• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋰離子電池硅薄膜電極充電膨脹的有限元仿真及其實驗驗證①

    2017-03-27 10:51:21季家磊朱孔軍劉鵬程錢國明劉勁松
    電池工業(yè) 2017年6期
    關(guān)鍵詞:南京有限元

    季家磊,朱孔軍*, 劉鵬程, 錢國明, 王 裕, 劉勁松

    (1.南京航空航天大學 航空宇航學院, 江蘇 南京 210016;2.廣州大學 機械與電子工程學院,廣東 廣州 510006, 3.南京航空航天大學 材料科學與工程學院,江蘇 南京 210016)

    1 Introduction

    Due to their advantages of high energy density, long life, low toxicity and environmental friendliness, lithium-ion batteries(LIBs) have become the most promising and widely applied rechargeable batteries.[1]LIBs have been widely used in portable electronics such as mobile phone, digital camera, DV, laptop, and (hybrid) electrical vehicles. The theoretical capacity of commercial graphite (used as anode) is only 372mAh/g[2], and can not meet the increasing demands for lithium-ion batteries with high energy density and long cycling life. In recent years, the development of new high capacity anode material has attracted significant interest. It is well known that some elements can electrochemical react with Li with high capacity. Some alloying elements with high theoretical capacities, such as Si, Sn, Ge Al[3-6], and conversion electrodes such as NiO, and Co3O4[7-8],have been studied extensively. Among these material, Si has high theoretical capacity,4100mAh/g, ten times of graphite[9]. However, Si shows a massive volume expansion/contraction during Li+insertion/extraction, larger than 300% after fullly lithium insertion[10]. This causes the pulverization of Si particle and loose contacts between Si particles and current collector, which will further result in mechanical in mechanical instability and poor cyclability[11-13]. To solve such problems, combine Si and inert metal materials which can relieve the huge volume change of Si thin films during lithiation and delithiation. Researchers have made attempts to improve the electrochemical performance of Si thin films as anode material, among which, the introduction of a secondary material is an effective way[14-16].

    In this study, choose secondary materials which have good conductivity and ductility and act as buffer to alleviate the particle pulverization. Use Abaqus to compare the stree and strain in three different thin films(Si, Si-Mn, Si-Zr) during Li+insertion/extraction and analyse the role of the inert metal. Then, fabricate above Si thin films by magnetron supttering. The electrochemical performance of Si film was investgated by cyclic voltammetry and constant current charge/discharge test. The experimental results consist with the simulation. The use of metal material is useful for the cycling performance and Mn is more useful.

    2 Finite Element Model

    Li+insertion will result in a distorted lattice, volumetric expansion, mechanical stresss occures because of the constraint of Cu substrate. The size and stiffness of the substrate(Cu foil) is much lower than Si thin film, the deformation of Cu foil is then much lower than Si thin film and can be neglected, we assume the substrate to be rigid. Cracking and interface debonding are not considered, body force and inertia effects are neglected. Mechaniacl deformaion is thought to be quasi-static because it is much slower than diffusion process.

    An axisymetric finite element model under a cylindrical polar coordinate system(r,θ,z) is used in Abaqus. Si thin film is assumed to be homogeneous and isotropic and be firmly bonded to the rigid substate. Because mechanical stress and diffusion process influence each other, fully coupled thermal-mechanical transient analysis procedure is used. First-order elements are used for the highly nonliner problem, finite element size is set to 1% of the height of Si thin film and fine mesh is used due to stress concentration. To improve convergence of the nonliner problem, liner search algorithm and maximum 5 interations are used.

    There is no diffusion-stress aanalysis in Abaqus,use the method proposed by Prussin[17]as convention. Mechanical response under concetration loading is analogous to that under temperature loading, stress caused by diffusion is analogous to thermal stress.

    Extending the 1D relation given by Prussin[17]to 3D, the constitutive equation for diffudsion-induced deformation of an elastic solid can be expressed

    (1)

    Fig.1 Structure of thin film

    where εij(i,j=1,2,3) are componts of strain tensor; σij(i,j=1,2,3) are componts of stress tensor; c(mol m3) is concentration of diffusion componts; Ω is partial molar volume representing volume expansion caused by diffusion of Li+; E is elastic modulus; υ is posson’s ratio. Stress caused by diffusion is analogous to that caused by temperature gradient, Ω/3 plays the same role as thermal expansion coefficient in thermal stress analysis.

    2.1 Structure and Material

    The model of anode is based on the 2016-type cell which is used to be tested later. The anode of 2016-type cell is wafer thin film The thickness and radius of the Si thin film is D and R, the thickness of transition metal material is d. According to 2016-type cell, R is set to be 6μm. Bourderau S[18]fabricated the Si thin film with 1.2μm which had bad cycling performance, while thin film with 275nm[19]had better cycling performance, thus D is set to be 500nm. Transition metal just works as buffer layer and not participate in LI+insertion/extraction, d is smaller than Si and set to be 200nm(Fig. 1.).

    Based on volumes of lithiated silicon at different Li-Si alloy phases[20], and linear relations between Li fraction and elastic constants[21- 22], dependence of elastic constants on concentration c (fmol mm-3) is expressed.

    E=E0+k1c,υ=υ0+k2c.

    (2)

    Where E0=130Gpa, V0=0.22[23]. k1= -0.13Gpa.μm3fmol-1,k2=-0.00047μm3fmol-1(minus k1、k2represents the soften of Si electrode during lithium intercalation.)

    The choice of transition metal must have good ductility, it acts as the buffer to alleviate the huge expansion, at the same time, it doesn’t act with Li+. Metal choosed here is Mn and Zr.

    2.2 Boundary Condition

    As metioned previous,the structure of the electrode is wafer type and symmetry, also the electrode is surrounded by invariant Li-ion concentration,the electrod can be treated as a symmetric finite model, and for simplify, we choose a section for analysis.

    The initial condition is

    when t=0, c=0.

    (3)

    In potentiostatic operation,the electrode surfaces are surrounded by an invariant Li-ion concentration, cs, so the concentration of Li-ion on the top surface and edge surface is fixed.

    when 0

    (4)

    when 0

    (5)

    Cu foil is rigid substrate and doesn’t take part in Li+diffusion,

    (6)

    Under the cylindrical polar coordinate system, the structure, boundary conditions and loading conditions are all axisymmetric.

    when t>0,r=0, ur=0.

    (7)

    Volume change consistsin stress because of the constraint of substrate. Because the film is firmly adherent to the substrate, there is no lateral displacements occures on the interface.

    when t>0,z=0,ur=uθ=uz=0.

    (8)

    There is no mechanical loading applied on the top surface and side sur face.

    when t>0,在z=h處,σz=0.

    (9)

    when t>0, r=R, z>0, σr=0.

    (10)

    3 Simulation Results

    3.1 Concentratin, Displacement and Stress Fields

    The concentration field before fully insertion is showed in Fig. 2a. Due to the edge diffusion, concention is dependent on radial coordinate. For the central region of the electrode, concentration is dependent on axial displacement.

    The displacement and stress field after fully insertion is showed in Fig. 2b-e. Fig. 2d-e. shows the expansion caused by lithium-ion insertion includes radial extension and bending.

    The radial displacement is concentrated at the edge of the top surface and the maximum radial displacement occures at the edge on the top surface, also there is little radial displacement in the central region of the film.

    The maximum axial displacement occures at the center of the top surface. Axial displacement in the central region can be regarded to be independent of radial coordinate. Due to the fixed constraint of the rigid substrate, negative axial displacement is possible near the edge on the interface. A dome-like morphology is formed due to the axial and lateral expansions.

    Fig.2 Concentration, displacemt and stress fields (a.concentration field, b.stress field, c, d, e. displacement field in equilibrium state) Fig.2b shows the stress caused by lithium-ion insertion mainly occures at the center of the top surface and the edge of the bottom surface.

    3.2 ComparasionofDisplacement/StressFieldsinDifferentSi-MThinFilms

    The displacement after fully insertion is showed in Fig.3. The distribution of displacement in different Si-M electrode is similar. No matter the total displacement or vertional/radial displacement declines while the metal is used.

    Same conclusion can be achieved in the stress fields (Fig. 4). The maximun of von mises of Si-M thin film is less than Si thin film. Both the results of displacement and stress comparasion fields reveals that use of metal is beneficial to the Si anode to experience less destroy during insertion.

    Fig.3 Comparasion of displacement fields (a.total, b.radial, c.axial displacement)

    Fig. 4 Comparasion of stress fields(a.Si, b.Si-Mn,c.Si-Zr)

    4 Experimental Results

    4.1 Experimental

    Si thin films were prepared in an PVD 75 multi-target magnetron sputtering system(KJLC, Co.). The samples were deposited on both Si wafer for thickness measurement and Cu foil for electrochemical measurements. The target was N-type monocrystalline Si with 2 inch diameters and 99.999% purity, Mn with 99.9% purity and Zr with 99.5% purity. The target-substrate distance of the sputtering system was set to be 50mm. After the base pressure reached 8.3×10-4Pa, Ar (99.999%) was introduced into the chamber. The working pressure was kept at 8mtorr. Si thin films were deposited using a constant radio frequency power supply of 100W.The film thickness was controlled by deposition time.The amount of deposited Si was calculated assuming a density of 2.33g·cm-3for the Si thin film.

    The morphology and accurate thickness of Si thin films were measured by the field emission scanning electron microscopy (FSEM, SIGMA, Germany). The phase structure of was analyzed by X-ray diffraction (XRD, Bruker D8 Advance, Germany).

    To evaluate the electrochemical properties of the Si thin film anode, 2025-type half-cells were assembled in an argon-filled glove box with H2O and O2concentrations of less than 1ppm. A lithium metal foil was used as a counter electrode, and Celgard2400 was used as a separator. The electrolyte solution was 1.0 M LiPF6in EC/DEC (1∶1 vol/vol). Cyclic voltammetry measurements were performed using an electrochemical workstation (Princeton PARSTAT MC) at a scan rate of 0.01 mV in the potential range 0V~1.5V.Galvanostatic charge/discharge measurement was carried out using a Land battery test system (LAND CT2001A) with the cut off potentials being 0V versus Li/Li+for discharge and 1.5V versus Li/Li+for charge.

    4.2 Results and Discussion

    Fig.5 SEM images(a.cross-ssection, subface of b.Si, c. Si-Mn, d. Si-Zr)

    The cross-sectional SEM image of Si thin film deposited on a Si wafer is presented in Fig. 5a. The thickness of the dense Si、Mn、Zr can be observed,and the corresponding growth rate can be calculated,finally actual operating time was obtained accoring to the target thickness(Tab 1).

    Table1 SputteringParameter

    Fig.6. shows the XRD pattern of Si thin film deposited on Cu foil. All the diffraction peaks are attributed to the Cu foil, and no peak of Si appears, especially the typical peak for crystal Si at 28°. This indicates that the Si thin film is amorphous.

    Fig.6 XRD patterns of Si thin films

    The L+insertion/extraction reactions of Si thin film were studied by cyclic voltammetry. For all of the three thin films, three cyclic voltammetric curves of the Si thin film are shown in Fig. 7. In the first scanning cycle, there is a cathodic peak at 0.32V, which disappears from the second cycle. This cathodic peak is attributed to the formation of a solid electrolyte interphase (SEI) layer due to decomposition of electrolyte on the film surface. Two cathodic peaks at 0.20V and 0.05V, as well as two anodic peaks at 0.50V and 0.33V, are observed on all three cyclic voltammograms; these are ascribed to the electrochemical reactions of Li+insertion and extraction in the Si thin film. The slight difference in the intensity and the potential for each peak can be attributed to the kinetic effect involved in the cyclic voltammetry measurement.

    Fig.7 Cyclic voltammetry plots (scanning rate 0.1Mv/s,potential range 0V~1.5V, a. Si; b.Si-Mn; c.Si-Zr)

    Fig.8.shows the first three times of the discharge/charge curves. The first discharge capacity of the Si, Si-Mn, Si-Zr thin film is 2045.0mAh·g-1, 2203.1mAh·g-1, 2505.0mAh·g-1, and initial coulombic efficiency is 101.76%, 103.98%, 102.89%. The first and second reversible capacity of the Si-Mn thin film is 1900.3mAh·g-1and 1976.0mAh g-1,for Si-Zr, 1997.0mAh·g-1, 2054.7mAh·g-1,which is much larger than that of a graphite anode(1662.9mAh·g-1, 1692.3mAh· g-1,respectively). The irreversible capacity is attributed to the formation of a SEI layer in the first cycle. In evidence, a SEI-formation voltage plateau is observed near 0.32V, which disappears in the second cycle. This observation is also in good agreement with CV results.

    Fig.8 Discharge/charge curves (a. Si; b.Si-Mn; c.Si-Zr)

    Cycling performance of the Si thin films are shown in Fig. 9 a-c. The first reversible capacity 100mA/g for Si, Si/Mn, Si/Zr is 1692.3mAh/g, 1830.8mAh/g, 1955.6mAh/g respectively, and 71.2%, 83.9%, 88.2% capacity remained after 50 cycles.The introduce of transition metal can enhance both the first reversible capacity and the capacity retention effectively, which proves that the metal can improve the cycling performance of Si thin films. Rate performance of the Si thin films are shown in Fig. 9 d-f.

    Fig.9 Eletronical performance of Si thin films (Cycling performance of a.Si, b. Si-Mn, c. Si-Zr, rate performance of d. Si, e. Si-Mn, f. Si-Zr)

    To further evaluate the performance of Si thin films, the rate capability measurements (Fig. 9d-f) at the quickly increased current density from 0.1A/g to 1A/g were carried out. For Si thin films, the discharge capacity of 2045.3mAh/g, 1413.2mAh/g, 1128.8mAh/g, 919.5mAh/g, 732.7mAh/g can be obtained at 0.1A/g, 0.2A/g, 0.3A/g, 0.5A/g, 1.0A/g, 0.1A/g. For Si-Mn, 2203.1mAh/g, 1718.9mAh/g, 1535.7mAh/g, 1329.6mAh/g, 1044.3mAh/g can be obtained, and for Si/Zr, 2505.0mAh/g, 1859.4mAh/g, 1661.2mAh/g, 1500.6mAh/g, 1117.8mAh/g can be delievered. Although suffering from the rapid change of the current density, the cell can still exhibit a stable cycling at each current. Importantly, 80% of the first reversible capacity can be remained for Si thin film when the current density is turned back to 1A/g, and for Si-Mn, Si-Zr, 89.0% and 92.9% can be remained.It proved that use of metal is beneficial to the electrocal performance again.

    5 Conclusion

    In this article, Si and inert metal is combined to relieve the expansion during Li+insertion/ extraction. Use Abaqus to compare three different Si thin films (Si, Si-Mn, Si-Zr).we found that the use of inert metal reduces the displacement and stress induced during the Li+insertion. Also, Si-M thin film used as anode material.was deposited by magnetron supttering The morphology of the Si-M thin films are similar, and XRD results reveals that the structure of Si thin films is amorphous. The electrochemical performance of Si thin films consistents with the simulation, use of metal can relieve the expansion and result in better cycling and rate performance. Among Mn and Zr, Mn is more useful.

    [1] Goodenough J B, Park K S, The Li-ion Rechargeable Battery: A Perspective[J],American Chemical Society, Journal,2013. 135(4):1167-76.

    [2] Wachtler M, Besenhard J O, Winter M, Tin and tin-based intermetallics as new anode materials for lithium-ion cells[J], Journal of Power Sources, 2001 , 94 (2) :189-193.

    [3] Obrovac M N, Krause L J, Reversible Cycling of Crystalline Silicon Powder[J],Journal of the Electrochemical Society, 2007,154 (2) :A103-A108.

    [4] Graetz J, Ahn C C, Yazami R, and Fultz B, Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities[J], 2004, 151 (5): A698-A702.

    [5] Wolfenstine J,Foster D,Read J, Behl W K, and Luecke W, Experimental confirmation of the model for microcracking during lithium charging in single-phase alloys[J], Journal of Power Sources, 2000 , 87 (1-2) :1-3.

    [6] Liu Y, Hudak N S, Huber D L, Limmer S J, Sullivan J P, and Huang J Y, In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles[J], Nano Letters, 2011, 11 (10) :4188.

    [7] Wang Y, Qin Q Z, A Nanocrystalline NiO Thin-Film Electrode Prepared by Pulsed Laser Ablation for Li-Ion Batteries[J], Journal of the Electrochemical Society, 2002,149 (7):A873-A878.

    [8] Fu Z W, Wang Y, Zhang Y, and Qin Q Z, Electrochemical reaction of nanocrystalline Co3O4, thin film with lithium[J], Solid State Ionics, 2004,170:105-109.

    [9] Huggins R A, Advanced batteries: Materials science aspects[M], SpringerBerlin, 2009.

    [10] Lee S J, Lee J K, Chung S H, Lee H Y, Lee S M, and Baik H K, Stress effect on cycle properties of the silicon thin-film anode[J],Journal of Power Sources, 2001, 97: 191-193.

    [11] Winter M, Besenhard J O, ChemInform Abstract: Electrochemical Lithiation of Tin and Tin‐Based Intermetallics and Composites[J], Electrochimica Acta, 1999. 45:31-50.

    [12] Yoshio M, Tsumura T, Dimov N, Electrochemical behaviors of silicon based anode material[J], Journal of Power Sources, 2006 , 153 (2) :375-379.

    [13] Wang D Y, Wu X D, Wang Z X, and Chen L Q, Cracking causing cyclic instability of lifepo 4, cathode material[J], Journal of Power Sources, 2005, 140 (1) :125-128.

    [14] Datta M K, Maranchi J, Chung S J, Epur R, Kadakia K, and Jampani P, Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries[J], Electrochimica Acta, 2011, 56 :4717-4723.

    [15] Zhou Y N, Li W J, Chen H J, Liu C, Zhang L, and Fu Z, Nanostructured nisi thin films as a new anode material for lithium ion batteries[J], Electrochemistry Communications, 2011,13 (6) :546-549.

    [16] Imai Y, Watanabe A, Energetics of compounds related to Mg 2 Si as an anode material for lithium-ion batteries using first principle calculations[J], Journal of Alloys & Compounds, 2011, 509 (30) :7877-7880.

    [17] Prussin S, Generation and Distribution of Dislocations by Solute Diffusion[J], Journal of Applied Physics, 1961 ,32(10):1876-1881.

    [18] Bourderau S, Brousse T, Schleich D M, Amorphous silicon as a possible anode material for Li-ion batteries[J], Journal of Power Sources, 1999 ,81-82 (9) :233-236.

    [19] Chen L B, Xie J Y, Yu H C, and Wang T H, An amorphous si thin film anode with high capacity and long cycling life for lithium ion batteries[J], Journal of Applied Electrochemistry, 2009 , 39 (8) :1157-1162.

    [20] He Y, Yu X, Li G, Wang R, Li H, and Wang Y, Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J], Journal of Power Sources, 2012 , 216 (11) :131-138.

    [21] Shenoy V B, Johari P, Qi Y, Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration: A first-principles study[J], Journal of Power Sources, 2010, 195 (19) :6825-6830.

    [22] Zeng Z, Liu N, Zeng Q, Ding Y, Qu S, and Cui Y, Elastic moduli of polycrystalline li15si4, produced in lithium ion batteries[J], Journal of Power Sources, (2013), 253 :431-431.

    [23] Hopcroft M A, Nix W D, Kenny T W, What is the Young's Modulus of Silicon[J], Journal of Microelectromechanical Systems, 2010 ,19(2):229-238.

    猜你喜歡
    南京有限元
    南京比鄰
    “南京不會忘記”
    新型有機玻璃在站臺門的應用及有限元分析
    基于有限元的深孔鏜削仿真及分析
    基于有限元模型對踝模擬扭傷機制的探討
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復會 又在大南京
    南京:誠實書店開張
    南京、南京
    磨削淬硬殘余應力的有限元分析
    亚洲欧美成人精品一区二区| 国产综合精华液| 久久久国产一区二区| 一级a做视频免费观看| 亚州av有码| xxx大片免费视频| 在线观看一区二区三区| 国产成人免费观看mmmm| 午夜激情久久久久久久| av又黄又爽大尺度在线免费看| 成人毛片a级毛片在线播放| 欧美变态另类bdsm刘玥| 国产探花极品一区二区| 黄色配什么色好看| 国产欧美亚洲国产| 亚洲精品影视一区二区三区av| 王馨瑶露胸无遮挡在线观看| 91久久精品国产一区二区三区| 精品国产三级普通话版| 亚洲av欧美aⅴ国产| 久久精品国产亚洲av涩爱| 国产淫语在线视频| 久久久久久久国产电影| 色婷婷久久久亚洲欧美| 在线观看国产h片| 3wmmmm亚洲av在线观看| 亚洲精华国产精华液的使用体验| 黄色视频在线播放观看不卡| 欧美精品国产亚洲| 欧美亚洲 丝袜 人妻 在线| 黄色配什么色好看| 欧美成人精品欧美一级黄| 大片免费播放器 马上看| 亚洲综合色惰| 亚洲真实伦在线观看| 成年版毛片免费区| 精品人妻一区二区三区麻豆| 国产精品久久久久久精品电影小说 | 深爱激情五月婷婷| 亚洲精品成人久久久久久| 熟女电影av网| 国产精品国产av在线观看| 国产v大片淫在线免费观看| 久久午夜福利片| 久久久久久国产a免费观看| 国产一区二区在线观看日韩| 99视频精品全部免费 在线| 尤物成人国产欧美一区二区三区| 丝袜脚勾引网站| 久久人人爽av亚洲精品天堂 | 亚洲精品乱码久久久久久按摩| 不卡视频在线观看欧美| 久久久久久久大尺度免费视频| 国语对白做爰xxxⅹ性视频网站| 一本色道久久久久久精品综合| 日韩av不卡免费在线播放| 国产精品久久久久久精品古装| av网站免费在线观看视频| 在线观看一区二区三区激情| 热99国产精品久久久久久7| 啦啦啦在线观看免费高清www| 熟女电影av网| 国产老妇女一区| 69av精品久久久久久| av福利片在线观看| 最近2019中文字幕mv第一页| 国产精品福利在线免费观看| 伦精品一区二区三区| 久热久热在线精品观看| 一级二级三级毛片免费看| 国产 一区精品| 免费大片黄手机在线观看| 亚洲精品456在线播放app| 免费观看性生交大片5| eeuss影院久久| 免费看光身美女| 亚洲人成网站在线播| 欧美激情在线99| 日韩精品有码人妻一区| 国产高清不卡午夜福利| 尤物成人国产欧美一区二区三区| 免费观看无遮挡的男女| 2018国产大陆天天弄谢| 丰满乱子伦码专区| 日本爱情动作片www.在线观看| 五月伊人婷婷丁香| 亚洲成色77777| 国产免费又黄又爽又色| av在线天堂中文字幕| av免费观看日本| 人体艺术视频欧美日本| 久久精品熟女亚洲av麻豆精品| 国产精品久久久久久精品电影小说 | 在线a可以看的网站| 尾随美女入室| 日韩电影二区| 国产日韩欧美亚洲二区| 又爽又黄a免费视频| tube8黄色片| 国产69精品久久久久777片| a级毛片免费高清观看在线播放| 国产精品一区二区性色av| 成年av动漫网址| 少妇人妻精品综合一区二区| 99热这里只有是精品在线观看| 男人狂女人下面高潮的视频| av在线app专区| 久久久久久久亚洲中文字幕| 久久精品熟女亚洲av麻豆精品| 中文资源天堂在线| 精品少妇黑人巨大在线播放| 久久久久久久久久人人人人人人| 人体艺术视频欧美日本| 欧美激情久久久久久爽电影| 国产又色又爽无遮挡免| 久久精品熟女亚洲av麻豆精品| 在线观看人妻少妇| 日本一二三区视频观看| 成人国产麻豆网| 国产成人一区二区在线| 人妻一区二区av| 国产毛片a区久久久久| 日韩欧美 国产精品| 久久99蜜桃精品久久| 日韩不卡一区二区三区视频在线| 亚洲av男天堂| 精品久久国产蜜桃| 国产黄片视频在线免费观看| 免费观看的影片在线观看| 日日摸夜夜添夜夜爱| 欧美日韩国产mv在线观看视频 | 亚洲真实伦在线观看| 亚洲天堂av无毛| 丰满人妻一区二区三区视频av| 五月玫瑰六月丁香| 在线观看国产h片| 亚洲va在线va天堂va国产| 水蜜桃什么品种好| 天堂俺去俺来也www色官网| 高清毛片免费看| 亚洲欧美日韩另类电影网站 | 亚洲成人精品中文字幕电影| freevideosex欧美| 夜夜爽夜夜爽视频| 色吧在线观看| 精品国产露脸久久av麻豆| 九九在线视频观看精品| 国产精品国产三级专区第一集| 亚洲av.av天堂| 一级毛片电影观看| 国产成人a∨麻豆精品| 国产精品嫩草影院av在线观看| 午夜福利视频1000在线观看| 99热6这里只有精品| 熟妇人妻不卡中文字幕| 精品一区二区三卡| 最近最新中文字幕大全电影3| 涩涩av久久男人的天堂| 涩涩av久久男人的天堂| 在线观看一区二区三区激情| 国产片特级美女逼逼视频| av免费在线看不卡| 免费观看在线日韩| 美女脱内裤让男人舔精品视频| 日韩一本色道免费dvd| 久久精品国产自在天天线| 我的女老师完整版在线观看| 校园人妻丝袜中文字幕| 精品一区二区三区视频在线| 成人亚洲精品av一区二区| 日韩一区二区视频免费看| 久久久久久久久久人人人人人人| 黄片wwwwww| 九九久久精品国产亚洲av麻豆| 激情 狠狠 欧美| videossex国产| 99热这里只有精品一区| 国产精品伦人一区二区| av在线观看视频网站免费| 白带黄色成豆腐渣| 久久久久久久亚洲中文字幕| 日本欧美国产在线视频| 国产精品一区www在线观看| 美女cb高潮喷水在线观看| 搡老乐熟女国产| 亚洲高清免费不卡视频| 建设人人有责人人尽责人人享有的 | 精华霜和精华液先用哪个| 日本wwww免费看| 亚洲自偷自拍三级| 精品久久国产蜜桃| 一级毛片久久久久久久久女| 国精品久久久久久国模美| 亚洲av.av天堂| 只有这里有精品99| 国产探花极品一区二区| 在线精品无人区一区二区三 | 全区人妻精品视频| 精品久久久久久久久亚洲| 国产男女内射视频| 久久久久九九精品影院| 超碰97精品在线观看| 久久久精品免费免费高清| 国产成人精品久久久久久| 国产一区二区三区av在线| 最近最新中文字幕免费大全7| 少妇人妻久久综合中文| 九色成人免费人妻av| 亚洲av电影在线观看一区二区三区 | 国产成人免费无遮挡视频| 爱豆传媒免费全集在线观看| 国产亚洲5aaaaa淫片| 国产熟女欧美一区二区| 精品人妻视频免费看| 九色成人免费人妻av| 日韩免费高清中文字幕av| 国产69精品久久久久777片| 亚洲丝袜综合中文字幕| 日韩成人伦理影院| 国产白丝娇喘喷水9色精品| 人体艺术视频欧美日本| 日韩一本色道免费dvd| 自拍偷自拍亚洲精品老妇| av.在线天堂| 日日摸夜夜添夜夜添av毛片| 尤物成人国产欧美一区二区三区| 晚上一个人看的免费电影| 国产日韩欧美在线精品| 国产探花极品一区二区| 神马国产精品三级电影在线观看| 亚洲内射少妇av| 久久久久网色| 18禁动态无遮挡网站| a级毛色黄片| 国产色爽女视频免费观看| 午夜精品一区二区三区免费看| 欧美成人精品欧美一级黄| 久久久色成人| 亚洲aⅴ乱码一区二区在线播放| av在线播放精品| 狂野欧美激情性bbbbbb| 嘟嘟电影网在线观看| 欧美一级a爱片免费观看看| 午夜精品国产一区二区电影 | 禁无遮挡网站| 一区二区三区四区激情视频| 成人无遮挡网站| 国产精品嫩草影院av在线观看| 在线观看人妻少妇| 欧美潮喷喷水| 久久久久久九九精品二区国产| 日韩av免费高清视频| 色婷婷久久久亚洲欧美| 又爽又黄a免费视频| 91午夜精品亚洲一区二区三区| a级毛片免费高清观看在线播放| 免费看日本二区| 人妻制服诱惑在线中文字幕| 免费av毛片视频| 久久久久国产精品人妻一区二区| 熟女av电影| 亚洲熟女精品中文字幕| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 白带黄色成豆腐渣| 菩萨蛮人人尽说江南好唐韦庄| 久久久久九九精品影院| 免费av观看视频| 又大又黄又爽视频免费| 久久精品久久精品一区二区三区| 久久久久久久国产电影| 白带黄色成豆腐渣| 亚洲美女视频黄频| 成人无遮挡网站| 成人美女网站在线观看视频| 国产免费一级a男人的天堂| 精品久久久久久电影网| 国内精品宾馆在线| 天堂俺去俺来也www色官网| 国产欧美日韩精品一区二区| 免费观看av网站的网址| 亚洲国产av新网站| kizo精华| 男女边摸边吃奶| 狂野欧美激情性xxxx在线观看| 国产淫片久久久久久久久| 国产成人精品一,二区| 国产女主播在线喷水免费视频网站| 国产永久视频网站| 搡老乐熟女国产| 青春草国产在线视频| videos熟女内射| 丝瓜视频免费看黄片| 亚洲,欧美,日韩| 久久精品久久久久久噜噜老黄| 一区二区三区免费毛片| 中文字幕人妻熟人妻熟丝袜美| 国产女主播在线喷水免费视频网站| 国产精品精品国产色婷婷| 成年av动漫网址| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区国产| 麻豆成人av视频| 亚洲av.av天堂| 在线免费观看不下载黄p国产| 成人高潮视频无遮挡免费网站| 26uuu在线亚洲综合色| 卡戴珊不雅视频在线播放| 涩涩av久久男人的天堂| 国产精品一区二区性色av| 少妇人妻久久综合中文| 一区二区三区免费毛片| 在线观看一区二区三区激情| 国产伦在线观看视频一区| 婷婷色麻豆天堂久久| 亚洲内射少妇av| 成人二区视频| 夫妻性生交免费视频一级片| 啦啦啦在线观看免费高清www| 午夜激情福利司机影院| 九九爱精品视频在线观看| 午夜免费男女啪啪视频观看| 成人黄色视频免费在线看| av国产久精品久网站免费入址| tube8黄色片| av在线亚洲专区| 纵有疾风起免费观看全集完整版| 日本免费在线观看一区| 国产成人精品久久久久久| xxx大片免费视频| 在线免费十八禁| 久久久精品免费免费高清| av网站免费在线观看视频| 久久久久久国产a免费观看| 成人亚洲精品av一区二区| 九草在线视频观看| 精品久久久久久久久av| 国产精品久久久久久精品电影小说 | 成人黄色视频免费在线看| 欧美少妇被猛烈插入视频| videossex国产| 亚洲久久久久久中文字幕| 亚洲最大成人中文| 亚洲精品视频女| 高清av免费在线| 国产在视频线精品| 男人添女人高潮全过程视频| 九九在线视频观看精品| 汤姆久久久久久久影院中文字幕| xxx大片免费视频| 麻豆成人午夜福利视频| 在线亚洲精品国产二区图片欧美 | 日韩一区二区视频免费看| 亚洲一区二区三区欧美精品 | 联通29元200g的流量卡| 中文天堂在线官网| 天美传媒精品一区二区| 新久久久久国产一级毛片| 国产av码专区亚洲av| 国产亚洲最大av| 亚洲最大成人手机在线| 97在线人人人人妻| 夫妻性生交免费视频一级片| 亚洲伊人久久精品综合| 欧美日韩国产mv在线观看视频 | 免费黄网站久久成人精品| 全区人妻精品视频| 五月玫瑰六月丁香| 免费黄色在线免费观看| 欧美+日韩+精品| 精品一区二区免费观看| 一本久久精品| av专区在线播放| 2021天堂中文幕一二区在线观| 国产精品精品国产色婷婷| 三级国产精品片| 高清视频免费观看一区二区| 免费看a级黄色片| 激情五月婷婷亚洲| 最近手机中文字幕大全| 国产一级毛片在线| 亚洲av中文字字幕乱码综合| 免费av不卡在线播放| 久久精品人妻少妇| 精品久久久久久电影网| 舔av片在线| 精品一区二区三区视频在线| 欧美高清性xxxxhd video| 久热这里只有精品99| 欧美+日韩+精品| 熟女电影av网| 免费看a级黄色片| 美女国产视频在线观看| 国产视频首页在线观看| 亚洲国产av新网站| 国产免费一区二区三区四区乱码| 精品熟女少妇av免费看| 亚洲精品成人久久久久久| 偷拍熟女少妇极品色| 爱豆传媒免费全集在线观看| 亚洲自拍偷在线| 舔av片在线| 免费黄频网站在线观看国产| 日本与韩国留学比较| 久久久久网色| 在线a可以看的网站| 国产黄片视频在线免费观看| 成人美女网站在线观看视频| 日韩中字成人| 黄色视频在线播放观看不卡| 美女脱内裤让男人舔精品视频| 精品久久久久久久久av| 男人狂女人下面高潮的视频| 免费观看av网站的网址| a级毛片免费高清观看在线播放| 国产 一区 欧美 日韩| 只有这里有精品99| 国产精品一区www在线观看| 人人妻人人澡人人爽人人夜夜| 免费大片18禁| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 丝袜喷水一区| 欧美日韩在线观看h| 狂野欧美激情性bbbbbb| 中文字幕久久专区| 国产精品无大码| 久久国内精品自在自线图片| 精品久久久久久久人妻蜜臀av| 一区二区av电影网| 毛片女人毛片| kizo精华| 亚洲伊人久久精品综合| 久久久久精品性色| 国产成人freesex在线| 成人国产av品久久久| 搡女人真爽免费视频火全软件| 久久午夜福利片| 亚洲三级黄色毛片| 国产 一区精品| 亚洲av免费高清在线观看| 国产成人一区二区在线| 我的女老师完整版在线观看| 在线免费观看不下载黄p国产| 三级经典国产精品| 国产精品爽爽va在线观看网站| 久久久久久久国产电影| 在线看a的网站| 国产黄片视频在线免费观看| av在线老鸭窝| 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 欧美变态另类bdsm刘玥| 欧美少妇被猛烈插入视频| 亚洲精品中文字幕在线视频 | 综合色av麻豆| 在线免费观看不下载黄p国产| 成人午夜精彩视频在线观看| 自拍偷自拍亚洲精品老妇| a级毛片免费高清观看在线播放| 婷婷色综合www| 中文在线观看免费www的网站| 三级经典国产精品| 精品国产乱码久久久久久小说| 成人漫画全彩无遮挡| 亚洲精品国产av成人精品| 老师上课跳d突然被开到最大视频| 在线a可以看的网站| 免费av毛片视频| 王馨瑶露胸无遮挡在线观看| 亚洲精品成人av观看孕妇| 熟女电影av网| 日本av手机在线免费观看| 秋霞伦理黄片| 久久久久久久久大av| 欧美3d第一页| 中文天堂在线官网| 美女内射精品一级片tv| 97超碰精品成人国产| 2021天堂中文幕一二区在线观| 热99国产精品久久久久久7| 色综合色国产| 舔av片在线| 可以在线观看毛片的网站| 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 欧美日韩一区二区视频在线观看视频在线 | 不卡视频在线观看欧美| 国产黄a三级三级三级人| 高清在线视频一区二区三区| 精品人妻视频免费看| 国产精品一区www在线观看| 日本-黄色视频高清免费观看| 欧美激情在线99| 久久亚洲国产成人精品v| 中文精品一卡2卡3卡4更新| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 国产精品久久久久久精品电影小说 | 精品99又大又爽又粗少妇毛片| 欧美激情国产日韩精品一区| 舔av片在线| 亚洲天堂国产精品一区在线| 日本与韩国留学比较| 男人爽女人下面视频在线观看| 白带黄色成豆腐渣| 一级二级三级毛片免费看| 小蜜桃在线观看免费完整版高清| 免费看日本二区| 亚洲熟女精品中文字幕| 国产精品一二三区在线看| 免费观看在线日韩| 午夜福利视频1000在线观看| 成人免费观看视频高清| 偷拍熟女少妇极品色| 18+在线观看网站| 国产黄a三级三级三级人| videos熟女内射| 成人国产麻豆网| 久久久久久久大尺度免费视频| 国产黄频视频在线观看| 黄色视频在线播放观看不卡| 欧美三级亚洲精品| 卡戴珊不雅视频在线播放| 欧美人与善性xxx| 久久久精品94久久精品| 男女那种视频在线观看| 国产精品av视频在线免费观看| 亚洲精品中文字幕在线视频 | 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 国产精品久久久久久精品电影| 午夜精品国产一区二区电影 | 欧美国产精品一级二级三级 | 国产成年人精品一区二区| 直男gayav资源| 久久精品久久久久久噜噜老黄| 热re99久久精品国产66热6| 男人舔奶头视频| 久久久久精品性色| 人妻夜夜爽99麻豆av| 高清欧美精品videossex| 美女脱内裤让男人舔精品视频| 国产免费视频播放在线视频| 伊人久久精品亚洲午夜| 久久97久久精品| 伊人久久精品亚洲午夜| 欧美性感艳星| 日韩成人伦理影院| 成人特级av手机在线观看| 可以在线观看毛片的网站| 黑人高潮一二区| 亚洲天堂国产精品一区在线| 少妇人妻 视频| 亚洲国产成人一精品久久久| av播播在线观看一区| 亚洲精品第二区| 亚洲精品亚洲一区二区| 亚洲欧美中文字幕日韩二区| 免费观看在线日韩| 久久国内精品自在自线图片| 色网站视频免费| 大片免费播放器 马上看| 色综合色国产| 69av精品久久久久久| 亚洲最大成人中文| 一区二区三区四区激情视频| 免费看光身美女| 午夜免费鲁丝| 国产精品99久久久久久久久| 一级二级三级毛片免费看| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 夫妻午夜视频| 80岁老熟妇乱子伦牲交| 97在线视频观看| 精品久久久久久久人妻蜜臀av| 色哟哟·www| 免费人成在线观看视频色| 日韩av免费高清视频| 成人一区二区视频在线观看| 一级片'在线观看视频| 男人添女人高潮全过程视频| 2018国产大陆天天弄谢| 日韩电影二区| 久久人人爽人人爽人人片va| 大又大粗又爽又黄少妇毛片口| 国产av不卡久久| 人人妻人人看人人澡| 听说在线观看完整版免费高清| 国产成人一区二区在线| 校园人妻丝袜中文字幕| 亚洲最大成人中文| 亚洲aⅴ乱码一区二区在线播放| 女人久久www免费人成看片| 色播亚洲综合网| 免费av不卡在线播放| 能在线免费看毛片的网站| 亚洲欧美精品自产自拍| 日韩免费高清中文字幕av| 亚洲电影在线观看av| 亚洲最大成人手机在线| av在线蜜桃| 最近2019中文字幕mv第一页| 亚洲精品亚洲一区二区| 国产精品国产三级国产专区5o| 亚洲欧美精品专区久久| 香蕉精品网在线| 视频区图区小说| 中文字幕人妻熟人妻熟丝袜美| 日韩大片免费观看网站| 欧美潮喷喷水| 在线观看国产h片| 在线精品无人区一区二区三 |