• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on pressure fluctuation characteristics of slug flow in horizontal curved tubes①

    2017-03-28 09:47:34DengZhian鄧志安XiaoXue
    High Technology Letters 2017年1期

    Deng Zhian (鄧志安), Xiao Xue

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, P.R.China)

    Experimental study on pressure fluctuation characteristics of slug flow in horizontal curved tubes①

    Deng Zhian (鄧志安), Xiao Xue②

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, P.R.China)

    In order to study the pressure characteristics of slug flow in horizontal curved tubes, two kinds of curved tubes with central angle 45° and 90° respectively are studied, of which are with 0.5m circumference and 26mm inner diameter are used. When the superficial liquid velocity or the superficial gas velocity is constant, the pressure fluctuations and the probability distribution of the average velocity of slug flow are clear for all of the five experimental conditions. The results of experiment show that the pressure characteristics of slug flow in curved tubes have periodic fluctuations. With the rise of central angle, the period of pressure fluctuation is more obvious. The system pressure of the slug flow increases with the increasing of superficial liquid/gas velocity.Meanwhile,the probability distribution of pressure signal shows regularity, such as unimodal, bimodal or multimodal.

    slug flow, horizontal curved tube, pressure fluctuations, central angle

    0 Introduction

    Gas-liquid two-phase flow is a very common but complicated phenomenon of flow in many industries, such as petroleum, chemistry engineering, energy power. Different flow patterns will be formed with various parameter diversities, such as gas-oil ratio, tube diameter, shape and topographic relief.

    Slug flow, a most common flow pattern, often appears in multiphase pipeline in many operating conditions, such as normal operation,the start-up of the equipment, operating condition change and pigging. The intermittent changes (liquid slug, pressure and mass flux) are the typical unstable characteristic. Because of its intermittent flow, the liquid holdup and pressure of pipe fluctuate dramatically, the pipe-run in the flow pattern will endure intermittent impact of stress[1]. The slug flow also causes irregular vibration of instrumentation or meter and affects normal operation of equipment, mixture pumps and auxiliary piping[2-5].

    Based on the amplitude and frequency of the pressure and the shape of the timing signal, Weisman, et al[6]pointed out fluctuation characteristics of slug flow in horizontal pipes. Nishikawa, et al[7]investigated the pressure fluctuation of two-phase flow in vertical riser tubes. It was found that the distribution curve of frequency and pressure of slug flow were always bimodal and fluctuation of pressure was bigger. Zhao, et al[8]proposed the probability density of different pressure of slug flow generally showed unimodal, while the pressure signal had a variety of distributions. Annu-nziat, et al[9]obtained the recognition criteria of flow pattern by studying the fluctuation character of two-phase differential pressure of horizontal tubes. Sganss, et al[10,11]put forward an interesting model for the static pressure fluctuation of wall of two-phase flow in a horizontal rectangular tube,also proved the identification of transition from bubble flow or plug flow to slug flow with signal characteristic of pressure and differential pressure as the discriminant basis[12,13].

    Lately, there are many studies[14-18]about the characteristics of slug flow in the horizontal pipe, vertical pipe and inclined pipe, but relatively few studies in the horizontal curved tube. The curved pipe is often used in production process, so it is necessary to study characteristics of the slug flow in horizontal curved tubes.

    1 Experimental system and process

    1.1 Experimental system

    Experimental system consists of three units (Fig.1), namely the fluid supply unit, test unit, and fluid recovery unit.

    1. The electrical source of air compressor mechanical; 2. Air Compressor; 3. Air Compressor Export control valve; 4. Air Compressor bypass; 5. Thermocouple (with digital display); 6. The pressure gauge; 7. The gas flow control valve; 8. Gas mass flowmeter; 9. The gas flow control valve; 10. The gas-liquid mixer; 11. The bend test section; 12. The gas-liquid separator; 13. Gate valves; 14. The water tank; 15. Centrifugal pump; 16. Liquid bypass; 17. Liquid flow meter; 18. The fluid flow controls valve Fig.1 Experimental system diagram

    Experimental medium is water and air, the centrifugal pump takes the water from tank (14) to flowmeter (17) to measure and then send to it gas-liquid mixer (10), air through compressor (2), gas flowmeter (8) to measure and then send to it gas-liquid mixer, the mixing gas-liquid to enter it test section (11) than the slug flow is obtained by adjusting gas and liquid flow rate.

    The experimental section has two parts: a horizontal straight pipe and a horizontal curved tube. The horizontal straight pipe is 3m long and 26mm in diameter which is made of organic glass tube. The circumference of curved tube is 0.5m and the central angle of bent section is respectively 45° and 90°and the curvature radius is 637mm and 318mm respectively. The size of the experimental section is shown in Fig.2.

    Fig.2 Experimental section size diagram

    1.2 Experimental program

    Each test follows the following procedures:

    (1) Before each test,fill the water tank with water. Check and examine all the test meters and devices carefully and then start the experiment.

    (2) Open the compressor and control pressure to the set pressure, adjust gas volume to the experimental flow.

    (3) Open the centrifugal pump gradually and adjust regulating valve slowly, increase liquid flow rate to the set value gradually, and then observe the flow pattern of horizontal tube test section until there arise slug flow in the test section.

    (4) Measuring pressure, pressure differential, temperature and mass flow rate, record the key observed values.

    (5) First, record the steady-state data and then gradually increase flow rate of the fluid to the set flow until the stable slug flow appears. Meanwhile, the data is automatically gathered by the computer gathering program at a given frequency, after the test working condition completed, close the water valve first and then close the gas valve. After that, implement the next test working condition.

    1.3 Test parameters

    Experiment medium: water and air;

    Experiment temperature: 10℃~25℃;

    Flow velocity: superficial gas velocity, 1m/s~12m/s. superficial water velocity, 0.19m/s~2m/s;

    Work pressure: 0.25MPa.

    1.4 Test parameter measurement

    The measurement of test parameters includes gas and liquid flow rate, system pressure, temperature, pressure drop in the test section, the liquid slug length, velocity and frequency, etc.

    This experiment is carried out on the gas-liquid mixing pressure. In order to improve the accuracy of measurement point, it should be done under the center line of the pipeline and in 45° with the horizontal center line to ensure a stable condensate pipeline, but also to prevent contaminants from entering the differential pressure transducer to make the transmitter is not in normal use.The ring type pressure is taken in pressure point to ensure the pressure of gas-liquid mixing pressure. The pressure points is shown in Fig.3.

    Fig.3 thepressure points

    The flow measurement

    (1) The gas flow measurement:

    The gas flow rate is measured by the Emerson CMF010 flow meter. The accuracy of the meter is ±0.5%. The data of gas flow is sent to the data acquisition system.

    (2) The liquid flow measurement:

    The liquid flow is measured by E-mag electromagnetic flow meter. The measuring accuracy of the meter is ±0.2% and the range is 0~200C0. The data of the liquid flow is sent to the data acquisition system.

    Temperature measurement

    The fluid temperature in the test section is measured by the T armored thermocouple installed at the pipeline.The measuring range of gas temperature is 0℃~350℃ and liquid temperature 25℃~45℃. The precision of the rmocouple is 0.75℃.

    Pressure measurement

    The pressure is measured by the Rosemount 3051 TG4A type pressure transmitter. The main parameters are as follows: the range is 0MPa~27.6MPa and the accuracy is ±0.075%. In order to enhance the accuracy, pressure is taken a pressure point in the ring to ensure the pressure for gas-liquid mixture.

    Differential pressure measurement

    For different pressure points, the range of differential pressure value is different. Differential pressure transmitters are selected according to the location of the pressure measure. This selected differential pressure transmitters are Rosemount 3051 CD2A and 3051 CD1A type differential pressure transmitters. The accuracy of differential pressure transmitters is ±0.075%.

    1.5 Data acquisition system

    All of the voltage signals through acquisition board are sent to the computer control room. According to related literatures, the wave frequency of differential pressure signals is generally within 50Hz. The acquisition frequency is 500Hz. IMP35952A acquisition plates are selected for the experiment. The acquisition frequency is 0.1kHz~49kHz, which can satisfy the test requirement.

    2 Results and discussions

    2.1 The pressure fluctuation of slug flow in bend

    When superficial liquid velocity uslis equal to 0.95m/s, the superficial gas velocity usgis from 1.9m/s to 8.79m/s, the central angle of curved section is respectively 45° and 90°. The pressure fluctuation curves are shown in Fig.4.

    Fig.4 The pressure fluctuation curve with constant liquid superficial velocity (The abscissa is the time (s), the vertical axis represents the pressure (kPa))

    It can be seen from Fig.4, the pressure fluctuationisquasi-periodic. The pressure of systemincreases with increasingsuperficial gas velocity, because of the compressibility of the gas. Meanwhile, with the increase of superficial gas velocity, the period of the fluctuation of pressure signal is more obvious, since because the length of slug unit increase with the increasing of gas flow rate, but the number of slug units between measurement points is decreased. The superposition times of pressure drop of slug unit are reduced accordingly.

    With the increase of superficial gas velocity, compared with pressure fluctuation curves of slug flow of the central angle of 45°, periodic signal of 90° is more obvious. This is because when fluid flows the elbow, different pressure distribution between internal and external walls of tube makes the flow lines cured. Due to the inertia of the fluid, the fluid acted by centrifugal force in makes the walls of the curved tube generate different pressure and the lateral velocity is greater than that inside.

    In the curved tube, the centrifugal force of slug units increases with increase of central angle, the velocity also increases, and the pressure of external wall will increase and the length of slug units will elongate.

    When the superficial gas velocity is equal to 1.9m/s, the superficial liquid velocityis from 0.25m/s to 1.5m/s, the central angle ofcurvedbent section are respectively 45° and 90°. The pressure fluctuation curves as shown in Fig.5.

    Fig.5 The pressure fluctuation curve with constant gas superficial velocity (The abscissa is the time (s), the vertical axis represents the pressure (kPa))

    It can be seen from Fig.5, the pressure fluctuation is quasi-periodic. The pressure of system increases with increase of superficial liquid velocity. This is because the average density in the system increases with the increase of liquid, the compression function of the gas increases with the increase of average density.

    At the same time you can see, with the superficial liquid velocity increases, the amplitude of pressure fluctuation more serious, the quasi-period of the fluctuation of pressure signal is more obvious. This is because that with the increase of fluid flow, the velocityincreases, the system compressibility enhances,and the cross-sectional area of gas reduces, the rate of gas flow and the length of the bubble increases, but slug frequency is reduced, the fewer slug units between measurement points, the less the superposition times of pressure drop of slug unit.

    Compared with the central angle of 45°, the quasi-period of the signal of pressure fluctuation, 90° is obvious.

    2.2 Probability density function of pressure fluctuation for slug flow in bend

    When superficial liquid velocity uslis equal to 0.95m/s, the superficial gas velocity usgis from 1.9m/s to 8.79m/s, the central angle of curved section is 45° and 90° respectively. The pressure fluctuation curves of probability density function is shown in Fig.6.

    Fig.6 Probability density function of pressure fluctuations with constant liquid superficial velocity (The abscissa is the pressure (kPa), the vertical axis represents the probability density function)

    It can be seen from Fig.6, with the increase of superficial gas velocity,probability density distribution of pressure fluctuations are transformed between unimodal and bimodal. This is due to the function of the centrifugal force. In the bend, the lateral pressure is greater than that inside, when the superficial gas velocity is less, the number of slug units and superposition times of pressure drop of slug unit are relatively bigger between the point and the exit of pipe. When the superficial gas velocity increases, the gas content and slug length of tube increase too, but the function of the centrifugal force decreases.

    Compared with the central angle of 45°, probability density distribution of the tube with central angle of 90°appears multimodal more often. Meanwhile, with the increase of superficial gas velocity, the probability density tends to be divergent.

    When superficial gas velocity usgis equal to 1.9m/s, the superficial liquid velocity uslis from 0.25m/s to 1.5m/s, the central angle of curved section are respectively 45° and 90°. The pressure fluctuation curves of probability density function are shown in Fig.7.

    Fig.7 Probability density function of pressure fluctuations with constant gas superficial velocity (The abscissa is the pressure (kPa), the vertical axis represents the probability density function)

    Probability density of 45° bend transforms from unimodal to multimodal. This is because the centrifugal force of the inner has less pressure when liquid slugs through the bend when the superficial liquid velocity is small, the probability density shows unimodal and approximately normal distribution. But with the increase of superficial liquid velocity, the compression of gas within the pipe is enhanced by liquid, the system pressure and flow rate are growing, which makes the centrifugal force increase when liquid slugs through pipe.

    During compression, the velocity of forward bubbles presents random states like larger and smallerdue to compression, and the probability density distribution is multimodal.

    As for the bend with 90°central angle, the probability density is multimodal with the increase of superficial liquid velocity. With the increase of superficial liquid velocity and system pressure, the centrifugal force of liquid slug increases with increass of the central angle, so the probability density distribution become multimodal. At meantime, its distribution tends to be diversed.

    2.3 Comparison of the characteristics of the horizontal pipe and curved tube

    In the same position, the effect of slug frequency on liquid superficial velocity in horizontal curved tube and horizontal tube is more visible than that on gas superficial velocity. This is because the average density in the system increase with the increass of liquid, the compression function of the gas increases with the increass of average density.

    The increase of the amount of gas, liquid, or both in the horizontal pipe and curved pipe will increase in pressure and pressure difference and the maximum pressure. The pressure of system increases with increase of superficial gas velocity or superficial liquid velocity, because of the compressibility of the gas and the increase of average density.

    The comparison chart is shown Fig.8.

    It can be seen from Fig.9, the difference is that the probability density distribution of differential pressure signal is mainly characterized by a unmoral distribution, normal distribution of horizontal slug flow, and a bimodal distribution of bend slug flow. Obvious difference exists between them.

    The probability distribution of pressure signal in curved tube shows regularity, such as unimodal, bimodal or multimodal.

    This is because the pressure fluctuation at a measurement point is the superposition of all the liquid slug and long bubble pressure fluctuation between the measuring point and the outlet of the pipe. When the fluid flows into the elbow of a specific radius of curvature, the fluid will be affected by the centrifugal force, the liquid slug and the liquid film length, the gas flow rate of the liquid slug and the gas content in the liquid film region.

    (a)Horizontal tube (b) Curved tube

    (a)Horizontal tube (b) Curved tube (The abscissa is the pressure difference, the vertical axis represents the probability density function)

    3 Conclusion

    (1) The pressure fluctuation of slug flow in curved tube presents quasi-periodically. Meanwhile, its quasi-period is more obvious with the increase of the central angle. At the same time, the pressure of system increases with increase of superficial liquid velocity or superficial gas velocity.

    (2) Probability density of the pressure signal shows diversity of distribution such as unimodal, bimodal and multimodal. With the increase of the central angle, gas superficial velocity or liquid superficial velocity, the probability density distribution shows multimodal. This is because the centrifugal force has a greater influence on the system pressure. Furthermore, the dispersity of probability density increases with increasing of superficial liquid velocity or superficial gas velocity.

    [1] Zhao Q J, He L M, Xu J Z. Fluctuation analysis of pressure and differential pressure for two-phase slug flow in a horizontal pipe. Journal of Engineering Thermophysics, 2005,26 (3):441-446

    [2] Chen J L.Two Phase Flow of Gas-Liquid of Petroleum. Beijing: Petroleum Industry Press, 1989. 98-106 (In Chinese)

    [3] Deng Z A. Forecasting of slug flow on Wenchang oil field gathering lines. Oil and Gas Field Surface Engineering, 2001,20 (6):26-27

    [4] Yu X C, Zhao J Z. Researches for oil gas-water multiphase flow technology on domestic and foreign. China Offshore Oil and Gas (Engineering), 2002,14 (5):31-39

    [5] Chen Z Y, Zhao Q J, He L M, et al. The research progress of slug flow on horizontal pipe. Oil & Gas Storage and Transportation, 2003, 22 (10):9-15

    [6] Weisman J, Dancan D, Gibson J, et al. Effects of flow properties and pipe diameter on two-phase flow patterns in horizontal lines. International Journal of Multiphase Flow, 1979, 5(6):437-462

    [7] Nishikawa K, Sekoguchi K, Fukano T. On the pulsation phenomena in gas-liquid two-phase flow. JSEME Bulletin,1969,12(54):1410-1416

    [8] Zhao Q J, He L M, Xu J Z. Fluctuation analysis of pressure and differential pressure for two-phase slug flow in a horizontal pipe. Journal of Engineering Thermophysics, 2005, 26(3): 44-446

    [9] Monni G, Salve M D, Panella B. Horizontal two-phase flow pattern recognition. Experimental Thermal & Fluid Science, 2014, 59:213-221

    [10] Wambsganss M W, Jendrzejczyk J A, France D M. Two-phase flow patterns and transitions in a small horizontal, Rectangular Channel. International Journal of Multiphase Flow, 1991, 17(3):327-342

    [11] Wambasganss M W, Jendrzejczyk J A, France D M. Determination and characteristics of the transition to two-phase chug flow in small horizontal charnels. Journal of Fluid Enginering, 1994, 116(1):140-146

    [12] Franca F, Acikgoz M, Lahey R T, et al. The use of fractal techniques for flow regime identification. International Journal of Multiphase Flow , 1991, 17: 545-552

    [13] Kozma R, Sakuma M, Djainal D, et al. Characterization of two-phase flows using fractal analysis of local temperature fluctuations.International Journal of Multiphase Flow,1996, 22: 953-968

    [14] Bai B F, Guo L J, Chen X J. Fluctuating differential pressure for air-water two-phase flow.Proceedings of the CSEE, 2002, 22: 22-26

    [15] Bai B F, Guo L J, Wang Z Y, et al. Feature analysis of pressure and differential pressure signals for oil-gas-water multiphase flow and on line recognition of flow regimes. Journal of Engineering Thermophysics,2002, 23: 357-360

    [16] Wu H J, Zhou F D, Wu Y Y. Intelligent identification system of flow regime of oil-gas-water multiphase flow.International Journal of Multiphase Flow, 2001, 27:459-475

    [17] Nydal O J, Pintus S, Andreussi P. Statistical characterizations of slug flow in horizontal pipes. International Journal of Multiphase Flow, 1992, 18: 439-453

    [18] Luo X M, He L M, Chen Z Y. A fluctuation analysis of liquid slug lengths for the slug flow in downward inclined pipe.Journal of Chemical Engineering of Chinese Universities, 2006, 20:702-706

    Deng Zhian, born in 1962. He received his Ph.D degrees in Thermal Engineering Department of Xi’an Jiaotong University in 2012. He also received his B.S. and M.S. degrees from Xi’an Shiyou University in 1984 and 2000 respectively. His research interests include the oil field surface engineering equipment research and design.

    10.3772/j.issn.1006-6748.2017.01.004

    ①Supported by the National Natural Science Foundation of China (No. 5130416)

    ②To whom correspondence should be addressed. E-mail: 422941780@qq.com Received on Jan. 3, 2016

    亚洲欧美日韩卡通动漫| 精品一区二区三区视频在线观看免费| 在线观看66精品国产| 91午夜精品亚洲一区二区三区 | 1024手机看黄色片| 国产成人影院久久av| 亚洲美女黄片视频| 99riav亚洲国产免费| 久久精品国产自在天天线| 尾随美女入室| 熟妇人妻久久中文字幕3abv| 高清在线国产一区| 五月玫瑰六月丁香| 人人妻人人澡欧美一区二区| 亚洲中文字幕日韩| 91av网一区二区| 男女做爰动态图高潮gif福利片| 女同久久另类99精品国产91| xxxwww97欧美| 国产黄色小视频在线观看| 免费看a级黄色片| 大型黄色视频在线免费观看| 国产精品爽爽va在线观看网站| 国产淫片久久久久久久久| 国产aⅴ精品一区二区三区波| 欧美日韩国产亚洲二区| 日韩精品中文字幕看吧| 色尼玛亚洲综合影院| 久久国内精品自在自线图片| 有码 亚洲区| 久久中文看片网| 少妇的逼好多水| 一夜夜www| 一个人观看的视频www高清免费观看| 免费看a级黄色片| 欧美绝顶高潮抽搐喷水| 亚洲天堂国产精品一区在线| 97超级碰碰碰精品色视频在线观看| 国产伦精品一区二区三区四那| 国内精品美女久久久久久| 亚洲av美国av| 午夜精品久久久久久毛片777| 91精品国产九色| 成人亚洲精品av一区二区| 国产蜜桃级精品一区二区三区| 国产熟女欧美一区二区| 美女被艹到高潮喷水动态| 欧美日本视频| 国产免费一级a男人的天堂| 亚洲成人精品中文字幕电影| 国产伦在线观看视频一区| 岛国在线免费视频观看| 成人特级av手机在线观看| 精品久久久久久久久亚洲 | 老师上课跳d突然被开到最大视频| 亚洲色图av天堂| www日本黄色视频网| 欧美性感艳星| 午夜免费激情av| 香蕉av资源在线| 老熟妇仑乱视频hdxx| 大又大粗又爽又黄少妇毛片口| 一本精品99久久精品77| 欧美潮喷喷水| 日韩精品青青久久久久久| 国产精品免费一区二区三区在线| 久久99热这里只有精品18| 黄色日韩在线| 精品日产1卡2卡| 高清毛片免费观看视频网站| 中亚洲国语对白在线视频| 成人性生交大片免费视频hd| 极品教师在线视频| 亚洲色图av天堂| 韩国av一区二区三区四区| 国产精品一区二区三区四区免费观看 | 国产精品人妻久久久影院| 免费大片18禁| 国产伦人伦偷精品视频| 琪琪午夜伦伦电影理论片6080| 欧美又色又爽又黄视频| 又紧又爽又黄一区二区| 国产视频一区二区在线看| 亚洲av二区三区四区| 悠悠久久av| 神马国产精品三级电影在线观看| 免费av观看视频| 日本三级黄在线观看| 亚洲人成网站在线播| 日本在线视频免费播放| 国产伦精品一区二区三区四那| 精品人妻偷拍中文字幕| 男女边吃奶边做爰视频| 一进一出抽搐动态| 欧美绝顶高潮抽搐喷水| 男人舔奶头视频| 免费av毛片视频| 精品久久久久久久久亚洲 | 国产男人的电影天堂91| 亚洲国产精品sss在线观看| 精品人妻1区二区| 亚州av有码| 久9热在线精品视频| 国产在线精品亚洲第一网站| 久久久久久久久久成人| 最近最新中文字幕大全电影3| 最新在线观看一区二区三区| 国产成人av教育| 最近在线观看免费完整版| 简卡轻食公司| 51国产日韩欧美| 99热这里只有是精品50| 久久久久久九九精品二区国产| 成年女人永久免费观看视频| 桃色一区二区三区在线观看| av福利片在线观看| 99久久精品热视频| 国产黄色小视频在线观看| 嫩草影院精品99| 国内揄拍国产精品人妻在线| 全区人妻精品视频| 亚洲成人免费电影在线观看| 黄色配什么色好看| 成人三级黄色视频| 午夜免费激情av| 成人一区二区视频在线观看| 精品不卡国产一区二区三区| 日韩一本色道免费dvd| 又紧又爽又黄一区二区| 黄色配什么色好看| 亚洲va日本ⅴa欧美va伊人久久| 熟妇人妻久久中文字幕3abv| 搞女人的毛片| 波野结衣二区三区在线| 国产成人福利小说| 亚洲人成网站在线播| 中文亚洲av片在线观看爽| 精品午夜福利在线看| 亚洲最大成人手机在线| 日本三级黄在线观看| 日日摸夜夜添夜夜添小说| 国产v大片淫在线免费观看| 欧美性感艳星| 国产精品自产拍在线观看55亚洲| 99在线人妻在线中文字幕| 毛片一级片免费看久久久久 | 午夜亚洲福利在线播放| 我要看日韩黄色一级片| 久久精品国产清高在天天线| 女生性感内裤真人,穿戴方法视频| 听说在线观看完整版免费高清| 69人妻影院| 亚洲不卡免费看| 日本-黄色视频高清免费观看| 九色成人免费人妻av| 一级黄片播放器| 日韩在线高清观看一区二区三区 | 窝窝影院91人妻| 免费黄网站久久成人精品| 免费看日本二区| 啦啦啦啦在线视频资源| 亚洲欧美日韩高清专用| 亚洲国产日韩欧美精品在线观看| 亚洲精品一区av在线观看| 五月玫瑰六月丁香| 免费av毛片视频| 欧美bdsm另类| 热99在线观看视频| 琪琪午夜伦伦电影理论片6080| 国产精品免费一区二区三区在线| 女生性感内裤真人,穿戴方法视频| 国产亚洲欧美98| 国语自产精品视频在线第100页| 亚洲18禁久久av| 最新在线观看一区二区三区| 不卡视频在线观看欧美| 中文字幕av成人在线电影| 亚洲午夜理论影院| 欧美高清成人免费视频www| av福利片在线观看| 亚洲电影在线观看av| 国产一级毛片七仙女欲春2| 国产男靠女视频免费网站| 99久久中文字幕三级久久日本| 简卡轻食公司| 三级男女做爰猛烈吃奶摸视频| 高清日韩中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 69av精品久久久久久| 国产高清视频在线观看网站| 国产国拍精品亚洲av在线观看| 精品午夜福利在线看| 91在线精品国自产拍蜜月| 国产成人av教育| 成人欧美大片| 成人高潮视频无遮挡免费网站| 亚洲精华国产精华液的使用体验 | 精品人妻视频免费看| 日韩精品有码人妻一区| 亚洲av一区综合| 尤物成人国产欧美一区二区三区| 色在线成人网| 真人一进一出gif抽搐免费| 欧美激情国产日韩精品一区| 日本精品一区二区三区蜜桃| 在现免费观看毛片| 中文字幕免费在线视频6| 久久精品国产99精品国产亚洲性色| 少妇猛男粗大的猛烈进出视频 | 欧美国产日韩亚洲一区| 国产精品综合久久久久久久免费| 一区二区三区免费毛片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 精品人妻偷拍中文字幕| 男插女下体视频免费在线播放| 搡老熟女国产l中国老女人| 免费av毛片视频| xxxwww97欧美| 久久久久久九九精品二区国产| 日韩av在线大香蕉| 国产探花在线观看一区二区| 此物有八面人人有两片| 免费高清视频大片| 色综合站精品国产| 露出奶头的视频| 国产一区二区亚洲精品在线观看| 亚洲黑人精品在线| 精品人妻熟女av久视频| 内地一区二区视频在线| 欧美+日韩+精品| 国产成年人精品一区二区| 蜜桃亚洲精品一区二区三区| 国产午夜福利久久久久久| 日本a在线网址| 欧美最黄视频在线播放免费| 2021天堂中文幕一二区在线观| 国产精品爽爽va在线观看网站| 国产伦人伦偷精品视频| 性插视频无遮挡在线免费观看| 性色avwww在线观看| 精品人妻熟女av久视频| 一本精品99久久精品77| 色哟哟哟哟哟哟| 黄色视频,在线免费观看| 性欧美人与动物交配| 看片在线看免费视频| 可以在线观看毛片的网站| 中国美白少妇内射xxxbb| 亚洲最大成人中文| 欧美日韩国产亚洲二区| 免费在线观看影片大全网站| 国产精品久久视频播放| 91在线观看av| 亚洲18禁久久av| 亚洲av电影不卡..在线观看| 少妇人妻一区二区三区视频| 韩国av在线不卡| 欧美日韩黄片免| 男女边吃奶边做爰视频| 国产中年淑女户外野战色| 九九爱精品视频在线观看| 国产色婷婷99| 国产探花在线观看一区二区| 高清在线国产一区| 可以在线观看毛片的网站| 嫩草影视91久久| 日本一二三区视频观看| 国产激情偷乱视频一区二区| 久久热精品热| 黄色日韩在线| 日韩中文字幕欧美一区二区| 在线天堂最新版资源| av在线蜜桃| 搡女人真爽免费视频火全软件 | 嫩草影视91久久| 嫩草影视91久久| 国产乱人视频| 国产 一区精品| 99热只有精品国产| 成人无遮挡网站| 亚洲中文日韩欧美视频| 免费高清视频大片| 精品一区二区三区av网在线观看| 日日撸夜夜添| av黄色大香蕉| 久久这里只有精品中国| 欧美极品一区二区三区四区| 神马国产精品三级电影在线观看| bbb黄色大片| 999久久久精品免费观看国产| 色播亚洲综合网| 中国美白少妇内射xxxbb| 亚州av有码| 欧美丝袜亚洲另类 | 免费无遮挡裸体视频| 亚洲第一区二区三区不卡| 动漫黄色视频在线观看| 99久久中文字幕三级久久日本| 一个人观看的视频www高清免费观看| 禁无遮挡网站| 尤物成人国产欧美一区二区三区| 精品不卡国产一区二区三区| 亚洲熟妇熟女久久| 免费在线观看成人毛片| 成人美女网站在线观看视频| 熟妇人妻久久中文字幕3abv| 三级国产精品欧美在线观看| 欧美日韩精品成人综合77777| 午夜亚洲福利在线播放| 韩国av在线不卡| 国产伦在线观看视频一区| 日韩欧美一区二区三区在线观看| 婷婷丁香在线五月| 午夜福利18| 国产成人aa在线观看| 久久精品91蜜桃| 中国美女看黄片| 成人国产综合亚洲| 琪琪午夜伦伦电影理论片6080| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 夜夜看夜夜爽夜夜摸| 午夜福利在线在线| 欧美精品国产亚洲| 最后的刺客免费高清国语| 色av中文字幕| 国产一区二区三区视频了| 天美传媒精品一区二区| 亚洲人成网站高清观看| 日韩欧美国产一区二区入口| 亚洲成人中文字幕在线播放| 久久久成人免费电影| 亚洲一级一片aⅴ在线观看| 国产黄色小视频在线观看| aaaaa片日本免费| 国产精品不卡视频一区二区| 男女下面进入的视频免费午夜| 夜夜夜夜夜久久久久| 国产爱豆传媒在线观看| 狂野欧美白嫩少妇大欣赏| 麻豆久久精品国产亚洲av| 久久国内精品自在自线图片| 成人国产综合亚洲| 长腿黑丝高跟| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 九色国产91popny在线| 日日啪夜夜撸| 午夜亚洲福利在线播放| 色视频www国产| 国语自产精品视频在线第100页| 一级a爱片免费观看的视频| 国产精品免费一区二区三区在线| 精品乱码久久久久久99久播| videossex国产| 国产成人av教育| 日韩国内少妇激情av| 无遮挡黄片免费观看| 成人国产麻豆网| 国产亚洲av嫩草精品影院| 熟妇人妻久久中文字幕3abv| 午夜福利18| 亚洲国产色片| 特级一级黄色大片| 变态另类丝袜制服| 国产精品伦人一区二区| 国产女主播在线喷水免费视频网站 | aaaaa片日本免费| 日本黄色视频三级网站网址| 露出奶头的视频| 九色国产91popny在线| 国内揄拍国产精品人妻在线| 很黄的视频免费| 波野结衣二区三区在线| 深爱激情五月婷婷| 欧美最黄视频在线播放免费| 国产主播在线观看一区二区| xxxwww97欧美| 一进一出抽搐gif免费好疼| 久久天躁狠狠躁夜夜2o2o| 国产伦在线观看视频一区| 亚洲精品粉嫩美女一区| 亚洲天堂国产精品一区在线| 自拍偷自拍亚洲精品老妇| 美女cb高潮喷水在线观看| 欧美日韩瑟瑟在线播放| 亚洲精品国产成人久久av| 亚洲在线观看片| 久久亚洲精品不卡| 干丝袜人妻中文字幕| 日本免费一区二区三区高清不卡| 国产成人影院久久av| 国产免费男女视频| 综合色av麻豆| 亚洲av成人精品一区久久| 欧美bdsm另类| 午夜激情欧美在线| 国产极品精品免费视频能看的| 欧美zozozo另类| 日韩在线高清观看一区二区三区 | 给我免费播放毛片高清在线观看| 又黄又爽又免费观看的视频| 国产精品爽爽va在线观看网站| 亚洲人成网站高清观看| 在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 欧美三级亚洲精品| 欧美日韩中文字幕国产精品一区二区三区| 99久久成人亚洲精品观看| 最好的美女福利视频网| 在线免费十八禁| 在线观看免费视频日本深夜| av视频在线观看入口| 在线观看舔阴道视频| 亚洲国产欧美人成| 十八禁国产超污无遮挡网站| 男人舔女人下体高潮全视频| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区性色av| 久久天躁狠狠躁夜夜2o2o| 日韩,欧美,国产一区二区三区 | xxxwww97欧美| 国产高潮美女av| 欧美黑人巨大hd| 国产探花极品一区二区| 露出奶头的视频| 免费在线观看日本一区| 久久久久久伊人网av| 免费看日本二区| 人人妻,人人澡人人爽秒播| 好男人在线观看高清免费视频| 麻豆成人av在线观看| 舔av片在线| 啦啦啦观看免费观看视频高清| 国产蜜桃级精品一区二区三区| bbb黄色大片| 日本黄大片高清| 嫁个100分男人电影在线观看| 可以在线观看毛片的网站| 丰满人妻一区二区三区视频av| 精品日产1卡2卡| 国产免费一级a男人的天堂| a级毛片a级免费在线| 又黄又爽又刺激的免费视频.| 欧美bdsm另类| 国产人妻一区二区三区在| 亚洲精品一卡2卡三卡4卡5卡| 久久人人爽人人爽人人片va| 91麻豆av在线| 男女啪啪激烈高潮av片| 在线观看美女被高潮喷水网站| 老女人水多毛片| 久久久成人免费电影| 亚洲欧美精品综合久久99| 97人妻精品一区二区三区麻豆| 日日干狠狠操夜夜爽| 国产探花在线观看一区二区| 国产精品免费一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 一本一本综合久久| 久久久久免费精品人妻一区二区| АⅤ资源中文在线天堂| 老师上课跳d突然被开到最大视频| 悠悠久久av| 久久6这里有精品| 国产亚洲精品av在线| 国产高清视频在线观看网站| 九九爱精品视频在线观看| 美女大奶头视频| 国产69精品久久久久777片| 又粗又爽又猛毛片免费看| 午夜爱爱视频在线播放| 婷婷精品国产亚洲av| 搡老妇女老女人老熟妇| 18+在线观看网站| 成人特级av手机在线观看| 亚洲人成网站高清观看| 日韩欧美一区二区三区在线观看| 校园春色视频在线观看| 91av网一区二区| 亚洲成a人片在线一区二区| av天堂在线播放| 日本色播在线视频| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕日韩| 最后的刺客免费高清国语| 亚洲专区国产一区二区| 99久久无色码亚洲精品果冻| 国产毛片a区久久久久| 欧美成人性av电影在线观看| 国产伦在线观看视频一区| 亚洲精品国产成人久久av| 看片在线看免费视频| 国产成年人精品一区二区| 国内久久婷婷六月综合欲色啪| 午夜a级毛片| 九九爱精品视频在线观看| 精品国产三级普通话版| 中文字幕免费在线视频6| 美女大奶头视频| 如何舔出高潮| 亚洲成人中文字幕在线播放| 如何舔出高潮| 一a级毛片在线观看| 日韩欧美在线二视频| 国产一区二区在线观看日韩| 亚洲欧美精品综合久久99| 亚洲精品成人久久久久久| 又爽又黄无遮挡网站| 国产高潮美女av| 99在线视频只有这里精品首页| 在线观看66精品国产| 91在线精品国自产拍蜜月| 国内精品一区二区在线观看| 日日干狠狠操夜夜爽| 欧美高清成人免费视频www| 亚洲无线在线观看| av专区在线播放| 国产精品一区二区三区四区久久| 国产综合懂色| 久久精品夜夜夜夜夜久久蜜豆| 亚洲四区av| av.在线天堂| 久久午夜福利片| 国产精品一区二区三区四区免费观看 | 真实男女啪啪啪动态图| 国产一区二区在线观看日韩| 在线看三级毛片| 亚洲精品在线观看二区| 国产人妻一区二区三区在| 12—13女人毛片做爰片一| 在现免费观看毛片| 欧美三级亚洲精品| 久久久久国内视频| 特级一级黄色大片| 极品教师在线免费播放| 亚洲成av人片在线播放无| a级毛片a级免费在线| 99热这里只有是精品50| 亚洲av免费在线观看| 国产在线精品亚洲第一网站| 亚洲一级一片aⅴ在线观看| 观看免费一级毛片| 香蕉av资源在线| 真实男女啪啪啪动态图| 美女黄网站色视频| 亚洲第一电影网av| 久久婷婷人人爽人人干人人爱| 亚洲欧美精品综合久久99| av国产免费在线观看| 女人被狂操c到高潮| 深夜a级毛片| 99久国产av精品| 国产一区二区三区av在线 | 午夜免费成人在线视频| 桃色一区二区三区在线观看| 无遮挡黄片免费观看| 欧美成人免费av一区二区三区| 美女免费视频网站| 精品99又大又爽又粗少妇毛片 | 久久精品国产亚洲网站| 欧美日本亚洲视频在线播放| 老司机福利观看| 日韩欧美一区二区三区在线观看| 国产精品一区二区免费欧美| 成年女人永久免费观看视频| 国产激情偷乱视频一区二区| 91久久精品国产一区二区三区| 成人永久免费在线观看视频| 欧美激情在线99| 一区二区三区激情视频| 国产真实乱freesex| 午夜免费成人在线视频| 色av中文字幕| 国产精品国产三级国产av玫瑰| av专区在线播放| 一夜夜www| av天堂中文字幕网| av女优亚洲男人天堂| 久久久午夜欧美精品| 欧美成人免费av一区二区三区| 亚洲综合色惰| 欧美最黄视频在线播放免费| 亚洲性夜色夜夜综合| 欧美不卡视频在线免费观看| 99久久精品国产国产毛片| 久久久久久九九精品二区国产| 两人在一起打扑克的视频| 国产高清激情床上av| 99热6这里只有精品| 免费看a级黄色片| 性欧美人与动物交配| 久久99热这里只有精品18| 亚洲三级黄色毛片| 亚洲精品国产成人久久av| 欧美精品啪啪一区二区三区| 最后的刺客免费高清国语| 老熟妇仑乱视频hdxx| 男人狂女人下面高潮的视频| 久久久成人免费电影| 免费一级毛片在线播放高清视频| 舔av片在线| 中文字幕久久专区| 草草在线视频免费看| 亚洲一区高清亚洲精品| 国内揄拍国产精品人妻在线| 真实男女啪啪啪动态图| 淫秽高清视频在线观看| 国内精品一区二区在线观看| 久久九九热精品免费| av在线观看视频网站免费| 日本三级黄在线观看|