• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupling methods of global climate models and regional climate models①

    2017-03-28 09:47:44WangYuzhu王玉柱JiangJinrongHeJuanxiong
    High Technology Letters 2017年1期

    Wang Yuzhu (王玉柱), Jiang Jinrong, He Juanxiong

    (*Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, P.R.China) (**Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, P.R.China) (***Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P.R.China)

    Coupling methods of global climate models and regional climate models①

    Wang Yuzhu (王玉柱)***, Jiang Jinrong②**, He Juanxiong***

    (*Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, P.R.China) (**Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, P.R.China) (***Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P.R.China)

    The future climate dynamical downscaling method is that output of general circulation models (GCMs) is employed to provide initial conditions, lateral boundary conditions, sea surface temperatures, and initial land surface conditions to regional climate models (RCMs). There are two methods of downscaling: offline coupling and online coupling. The two kinds of coupling methods are described in detail by coupling the Weather Research and Forecasting model (WRF) with the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model Version 4.0 (IAP AGCM4.0) in the study. And the extreme precipitation event over Beijing on July 21 2012 is simulated by using the two coupling methods. Results show that online coupling method is of great value in improving the model simulation. Furthermore, the data exchange frequency of online coupling has some effect on simulation result.

    coupling method, online coupling, climate model, performance evaluation, torrential rainfall

    0 Introduction

    General circulation models (GCMs) are used for forecasting weather, understanding climate and forecasting climate change. Atmospheric GCMs (AGCMs) numerically solve equations of physics (e.g., dynamics, thermodynamics, radiative transfer, etc.) and chemistry applied to the atmosphere and its constituent components, including greenhouse gases[1]. Due to huge computational cost[2,3], GCMs are usually used to simulate global climate at coarse spatial resolution. Now the resolution of GCMs which is below 100km is still too coarse to be directly used in regional climate impact studies. Therefore, global climate models with coarse resolution have no good simulation ability on a regional spatial scale[4,5], specifically for the topography, eddy processes and have some difficulty in parametrizing subgrid scale processes[6]. Regional climate models (RCMs) with high resolution can resolve more accurately regional variations in orography and land surface characteristics[5,7]. Downscaling of global model results has been used to address this issue by bridging the gap of scales between global and regional climate information[8-10]. That is, GCMs provide initial and lateral boundary conditions to RCMs[11,12]called offline downscaling or coupling. There are many previous studies on coupling regional climate models within global climate models[13,14].

    Because of too long time interval (always several hours) of the GCM outputs, simulations of all the offline couplings suffer from some systematic biases in a way. Some bias correction methods such as correcting GCM outputs by observations have been used for improving the simulation of regional climate downscaling. Meanwhile online coupling RCMs with GCMs has been used at the forefront of model development to decrease time interval of outputs used for lateral boundary conditions. The data exchange frequency of online coupling is much higher than that of offline coupling, so the data exchange frequency can be increased to improve the simulation results. The Institute of Atmospheric Physics (IAP) of Chinese Academy of Sciences (CAS) has designed and developed a new fully coupled climate system model (Chinese Academy of Sciences-Earth System Model, CAS-ESM)[15]. The CAS-ESM system achieves the online coupling of the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model version 4.0 (IAP AGCM4.0) and Weather Research and Forecasting model (WRF) by the coupler.

    Extreme weather and climate events have major impacts on the society, economy and environment. Torrential rainfall is one of the major weather disasters in China. Affected by the summer monsoon, the summer rainfall areas are mainly in southern China, Jianghuai district and northern China. The heavy rain period of northern China with highly intense precipitation mostly occurs in July and August of the summer. Northern China, where China’s capital Beijing is, has varied and complicated topography and dense population. Therefore, if torrential rainfall occurs, it would lead to huge economic loss and endanger people’s lives and property. The heaviest rainfall over 61 years hit Beijing on 21-22 July 2012[16]. The torrential rainfall caused landslides and floods, killed 79 people, and caused direct economic losses of nearly $2 billion[17].

    Many papers usually describe some coupling application of GCMs and RCMs, however, there are no researches on their comparison and implementation details of offline and online couplings. Therefore, the coupling methods and implementation details of GCM and RCM are studied. During assessing simulation ability of offline and online couplings, the study chooses the torrential rainfall event in Beijing as the experiment case. For the offline coupling, the IAP AGCM4.0 model is used to drive WRF. And the CAS-ESM is employed to evaluate the online coupling of IAP AGCM4.0 and WRF.

    The paper is organized as follows. Section 1 mainly introduces the global model IAP AGCM4.0 and regional model WRF. Section 2 describes two kinds of coupling methods and experiment setup. Section 3 analyses and discusses the simulation results of the four experiments. The last Section contains a summary.

    1 Models

    1.1 Atmospheric global circulation model

    An AGCM usually consists of the “dynamics” (dynamical core) and the “physics” (physical process). The dynamical core calculates atmospheric flow and solves the hydrodynamic equations of atmosphere. Then, the physical process parameterizations for subgrid phenomena such as long- and short-wave radiation, moist process, and gravity wave drag[18]. The total frame diagram of an AGCM is presented in Fig.1.

    In the study, the GCM model used is the IAP AGCM4.0 model which uses the Community Atmosphere Model version 3.1 physics package of the National Center for Atmospheric Research is developed by IAP[19]. For the IAP AGCM4.0, the T42 spectral dynamical core with a horizontal resolution of 1.4° latitude by 1.4° longitude and 26 levels in the vertical direction is employed. The initial conditions and lateral boundary conditions are from National Centers for Environmental Prediction (NCEP) re-analysis data.

    Fig.1 Total frame diagram of an AGCM

    1.2 Regional climate model

    The regional climate model is the Advanced Research WRF (ARW) Version 3.2. WRF is often used to forecast weather and simulate climate. The integration domain which covers all of Beijing has 401 grids along the East-West direction and 281 grids along the North-South direction, with the center at 40°N, 116°E. In the WRF, the grid spacing is 30km and vertical direction is 31 sigma levels with the model top at 50hPa. The time step of the WRF is set to 50s. The WRF physics use Rapid Radiation Transfer Model (RRTM) long-wave radiation scheme, Dudhia short-wave radiation scheme, Yonsei University planetary boundary layer scheme, Kain-Fritsch cumulus scheme, Lin microphysics scheme, Monin-Obukuhov surface layer scheme and Noah land surface scheme. The initial conditions and lateral boundary conditions are from NCEP re-analysis data or IAP AGCM4.0 output.

    1.3 CAS-ESM model

    The CAS-ESM is developed from the Community Earth System Model version 1.0. Composed of six separate models simultaneously simulating the Earth’s atmosphere, ocean, land, land-ice, sea-ice and atmospheric chemistry, plus one central coupler component, the CAS-ESM allows researchers to conduct fundamental research for the Earth’s climate states. In the CAS-ESM system, the atmosphere component model used is the IAP AGCM4.0, the ocean component model is the LASG/IAP Climate System Ocean Model (LICOM) version 2.0 developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) of the IAP, the land component model is the Common Land Model (CoLM) developed by Beijing Normal University, the sea-ice component model is the CICE version 4, the land-ice component model is the GLC and the atmospheric chemical component model is the Global Environmental Atmospheric Transport Model (GEATM) developed by IAP.

    Besides the six separate model components, WRF is also put into the CAS-ESM modeling system. Here, WRF is considered as a part of the IAP AGCM4.0 source code. Meanwhile, the four computation models (geogrid, metgrid, real, integration) of WRF are integrated together in order to make the IAP AGCM4.0 drive the WRF online. That means that the IAP AGCM4.0 provides the initial conditions, lateral boundary conditions, surface temperature, and soil moisture online to the WRF. The data exchange between the IAP AGCM4.0 and WRF is achieved through the CAS-ESM Coupler version 7 (CPL7). The model structure of the CAS-ESM system is presented in Fig.2.

    Fig.2 Model structure of the CAS-ESM

    In the study, data ocean model, the prescribed sea-ice model, active land model Community Land Model (CLM) and atmospheric model IAP AGCM4.0 in the CAS-ESM are employed to only evaluate the online coupling of the IAP AGCM4.0 and WRF.

    2 Coupling methods and experiment setup

    2.1 Offline coupling

    The process of offline coupling of GCMs and RCMs is quite simple. A GCM is executed at first, then the output of GCM is used to drive a RCM. However, during the whole offline coupling process, the researchers have to manually perform these operations in turn and implement some data conversion.

    Fig.3 shows the flow chart of the offline coupling of the IAP AGCM4.0 and WRF. The fnl2cam.ncl script is used to read data from the NCEP final analysis (NCEP-FNL) data with GRIB1 format and produce the initial data file for the IAP AGCM4.0. The CAM2WRF software package is used to convert the outputs of the IAP AGCM4.0 to the intermediary format file needed by the WRF Preprocessing System (WPS).

    Fig.3 Flow chart of the offline coupling of the IAP AGCM4.0 and WRF

    2.2 Online coupling

    The aim to online coupling is that a GCM can drive a RCM in real time for many times. Generally, online coupling is achieved by the coupler. Sometimes, the source code of a RCM is considered as a part of a GCM. During the whole online coupling process, the researchers don’t have to manually perform these operations. In online coupling, the time interval of data exchange between GCMs and RCMs could be a few minutes or a few seconds. And yet, the one in offline coupling is 3 hours or 6 hours. Therefore, online coupling can achieve higher data exchange frequency.

    Fig.4 describes the flow chart of time integration of the WRF in the CAS-ESM system, where the coupling time interval between the IAP AGCM4.0 and CPL7 is atm_cpl_dt, and the one between the WRF and CPL7 is wrf_cpl_dt. The wrf_cpl_dt can be set to the IAP AGCM4.0 time step or an integral multiple of the IAP AGCM4.0 and WRF time steps. When the CPL7 sends the data to the WRF at each time step of data exchange, the WRF updates its lateral boundary data set and other data information[20]. The fields that the WRF receives from the CPL7 are listed in Table 1.

    Table 1 Variables received by the WRF from the CPL7

    Fig.4 Flow chart of time integration of the WRF in the CAS-ESM

    2.3 Experiment schemes

    To simulate the extreme precipitation event over Beijing on 21 July 2012 (00:00 universal coordinated time (UTC) 21 July 2012 to 00:00 UTC 22 July 2012), the paper sets four numerical experiments.

    (1) The first experiment only uses the WRF to simulate the event. The 6-hour NCEP-FNL data (from 00:00 UTC 21 July 2012 to 00:00 UTC 22 July 2012) is employed to drive the WRF.

    (2) The second experiment is an offline coupling testing using the IAP AGCM4.0 and WRF. First, the 6-hour NCEP-FNL data at 00:00 UTC 21 July 2012 is employed to drive the IAP AGCM4.0. Then the output of the IAP AGCM4.0 is used to drive the WRF.

    (3) The third experiment is an online coupling testing using the CAS-ESM, where the IAP AGCM4.0 is also driven by the 6-hour NCEP-FNL data at 00:00 UTC 21 July 2012 and the output of the IAP AGCM4.0 is equally used to force the WRF. The time interval of the data exchange between the WRF and CPL7 is 1 hour. That is, the frequency of data exchange is 24 times per day.

    (4) The fourth experiment is also an online coupling testing with 1/3 hour time interval. It means that the frequency of data exchange is 72 times per day.

    The first and second experiments are offline coupling, and the third and fourth experiments are offline coupling.

    2.4 Data

    The observation data including the site precipitation data based on the MICAPS system are provided by the China Meteorological Administration.

    In the first and second experiments, the 6-hour NCEP-FNL data at 1°×1° resolution is used to provide initial conditions for the IAP AGCM4.0 and WRF model. The NCEP-FNL data which corrects GCM outputs by observations is one of the datasets used for real time simulations.

    In the third and fourth experiments, the initial conditions for the IAP AGCM4.0 are generated by interpolating the NCEP-FNL 1°×1° data to the T42 Gaussian grids by using the first-order area-weighted mapping. The CLM is spun up using the atmosphere data model in the CSA-ESM (DATM7) and the surface forcing of Qian et al[21]for 10 years up to the starting date and time of the experiment. The sea surface temperature and sea ice data are from the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation sea surface temperature V2 data set with weekly temporal resolution and 1°×1° spatial resolution.

    3 Results and discussion

    The validation and comparison of the four experiment results are based on the observations. The observations of the daily-accumulated rainfall from 00:00 UTC on 21 July 2012 to 00:00 UTC on 22 July 2012 are shown in Fig.5. The observations indicate that the 24h rainfall of the whole Beijing city is more than 100mm and the intensive precipitation area whose center is Beijing extends from southwest of Beijing to its northeast.

    Fig.5 Accumulated 24 hours observation precipitation

    The daily-accumulated rainfall of all the four simulations is smaller than the observations. However, the rainbands of the four simulations are different. As shown in Fig.6, the first experiment can reproduce the observed precipitation distribution tendency. Comparing with the observations the precipitation center is to the north. Fig.7 shows the daily-accumulated rainfall in the second experiment. There are two rainbands with accumulated rainfall of more than 100mm, but there is only a main rainband in the observations. Fig.8 and Fig.9 show the daily-accumulated rainfall in the third and fourth experiments. Both of the rainbands become one and the rainbands are to the south comparing with the first experiment although the precipitation center is still to the north comparing with the observations. The results show that the online coupling of the IAP AGCM4.0 and WRF can produce better simulation than the offline coupling.

    According to comparing Fig.8 with Fig.9, it is found that the simulation results of the two online couplings are similar, sometimes even better than driving the WRF with NCEP-FNL reanalysis data. However, the data exchange frequency of the online coupling has also some effect on the simulation result and the online

    Fig.6 Rainfall in the first experiment

    Fig.7 Rainfall in the second experiment

    Fig.8 Rainfall in the third experiment

    Fig.9 Rainfall in the fourth experiment

    coupling with higher data exchange frequency does not necessarily produce better result.

    4 Conclusions

    The study introduces offline and online coupling methods of GCMs and RCMs at first, then achieves the offline and online coupling of the IAP AGCM4.0 and WRF. According to employing the offline and online coupling to simulate the extreme precipitation event over Beijing on 21 July 2012, the study draws a conclusion that the online coupling simulates better than the offline coupling. In addition, the data exchange frequency of the online coupling has also some effect on the simulation result. In a word, it is quite meaningful to continue to study and utilize the online coupling of GCMs and RCMs for climate simulation in the future.

    [1] Mann M, Gaudet B. General circulation models. https://www.e-education.psu.edu/meteo469/node/140:The Pennsylvania State University, 2015

    [2] Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498

    [3] Montoya M, Griesel A, Levermann A, et al. The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions. Climate Dynamics, 2005, 25: 237-263

    [4] Giorgi F. Perspectives for regional earth system modeling. Global and Planetary Change, 1995, 10(1): 23-42

    [5] Giorgi F. Simulation of regional climate using a limited area model nested in a general circulation model. Journal of Climate, 1990, 3: 941-963

    [6] Duffy P B, Govindasamy B, Iorio J P, et al. High-resolution simulations of global climate, part 1: present climate. Climate Dynamics, 2003, 21: 371-390

    [7] Anthes R A, Kuo Y H, Low-Nam S, et al. Estimation of skill and uncertainty in regional numerical models. Quarterly Journal of the Royal Meteorological Society, 1989, 115: 763-806

    [8] Seth A, Rauscher S A, Camargo S J, et al. RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Climate Dynamics, 2007, 28: 461-480

    [9] Giorgi F, Hewitson B, Christensen J, et al. Regional Climate Information—Evaluation and Projections. Cambridge: Cambridge University Press, 2001. 583-638

    [10] Bukovsky M S, Karoly D J. A regional modeling study of climate change impacts on warm-season precipitation in the Central United States. Journal of Climate, 2011, 24: 1985-2002

    [11] Cocke S, LaRow T E. Seasonal predictions using a regional spectral model embedded within a coupled ocean-atmosphere model. Monthly Weather Review, 2000, 128: 689-708

    [12] Liang X Z, Pan J, Zhu J, et al. Regional climate model downscaling of the U.S. summer climate and future change. Journal of Geophysical Research: Atmospheres, 2006, 111 (D10)

    [13] Giorgi F, Brodeur C S, Bates G T. Regional climate change scenarios over the United States produced with a nested regional climate model: Spatial and seasonal characteristics. Journal of Climate, 1994, 7: 375-399

    [14] Dickinson R E, Errico R M, Giorgi F, et al. A regional climate model for the western United States. Climatic Change, 1989, 15: 383-422

    [15] Dong X, Su T H, Wang J, et al. Decadal Variation of the Aleutian Low-Icelandic Low Seesaw Simulated by a Climate System Model (CAS-ESM-C). Atmospheric and Oceanic Science Letters, 2014, 7 (2): 110-114

    [16] Liu J, Wang S Y. Analysis of human vulnerability to the extreme rainfall event on 21-22 July 2012 in Beijing, China. Natural Hazards and Earth System Sciences, 2013, 13(11): 2911-2926

    [17] Zhang D L, Lin Y, Zhao P, et al. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophysical Research Letters, 2013, 40(7): 1426-1431

    [18] Mirin A A, Sawyer W B. A scalable implementation of a finite-volume dynamical core in the community atmosphere model. International Journal of High Performance Computing Applications, 2005, 19: 203-212

    [19] Zhang H, Zhang M, Zeng Q. Sensitivity of Simulated Climate to two atmospheric models: interpretation of differences between dry Models and moist models. Monthly Weather Review, 2013, 14: 1558-1576

    [20] He J, Zhang M, Lin W, et al. The WRF nested within the CESM: Simulations of a midlatitude cyclone over the Southern Great Plains. Journal of Advances in Modeling Earth Systems, 2013, 5: 611-622

    [21] Qian T, Dai A, Trenberth K E, et al. Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. Journal of Hydrometeorology, 2006, 7(5): 953-975

    Wang Yuzhu, born in 1988. He received his Ph.D degree from University of Chinese Academy of Sciences in 2015. He also received his B.S. degree from Chongqing University in 2010. Now he is a postdoctor researcher at Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (CAS), Beijing, China. His research interests include parallel algorithm, high performance geo-computing, and development of earth system model.

    10.3772/j.issn.1006-6748.2017.01.013

    ①Supported by the National Natural Science Foundation of China (No. 61602477), China Postdoctoral Science Foundation (No. 2016M601158), and National Key Research and Development Program of China (No. 2016YFB0200804).

    ②To whom correspondence should be addressed. E-mail: jjr@sccas.cn Received on Dec. 23, 2015

    国产1区2区3区精品| 大型黄色视频在线免费观看| 国产精品av视频在线免费观看| 成在线人永久免费视频| 免费在线观看成人毛片| 亚洲av中文字字幕乱码综合| 不卡一级毛片| 久久精品国产亚洲av香蕉五月| 午夜亚洲福利在线播放| 日本撒尿小便嘘嘘汇集6| 日日夜夜操网爽| 亚洲欧美精品综合一区二区三区| 99久久精品热视频| 欧美zozozo另类| 99久久国产精品久久久| 亚洲成av人片在线播放无| 日韩欧美 国产精品| 免费电影在线观看免费观看| 禁无遮挡网站| 成人欧美大片| 老汉色∧v一级毛片| 亚洲,欧美精品.| 久久精品成人免费网站| 久久热在线av| 熟女电影av网| www.999成人在线观看| 日韩大码丰满熟妇| 午夜精品一区二区三区免费看| 三级男女做爰猛烈吃奶摸视频| 午夜a级毛片| 亚洲av熟女| 久久久国产成人精品二区| 亚洲成av人片在线播放无| 97碰自拍视频| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| netflix在线观看网站| 国产爱豆传媒在线观看 | 91麻豆av在线| 白带黄色成豆腐渣| 美女午夜性视频免费| 亚洲九九香蕉| 欧美中文日本在线观看视频| 亚洲av五月六月丁香网| 少妇被粗大的猛进出69影院| 久久性视频一级片| 日日爽夜夜爽网站| 成人国产一区最新在线观看| 中文字幕熟女人妻在线| 成年女人毛片免费观看观看9| 欧美日本视频| 五月伊人婷婷丁香| 18禁美女被吸乳视频| 欧美丝袜亚洲另类 | 国产三级中文精品| 国内毛片毛片毛片毛片毛片| 蜜桃久久精品国产亚洲av| 又黄又爽又免费观看的视频| 草草在线视频免费看| 69av精品久久久久久| 成熟少妇高潮喷水视频| 天天一区二区日本电影三级| 色噜噜av男人的天堂激情| 日本a在线网址| 可以在线观看的亚洲视频| 黄片大片在线免费观看| 高清毛片免费观看视频网站| 国产成人影院久久av| 欧美在线一区亚洲| 俄罗斯特黄特色一大片| 麻豆国产av国片精品| www日本在线高清视频| 亚洲欧美日韩高清在线视频| 久久久精品大字幕| 韩国av一区二区三区四区| 亚洲中文字幕日韩| 我的老师免费观看完整版| 日本免费一区二区三区高清不卡| 国产视频一区二区在线看| 亚洲av成人一区二区三| 日韩欧美国产在线观看| 国产成人精品久久二区二区免费| 激情在线观看视频在线高清| 妹子高潮喷水视频| 在线视频色国产色| 99热只有精品国产| 精品国产乱码久久久久久男人| 中亚洲国语对白在线视频| 操出白浆在线播放| 美女扒开内裤让男人捅视频| 精品国产乱子伦一区二区三区| 无限看片的www在线观看| 国产一级毛片七仙女欲春2| av国产免费在线观看| 最近最新中文字幕大全免费视频| 91大片在线观看| 精品国产亚洲在线| 亚洲熟妇熟女久久| 免费看日本二区| 欧美日韩瑟瑟在线播放| 免费在线观看完整版高清| 好男人在线观看高清免费视频| 一级毛片女人18水好多| 午夜影院日韩av| av视频在线观看入口| 精品久久久久久成人av| 亚洲精品中文字幕在线视频| 俄罗斯特黄特色一大片| 制服人妻中文乱码| 两个人的视频大全免费| 国产亚洲精品久久久久5区| 色av中文字幕| 亚洲精品中文字幕在线视频| 国产亚洲精品久久久久5区| 人妻久久中文字幕网| 精品福利观看| 久久精品综合一区二区三区| 婷婷丁香在线五月| 亚洲精品中文字幕在线视频| 视频区欧美日本亚洲| 国产区一区二久久| 老司机在亚洲福利影院| 亚洲精品国产精品久久久不卡| 日本撒尿小便嘘嘘汇集6| 欧美日韩瑟瑟在线播放| 亚洲精品色激情综合| 国产成人aa在线观看| 国产亚洲精品综合一区在线观看 | 国产精品久久电影中文字幕| 成人av一区二区三区在线看| 欧美zozozo另类| 国产又黄又爽又无遮挡在线| 亚洲中文字幕一区二区三区有码在线看 | 免费人成视频x8x8入口观看| 亚洲欧美精品综合久久99| 91在线观看av| 国产三级中文精品| 国产精品一区二区三区四区久久| 欧美成人一区二区免费高清观看 | 最近视频中文字幕2019在线8| a级毛片a级免费在线| 1024手机看黄色片| 亚洲aⅴ乱码一区二区在线播放 | 国产精品九九99| 亚洲av日韩精品久久久久久密| 午夜福利视频1000在线观看| 精品久久久久久久久久久久久| 国产亚洲精品一区二区www| 成年版毛片免费区| 亚洲人成网站在线播放欧美日韩| 欧美黄色片欧美黄色片| 很黄的视频免费| 不卡av一区二区三区| 久久这里只有精品中国| 一级作爱视频免费观看| 欧美乱色亚洲激情| 久久中文看片网| 热99re8久久精品国产| 成人高潮视频无遮挡免费网站| 香蕉av资源在线| 可以在线观看的亚洲视频| 日韩国内少妇激情av| 在线永久观看黄色视频| 午夜激情福利司机影院| 小说图片视频综合网站| 久久久久久久午夜电影| 国产精品久久电影中文字幕| 99久久久亚洲精品蜜臀av| 亚洲九九香蕉| 成人18禁高潮啪啪吃奶动态图| 嫩草影视91久久| 亚洲欧美一区二区三区黑人| 国产激情欧美一区二区| 亚洲美女视频黄频| 成人av在线播放网站| 老司机深夜福利视频在线观看| 久久婷婷人人爽人人干人人爱| 最近在线观看免费完整版| 国产伦一二天堂av在线观看| 88av欧美| 蜜桃久久精品国产亚洲av| 两个人的视频大全免费| 亚洲国产欧美一区二区综合| 国产亚洲精品综合一区在线观看 | 50天的宝宝边吃奶边哭怎么回事| 国产又色又爽无遮挡免费看| 一本一本综合久久| 亚洲av五月六月丁香网| 听说在线观看完整版免费高清| 国产精品永久免费网站| 国产野战对白在线观看| 国产熟女午夜一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产午夜精品久久久久久| 色综合欧美亚洲国产小说| 亚洲国产高清在线一区二区三| 国产一区二区三区在线臀色熟女| 黑人欧美特级aaaaaa片| 一级a爱片免费观看的视频| 欧美成狂野欧美在线观看| 亚洲成人中文字幕在线播放| 亚洲色图 男人天堂 中文字幕| 日韩欧美在线乱码| 亚洲成人国产一区在线观看| 中出人妻视频一区二区| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 一级毛片高清免费大全| 1024香蕉在线观看| 欧美一级毛片孕妇| 欧美又色又爽又黄视频| 一级片免费观看大全| 可以在线观看毛片的网站| 一a级毛片在线观看| 国产真实乱freesex| 国产精品乱码一区二三区的特点| 亚洲熟妇熟女久久| 蜜桃久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站 | 久久久久久亚洲精品国产蜜桃av| 超碰成人久久| 一二三四社区在线视频社区8| 欧美成狂野欧美在线观看| 啦啦啦观看免费观看视频高清| 日韩欧美精品v在线| 两性夫妻黄色片| 99国产精品一区二区三区| 欧美黑人欧美精品刺激| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人精品中文字幕电影| 香蕉国产在线看| 欧美绝顶高潮抽搐喷水| 波多野结衣高清作品| 精品日产1卡2卡| 国内少妇人妻偷人精品xxx网站 | 成人欧美大片| 国产蜜桃级精品一区二区三区| 国产麻豆成人av免费视频| 国产精品免费视频内射| 一夜夜www| 免费观看精品视频网站| 午夜免费观看网址| 亚洲国产中文字幕在线视频| 日韩成人在线观看一区二区三区| 亚洲人与动物交配视频| 麻豆久久精品国产亚洲av| 欧美成人性av电影在线观看| 在线国产一区二区在线| 久久久久久久久久黄片| 欧洲精品卡2卡3卡4卡5卡区| 成人三级黄色视频| 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 亚洲av日韩精品久久久久久密| 级片在线观看| 国产高清激情床上av| 免费在线观看成人毛片| 999久久久国产精品视频| 免费看十八禁软件| 午夜激情av网站| 欧美性猛交╳xxx乱大交人| 精品第一国产精品| 久久这里只有精品中国| 欧美极品一区二区三区四区| 亚洲自拍偷在线| 制服诱惑二区| 熟女电影av网| 中国美女看黄片| 欧美 亚洲 国产 日韩一| 99在线人妻在线中文字幕| svipshipincom国产片| 婷婷精品国产亚洲av在线| 制服诱惑二区| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 欧美精品啪啪一区二区三区| 亚洲人成77777在线视频| 99热这里只有是精品50| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐动态| 久久久久久人人人人人| 欧美乱妇无乱码| 国语自产精品视频在线第100页| 嫩草影院精品99| 免费在线观看日本一区| 亚洲熟妇中文字幕五十中出| www.熟女人妻精品国产| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 日韩免费av在线播放| 高清毛片免费观看视频网站| 精品不卡国产一区二区三区| 69av精品久久久久久| 香蕉久久夜色| 亚洲九九香蕉| 99国产精品99久久久久| 久久久久久国产a免费观看| 国产高清videossex| 亚洲成人中文字幕在线播放| 国产精品美女特级片免费视频播放器 | 可以在线观看毛片的网站| 亚洲欧美精品综合一区二区三区| 悠悠久久av| 亚洲,欧美精品.| 国产成人影院久久av| 脱女人内裤的视频| 精品国产超薄肉色丝袜足j| 亚洲精品美女久久av网站| 欧美一级毛片孕妇| 18禁黄网站禁片免费观看直播| 久久这里只有精品19| 99久久久亚洲精品蜜臀av| 男插女下体视频免费在线播放| 成年版毛片免费区| 男女视频在线观看网站免费 | 老鸭窝网址在线观看| 欧美 亚洲 国产 日韩一| 天天添夜夜摸| 国产熟女xx| 欧美日韩中文字幕国产精品一区二区三区| 免费一级毛片在线播放高清视频| 九色成人免费人妻av| 亚洲第一电影网av| 欧美午夜高清在线| 级片在线观看| 美女黄网站色视频| 日本一本二区三区精品| 美女高潮喷水抽搐中文字幕| 国产成人av激情在线播放| 亚洲激情在线av| www.精华液| 中文字幕人成人乱码亚洲影| 精品欧美一区二区三区在线| 99re在线观看精品视频| www国产在线视频色| 亚洲av成人不卡在线观看播放网| 国产麻豆成人av免费视频| 两个人的视频大全免费| 午夜精品久久久久久毛片777| 久久久久久免费高清国产稀缺| 99riav亚洲国产免费| 在线观看66精品国产| 久久亚洲真实| 精品少妇一区二区三区视频日本电影| 国产精品久久视频播放| 亚洲精品一卡2卡三卡4卡5卡| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看黄色视频的| 免费在线观看影片大全网站| 久久久久九九精品影院| 国产精品99久久99久久久不卡| 久久久久久久精品吃奶| 老司机在亚洲福利影院| 国模一区二区三区四区视频 | 99久久精品热视频| 国产成人啪精品午夜网站| 日韩精品免费视频一区二区三区| 熟女少妇亚洲综合色aaa.| 18禁黄网站禁片免费观看直播| 性欧美人与动物交配| 午夜福利18| 国产精品亚洲av一区麻豆| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| 美女大奶头视频| 可以免费在线观看a视频的电影网站| 色在线成人网| 成人亚洲精品av一区二区| 丁香欧美五月| 久久久水蜜桃国产精品网| 欧美最黄视频在线播放免费| 亚洲精品粉嫩美女一区| 国产亚洲精品综合一区在线观看 | 老司机在亚洲福利影院| 一边摸一边抽搐一进一小说| 精品国产超薄肉色丝袜足j| 亚洲成av人片免费观看| 小说图片视频综合网站| 国产成人影院久久av| 亚洲人成网站在线播放欧美日韩| 欧美成狂野欧美在线观看| 欧美日韩黄片免| 这个男人来自地球电影免费观看| 国产精品久久久久久久电影 | 亚洲精华国产精华精| 又黄又爽又免费观看的视频| 亚洲黑人精品在线| 国语自产精品视频在线第100页| 老鸭窝网址在线观看| av福利片在线观看| 成年人黄色毛片网站| 国产99白浆流出| 成年人黄色毛片网站| 老汉色∧v一级毛片| 精品欧美国产一区二区三| 妹子高潮喷水视频| 国产麻豆成人av免费视频| 午夜福利在线在线| 可以免费在线观看a视频的电影网站| av国产免费在线观看| 亚洲精品国产一区二区精华液| 亚洲美女视频黄频| 国产精品一区二区免费欧美| 国产一区二区在线av高清观看| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 国产伦在线观看视频一区| 18禁美女被吸乳视频| 曰老女人黄片| 午夜福利视频1000在线观看| 18禁观看日本| 首页视频小说图片口味搜索| 久久这里只有精品中国| 精品一区二区三区av网在线观看| 亚洲国产欧美人成| 又黄又粗又硬又大视频| 99久久无色码亚洲精品果冻| 亚洲 欧美 日韩 在线 免费| 可以在线观看的亚洲视频| 日韩欧美国产一区二区入口| 亚洲第一欧美日韩一区二区三区| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3| 99热只有精品国产| 男男h啪啪无遮挡| 久久人妻福利社区极品人妻图片| 777久久人妻少妇嫩草av网站| 18美女黄网站色大片免费观看| 亚洲 欧美 日韩 在线 免费| bbb黄色大片| 久久人人精品亚洲av| 欧美极品一区二区三区四区| 美女黄网站色视频| 一区二区三区国产精品乱码| 亚洲七黄色美女视频| 国产精品98久久久久久宅男小说| 欧美成人一区二区免费高清观看 | 九色成人免费人妻av| 亚洲午夜理论影院| 50天的宝宝边吃奶边哭怎么回事| 五月玫瑰六月丁香| 精品高清国产在线一区| 最近视频中文字幕2019在线8| 天天一区二区日本电影三级| 最近最新中文字幕大全免费视频| 久久香蕉精品热| 成人av在线播放网站| av中文乱码字幕在线| 欧美一级毛片孕妇| 黄片小视频在线播放| 免费在线观看日本一区| 我要搜黄色片| 麻豆成人av在线观看| 久久久国产成人免费| 亚洲真实伦在线观看| 特大巨黑吊av在线直播| 日韩欧美三级三区| 9191精品国产免费久久| 亚洲国产精品成人综合色| 麻豆成人av在线观看| 麻豆成人午夜福利视频| 亚洲精品一区av在线观看| 熟女少妇亚洲综合色aaa.| 国产精品免费一区二区三区在线| 一级毛片精品| 国产高清有码在线观看视频 | 免费人成视频x8x8入口观看| 欧美日韩黄片免| 免费在线观看亚洲国产| 国产精品av视频在线免费观看| 精品一区二区三区av网在线观看| 欧美性猛交╳xxx乱大交人| 老熟妇乱子伦视频在线观看| 青草久久国产| 国产三级在线视频| www.熟女人妻精品国产| 国产一区二区激情短视频| 一本综合久久免费| 国产成人影院久久av| 91字幕亚洲| www国产在线视频色| 午夜免费观看网址| 欧美高清成人免费视频www| cao死你这个sao货| 12—13女人毛片做爰片一| 欧美3d第一页| 在线免费观看的www视频| 成人精品一区二区免费| 成人午夜高清在线视频| 亚洲电影在线观看av| 久久久精品国产亚洲av高清涩受| www日本黄色视频网| 国产在线精品亚洲第一网站| 免费看美女性在线毛片视频| 亚洲人成网站在线播放欧美日韩| 久久这里只有精品19| 国产成人系列免费观看| 国产v大片淫在线免费观看| www日本黄色视频网| 国产单亲对白刺激| 色在线成人网| 精品无人区乱码1区二区| 久久婷婷成人综合色麻豆| 少妇裸体淫交视频免费看高清 | 久久精品人妻少妇| 欧美日韩一级在线毛片| 欧美日本亚洲视频在线播放| 正在播放国产对白刺激| 91成年电影在线观看| 欧美精品亚洲一区二区| 亚洲人成电影免费在线| 色噜噜av男人的天堂激情| 日韩大尺度精品在线看网址| 亚洲av第一区精品v没综合| 久久精品91蜜桃| 亚洲成a人片在线一区二区| 在线永久观看黄色视频| 99久久99久久久精品蜜桃| 国产精品 国内视频| 老汉色∧v一级毛片| 老司机午夜福利在线观看视频| 搡老岳熟女国产| 成人三级做爰电影| 99久久精品热视频| 午夜日韩欧美国产| 99久久无色码亚洲精品果冻| 女同久久另类99精品国产91| 在线观看免费日韩欧美大片| 日本五十路高清| 亚洲天堂国产精品一区在线| 极品教师在线免费播放| 一区二区三区激情视频| 欧美丝袜亚洲另类 | 欧美成人一区二区免费高清观看 | 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| xxxwww97欧美| 亚洲,欧美精品.| 国产伦在线观看视频一区| 男人的好看免费观看在线视频 | 日韩欧美在线二视频| 欧美一区二区国产精品久久精品 | 一夜夜www| 色哟哟哟哟哟哟| 亚洲欧美精品综合久久99| 天堂√8在线中文| 欧美性长视频在线观看| 一级作爱视频免费观看| 亚洲国产看品久久| 日日爽夜夜爽网站| 亚洲精华国产精华精| 国产精品影院久久| 久久热在线av| 少妇裸体淫交视频免费看高清 | 久久天躁狠狠躁夜夜2o2o| 欧美又色又爽又黄视频| 在线播放国产精品三级| 精品久久久久久久毛片微露脸| 国产黄片美女视频| 亚洲人成电影免费在线| 男女做爰动态图高潮gif福利片| 久久久久久久久中文| 免费搜索国产男女视频| 午夜福利在线在线| 两个人看的免费小视频| 亚洲性夜色夜夜综合| 亚洲av五月六月丁香网| 亚洲人与动物交配视频| 亚洲成人精品中文字幕电影| 精品久久久久久久久久免费视频| 久久中文字幕一级| 亚洲中文字幕一区二区三区有码在线看 | 精品高清国产在线一区| 欧美成人一区二区免费高清观看 | 一个人免费在线观看电影 | 久久久水蜜桃国产精品网| 老司机在亚洲福利影院| 免费在线观看成人毛片| 88av欧美| 亚洲欧美日韩东京热| av超薄肉色丝袜交足视频| 亚洲真实伦在线观看| 久久人妻av系列| 亚洲欧美一区二区三区黑人| 日本免费一区二区三区高清不卡| 国产av一区在线观看免费| 亚洲性夜色夜夜综合| 欧美日韩黄片免| 欧美中文综合在线视频| 最近视频中文字幕2019在线8| 国产午夜福利久久久久久| 午夜福利成人在线免费观看| 久久精品综合一区二区三区| 午夜两性在线视频| 精品日产1卡2卡| 国产精品爽爽va在线观看网站| 亚洲成人免费电影在线观看| 特大巨黑吊av在线直播| 午夜福利免费观看在线| 亚洲av五月六月丁香网| e午夜精品久久久久久久| 久久精品影院6| 久热爱精品视频在线9| 女人被狂操c到高潮| 亚洲精品粉嫩美女一区| 一边摸一边做爽爽视频免费| 中出人妻视频一区二区| 九九热线精品视视频播放| 日本黄色视频三级网站网址| 成人三级做爰电影| 国产精品自产拍在线观看55亚洲| 亚洲 欧美 日韩 在线 免费| 99热这里只有精品一区 | 亚洲五月天丁香| 亚洲欧美日韩无卡精品|