九色成人免费人妻av| 国产精品亚洲美女久久久| 亚洲精华国产精华精| 色吧在线观看| 亚洲午夜理论影院| 嫩草影院入口| 1000部很黄的大片| 亚洲第一欧美日韩一区二区三区| 色综合亚洲欧美另类图片| 一级毛片精品| 国产成人精品无人区| av天堂中文字幕网| 给我免费播放毛片高清在线观看| 嫩草影视91久久| 校园春色视频在线观看| 深夜精品福利| 成人永久免费在线观看视频| 色精品久久人妻99蜜桃| 伊人久久大香线蕉亚洲五| 精品久久蜜臀av无| 国产精品一及| 久久久久久久久中文| 观看美女的网站| 久久香蕉精品热| 国产真实乱freesex| 美女大奶头视频| av黄色大香蕉| 嫩草影院精品99| 黄色成人免费大全| 可以在线观看的亚洲视频| 美女午夜性视频免费| 国产人伦9x9x在线观看| 亚洲av电影在线进入| 婷婷亚洲欧美| 亚洲欧美日韩高清专用| 亚洲欧美日韩无卡精品| 精品久久久久久久久久免费视频| 免费观看人在逋| 成人特级黄色片久久久久久久| 在线看三级毛片| 国产欧美日韩一区二区三| 亚洲 欧美一区二区三区| 欧美日韩乱码在线| 中文亚洲av片在线观看爽| 99久久国产精品久久久| 美女午夜性视频免费| 怎么达到女性高潮| 亚洲欧美一区二区三区黑人| 成年女人看的毛片在线观看| 女人被狂操c到高潮| 欧美黄色片欧美黄色片| 韩国av一区二区三区四区| 91久久精品国产一区二区成人 | 99久久精品一区二区三区| 午夜亚洲福利在线播放| 国产一区二区三区视频了| 亚洲一区高清亚洲精品| 一进一出好大好爽视频| 在线观看舔阴道视频| 日韩高清综合在线| 午夜影院日韩av| 久久伊人香网站| 成年女人永久免费观看视频| 欧美激情久久久久久爽电影| 最近在线观看免费完整版| 99re在线观看精品视频| 国产精品野战在线观看| 国产精品 国内视频| 国产爱豆传媒在线观看| 99久久精品国产亚洲精品| 国产精品久久久人人做人人爽| 看片在线看免费视频| 亚洲欧美日韩卡通动漫| 国内少妇人妻偷人精品xxx网站 | 国产一区二区激情短视频| 欧美日韩瑟瑟在线播放| 操出白浆在线播放| 在线永久观看黄色视频| 好看av亚洲va欧美ⅴa在| 性色avwww在线观看| 亚洲乱码一区二区免费版| 91老司机精品| 18禁美女被吸乳视频| 成人av一区二区三区在线看| 午夜福利成人在线免费观看| 变态另类丝袜制服| 婷婷精品国产亚洲av| 老司机午夜十八禁免费视频| 日韩欧美三级三区| 免费看光身美女| 1024手机看黄色片| 日本 av在线| 国产亚洲精品综合一区在线观看| 麻豆av在线久日| 午夜影院日韩av| 怎么达到女性高潮| 男女视频在线观看网站免费| 亚洲 国产 在线| 中文字幕最新亚洲高清| 国产精品九九99| 欧美高清成人免费视频www| 51午夜福利影视在线观看| 欧美日韩瑟瑟在线播放| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 国产精品爽爽va在线观看网站| 搡老熟女国产l中国老女人| 叶爱在线成人免费视频播放| 欧美乱色亚洲激情| 国产精品 国内视频| 日本黄大片高清| 无人区码免费观看不卡| 丁香欧美五月| 最近最新中文字幕大全电影3| 亚洲精品美女久久av网站| 好看av亚洲va欧美ⅴa在| 色播亚洲综合网| 动漫黄色视频在线观看| 午夜激情欧美在线| 亚洲国产看品久久| 中文在线观看免费www的网站| 亚洲精品美女久久av网站| 搡老熟女国产l中国老女人| 夜夜爽天天搞| 成年女人看的毛片在线观看| 老司机午夜十八禁免费视频| 午夜a级毛片| 日韩大尺度精品在线看网址| av在线天堂中文字幕| 国产精品一区二区三区四区免费观看 | 国产精品综合久久久久久久免费| 黄色丝袜av网址大全| 久久中文字幕一级| 老熟妇仑乱视频hdxx|