鄒廣平諶 赫 唱忠良
(哈爾濱工程大學(xué)航天與建筑工程學(xué)院,哈爾濱150001)
一種基于SHTB的II型動(dòng)態(tài)斷裂實(shí)驗(yàn)技術(shù)1)
鄒廣平2)諶 赫 唱忠良3)
(哈爾濱工程大學(xué)航天與建筑工程學(xué)院,哈爾濱150001)
沖擊剪切載荷作用下動(dòng)態(tài)斷裂韌性的測(cè)定是材料力學(xué)性能和斷裂行為研究中重要組成部分.為了測(cè)定材料的II型動(dòng)態(tài)斷裂韌性,許多學(xué)者采用不同的試樣與實(shí)驗(yàn)方法進(jìn)行了實(shí)驗(yàn),但限于實(shí)驗(yàn)條件,裂紋斷裂模式往往是I+II復(fù)合型,而不是純II型,因而不能準(zhǔn)確測(cè)得材料的II型動(dòng)態(tài)斷裂韌性.鑒于此,本文基于分離式霍普金森拉桿(split Hopkinson tension bar,SHTB)實(shí)驗(yàn)技術(shù),提出一種改進(jìn)的緊湊拉伸剪切(modifie compact tension shear,MCTS)試樣,通過(guò)夾具對(duì)MCTS試樣施加約束,從而保證試樣按照純II型模式斷裂.采用實(shí)驗(yàn)--數(shù)值方法對(duì)MCTS試樣動(dòng)態(tài)加載過(guò)程進(jìn)行分析,將實(shí)驗(yàn)測(cè)得的波形輸入有限元軟件ANSYS-LSDYNA,得到了裂紋尖端應(yīng)力強(qiáng)度因子--時(shí)間曲線(xiàn),并與緊湊拉伸剪切(compact tension shear,CTS)試樣進(jìn)行了對(duì)比.同時(shí)采用數(shù)字圖像相關(guān)法進(jìn)行了實(shí)驗(yàn),驗(yàn)證了有限元分析結(jié)果.結(jié)果表明,MCTS試樣在整個(gè)加載過(guò)程中KI?KII,裂紋沒(méi)有張開(kāi);而CTS試樣在同樣的加載過(guò)程中KI>KII,出現(xiàn)裂紋張開(kāi)現(xiàn)象.這說(shuō)明MCTS試樣能夠準(zhǔn)確地測(cè)定材料的II型動(dòng)態(tài)斷裂韌性,為材料動(dòng)態(tài)力學(xué)測(cè)試提供了一種有效的實(shí)驗(yàn)技術(shù).
動(dòng)態(tài)加載技術(shù),改進(jìn)的緊湊拉伸剪切試樣,分離式霍普金森拉桿,II型動(dòng)態(tài)斷裂韌性,應(yīng)力強(qiáng)度因子,數(shù)字圖像相關(guān)法
在工程應(yīng)用中,研究材料在動(dòng)態(tài)載荷作用下的力學(xué)性能和斷裂行為是十分必要的.目前研究者提出的斷裂準(zhǔn)則中大多涉及I型與II型斷裂韌性.因此II型動(dòng)態(tài)斷裂韌性的測(cè)定是材料斷裂行為研究中重要的部分.
實(shí)現(xiàn)動(dòng)態(tài)加載的方式有:高速試驗(yàn)機(jī)加載[1-2],落錘或擺錘加載[3-4]和霍普金森桿加載[5-9].由于高速試驗(yàn)機(jī)能達(dá)到的加載速率有限,而落錘加載又不可避免地出現(xiàn)振動(dòng)現(xiàn)象,難以準(zhǔn)確測(cè)得試樣所受到的載荷,故常用霍普金森桿測(cè)量材料動(dòng)態(tài)斷裂韌性.很多學(xué)者采用不同的試樣和加載方式對(duì)材料的II型動(dòng)態(tài)斷裂韌性進(jìn)行了測(cè)試,其中李玉龍等[10]針對(duì)層間斷裂測(cè)試方法做了較為全面的綜述.這些測(cè)試方法詳見(jiàn)1.1節(jié).
II型斷裂韌性測(cè)試最大的難點(diǎn)是如何實(shí)現(xiàn)II型加載.雖然這些測(cè)試方法各有創(chuàng)造性,但沒(méi)有考慮到在加載過(guò)程中裂紋是否會(huì)張開(kāi),因而無(wú)法保證試樣的斷裂是純II型.
鑒于此,本文提出一種改進(jìn)的緊湊拉伸剪切(modifie compact tension shear,MCTS)試樣,通過(guò)夾具來(lái)保證加載過(guò)程中試樣為純II型斷裂,并采用有限元分析與實(shí)驗(yàn)相結(jié)合方法驗(yàn)證其有效性.
1.1 幾種典型的II型動(dòng)態(tài)斷裂測(cè)試方法
Kusaka等[11-13]采用分離式霍普金森壓桿(split Hopkinson pressure bar,SHPB)對(duì)單邊開(kāi)口彎曲試樣(end notched fl xure,ENF)進(jìn)行三點(diǎn)彎曲加載.如圖1所示.
ENF試樣可以看作簡(jiǎn)支梁,由于層間擠壓,裂紋不會(huì)張開(kāi),因此試樣所受到的載荷是純II型的.但這3種動(dòng)態(tài)加載方式存在一個(gè)共同的問(wèn)題,那就是試樣與桿會(huì)出現(xiàn)脫離接觸現(xiàn)象[14-16],那么應(yīng)變片測(cè)得的載荷不能準(zhǔn)確反映試樣所受的載荷,因此結(jié)果是不準(zhǔn)確的.
圖1 SHPB加載ENF試樣示意圖Fig.1 SHPB apparatus and ENF specimen
Lambros等[17]和Wu等[18]針對(duì)單邊裂紋試樣(single edge notch,SEN),采用動(dòng)態(tài)剪切沖擊方法研究II型層間斷裂,如圖2(a)所示.很明顯,由于桿對(duì)試樣的作用力不僅有剪力,同時(shí)還有相對(duì)于裂紋面的彎矩,因此試樣受到的載荷不是純II型,而是I+II復(fù)合型.Wu等[18]計(jì)算得到的動(dòng)態(tài)應(yīng)力強(qiáng)度因子如圖2(b)所示(圖像經(jīng)過(guò)處理).可見(jiàn)I型應(yīng)力強(qiáng)度因子的最大值約為II型應(yīng)力強(qiáng)度因子最大值的1/5,顯然不能忽略.
圖2 SEN試樣與實(shí)驗(yàn)結(jié)果Fig.2 SEN specimen and dynamic SIF
圖2 SEN試樣與實(shí)驗(yàn)結(jié)果(續(xù))Fig.2 SEN specimen and dynamic SIF(continued)
Sohn等[19]采用雙裂紋試樣,在兩端加以固定,通過(guò)擺錘沖擊加載,示意圖見(jiàn)圖3.有限元分析表明,在兩側(cè)完全約束且兩裂紋完全對(duì)稱(chēng)分布的情況下,兩裂紋均為純II型斷裂.實(shí)驗(yàn)過(guò)程中約束和載荷的完全對(duì)稱(chēng)是很難保證的.
圖3 雙裂紋試樣示意圖Fig.3 Schematic diagram of dual-crack specimen
Wen等[20]基于分離式霍普金森拉桿(split Hopkinson tension bar,SHTB)裝置設(shè)計(jì)了一種薄片狀切口試樣,見(jiàn)圖4.
圖4 薄片狀切口試樣Fig.4 Thin plane notched specimen
這種試樣通過(guò)膠粘直接連在桿端部,從而排除了夾具造成的影響.但由于試樣本身不對(duì)稱(chēng),在拉力作用下會(huì)產(chǎn)生相對(duì)于裂紋面的彎矩,因此也無(wú)法保證純II型斷裂.
沈昕慧[21]采用了緊湊拉伸剪切(compact tension shear,CTS)試樣與夾具,基于SHTB裝置進(jìn)行了復(fù)合型動(dòng)態(tài)斷裂實(shí)驗(yàn),如圖5所示.由于夾具尺寸比試樣大并且形狀不規(guī)則,因此它對(duì)波形的影響較為顯著.有限元分析表明,在應(yīng)力波通過(guò)試樣--夾具系統(tǒng)時(shí),夾具和試樣會(huì)發(fā)生較為明顯的振動(dòng),無(wú)法保證試樣的斷裂是純II型的.
圖5 CTS試樣與夾具示意圖Fig.5 Schematic diagram of CTS specimen and clamp
綜上所述,為了得到材料在純剪切載荷作用下的斷裂韌性,必須盡可能減小裂紋尖端I型應(yīng)力強(qiáng)度因子,以保證裂紋為純II型斷裂.因此理想的試樣應(yīng)該滿(mǎn)足以下條件:(1)便于預(yù)制疲勞裂紋;(2)能夠保證裂紋的斷裂模式為純II型;(3)與之匹配的夾具形狀較為簡(jiǎn)單,尺寸不太大.
1.2 MCTS試樣與夾具
作者參考了圓盤(pán)狀緊湊拉伸試樣[23],重新設(shè)計(jì)了試樣與夾具,命名為MCTS試樣.如圖6所示.
MCTS試樣與夾具示意圖見(jiàn)圖6,厚度為5mm.夾具 2個(gè)一組,從兩個(gè)方向通過(guò)銷(xiāo)釘與 MCTS試樣和 SHTB實(shí)驗(yàn)裝置相連接.約束裝置限制了試樣垂直于裂紋面方向的位移,這樣可以保證試樣沒(méi)有繞著裂尖的轉(zhuǎn)動(dòng),從而保證了試樣的斷裂是純II型的.
圖6 MCTS試樣與夾具示意圖Fig.6 Schematic diagram of MCTS specimen and clamp
2.1 實(shí)驗(yàn)--數(shù)值方法
王自強(qiáng)等[24]介紹了一種根據(jù)裂紋面位移計(jì)算應(yīng)力強(qiáng)度因子的數(shù)值方法,Xu等[25]將這種數(shù)值方法應(yīng)用于實(shí)驗(yàn)中,提出了實(shí)驗(yàn)--數(shù)值方法.在塑性區(qū)外,裂紋尖端位移場(chǎng)在如圖7所示的坐標(biāo)系內(nèi)表達(dá)
圖7 裂尖坐標(biāo)系統(tǒng)Fig.7 Coordinate system of crack tip
式(1)中坐標(biāo)系如圖7所示,ν0為泊松比,μ為材料剪切模量.
令θ=±π,即可得到裂紋上下表面的位移表達(dá)式為
由于圖7所示的坐標(biāo)系為局部坐標(biāo)系,而有限元計(jì)算過(guò)程中坐標(biāo)系為整體坐標(biāo)系,為了避免坐標(biāo)變換,因此需要通過(guò)裂紋上下表面相對(duì)位移來(lái)求應(yīng)力強(qiáng)度因子.令 Δu=u(r,π,t)-u(r,-π,t),Δv=v(r,π,t)-v(r,-π,t),可以推出裂紋尖端應(yīng)力強(qiáng)度因子的表達(dá)式為
式(3)適用于較為靠近裂尖的節(jié)點(diǎn),但由于常規(guī)單元無(wú)法反映出裂紋尖端應(yīng)力的奇異性,因此對(duì)于非??拷鸭y尖端的節(jié)點(diǎn),計(jì)算結(jié)果是不準(zhǔn)確的.因此需要在裂尖附近采用精細(xì)的網(wǎng)格劃分,作出K-r曲線(xiàn),將曲線(xiàn)平直部分延長(zhǎng)到縱軸,取其截距為裂尖應(yīng)力強(qiáng)度因子的值[26].
2.2 有限元分析結(jié)果對(duì)比
本節(jié)采用有限元軟件 ANSYS LS-DYNA對(duì)MCTS試樣進(jìn)行分析,通過(guò)裂紋上下表面的相對(duì)位移來(lái)計(jì)算MCTS試樣動(dòng)態(tài)應(yīng)力強(qiáng)度因子,并與CTS試樣進(jìn)行對(duì)比,進(jìn)而證明這種試樣的合理性.
MCTS試樣的有限元模型如圖8所示.單元類(lèi)型為solid164單元.試樣單元個(gè)數(shù)為42000個(gè).試樣與夾具的幾何尺寸見(jiàn)圖6,入射桿和透射桿的長(zhǎng)度為3m,直徑為15mm,材料參數(shù)見(jiàn)表1.圖8中試樣的上下表面均施加了y方向上的約束,以保證試樣不發(fā)生轉(zhuǎn)動(dòng).為便于分析,在入射桿端部截面上73個(gè)節(jié)點(diǎn)上施加相同的載荷.圖9為實(shí)驗(yàn)測(cè)得的入射波形,根據(jù)應(yīng)力值可以算出作用于每個(gè)節(jié)點(diǎn)在任意時(shí)刻的載荷,作為有限元的輸入載荷.
圖8 MCTS試樣有限元模型Fig.8 Finite element model of MCTS specimen
表1 有限元模型材料屬性Table 1 Material properties of finit element model
圖9 實(shí)測(cè)入射波形Fig.9 Detected incident pulse in test
從距離裂尖1mm的節(jié)點(diǎn)開(kāi)始,在裂紋上下表面向外取相鄰7組對(duì)應(yīng)的節(jié)點(diǎn),如圖10所示.這7點(diǎn)在t=0.8ms時(shí)的應(yīng)力強(qiáng)度因子如圖11所示,圖11橫坐標(biāo)為節(jié)點(diǎn)到裂尖距離.可見(jiàn)這些點(diǎn)的應(yīng)力強(qiáng)度因子很接近線(xiàn)性分布.根據(jù)文獻(xiàn)[26],將其擬合直線(xiàn)的截距取為裂紋尖端應(yīng)力強(qiáng)度因子.應(yīng)力強(qiáng)度因子隨時(shí)間變化規(guī)律如圖12所示.
圖10 裂紋面節(jié)點(diǎn)Fig.10 Nodes on crack surface
圖11 裂紋面節(jié)點(diǎn)應(yīng)力強(qiáng)度因子計(jì)算值Fig.11 SIF of nodes on crack surface
圖12 MCTS試樣裂紋尖端應(yīng)力強(qiáng)度因子Fig.12 SIF of MCTS specimen at crack tip
相對(duì)應(yīng)地,采用同樣的材料參數(shù)和載荷對(duì)CTS試樣進(jìn)行了有限元分析.CTS試樣的有限元模型參見(jiàn)圖13.在裂紋尖端區(qū)域采用與MCTS試樣相同的網(wǎng)格劃分,并取相同的節(jié)點(diǎn)計(jì)算動(dòng)態(tài)應(yīng)力強(qiáng)度因子.結(jié)果見(jiàn)圖14.
圖13 CTS試樣有限元模型Fig.13 Finite element model of CTS specimen
圖14 CTS試樣裂紋尖端應(yīng)力強(qiáng)度因子Fig.14 SIF of CTS specimen at crack tip
考察MCTS試樣裂尖應(yīng)力強(qiáng)度因子變化過(guò)程可以發(fā)現(xiàn),I型應(yīng)力強(qiáng)度因子先減小后增大,其最大值約為0.79MPa·m1/2,與II型應(yīng)力強(qiáng)度因子相比可以忽略不計(jì),說(shuō)明在整個(gè)加載過(guò)程中,MCTS試樣裂紋基本沒(méi)有張開(kāi);而CTS試樣裂紋尖端I型應(yīng)力強(qiáng)度因子在t=1ms前小于零,由式(3)可知裂紋閉合.而在t=1ms開(kāi)始急劇增大,其變化幅度非常大,其最大值甚至超過(guò)了II型應(yīng)力強(qiáng)度因子的最大值.即CTS試樣裂紋先閉合,后張開(kāi).由此可見(jiàn),CTS試樣無(wú)法保證裂紋為純II型斷裂,MCTS試樣則可以保證.
為了驗(yàn)證 MCTS試樣的有效性,本文采用數(shù)字圖像相關(guān)法 (digital image correlation,DIC),基于SHTB實(shí)驗(yàn)裝置進(jìn)行了實(shí)驗(yàn)驗(yàn)證,并與有限元結(jié)果進(jìn)行對(duì)比.
DIC方法最早由Peters等[27]與Yamaguchi等[28]提出,其基本原理是分析試樣表面散斑相對(duì)位置的變化,從而計(jì)算出試樣表面位移場(chǎng)與應(yīng)變場(chǎng).與其他光學(xué)測(cè)量方法相比,DIC具有光路簡(jiǎn)單,對(duì)測(cè)量環(huán)境要求不高等優(yōu)點(diǎn),在沖擊、動(dòng)態(tài)斷裂等領(lǐng)域有廣泛的應(yīng)用[29-30].
3.1 實(shí)驗(yàn)裝置
為保證試樣斷裂模式為純II型,需要在垂直于裂紋方向施加約束,而沿著桿的方向上不受約束.約束裝置如圖15所示.其中兩側(cè)導(dǎo)軌與底板、橫梁組成框架結(jié)構(gòu)以提高整體剛度;MCTS試樣與滑塊密切接觸,滑塊與導(dǎo)軌之間嵌有滾珠以降低摩擦,起到約束垂直位移而不約束桿方向位移的作用.
圖15 MCTS試樣約束裝置Fig.15 Constrain apparatus of MCTS specimen
DIC實(shí)驗(yàn)裝置由高速攝影機(jī)和冷光源組成,如圖16所示.圖17為噴涂了散斑的MCTS試樣.
SHTB實(shí)驗(yàn)裝置示意圖見(jiàn)圖18,子彈通過(guò)時(shí)間間隔儀時(shí)觸發(fā)示波器,同時(shí)高速攝影機(jī)開(kāi)始工作,當(dāng)拍攝的幀數(shù)達(dá)到攝影機(jī)容量上限時(shí)自動(dòng)停止.高速攝影幀率為80000幀每秒,總計(jì)100000幀.得到的圖像采用Vic-2d圖像處理軟件進(jìn)行分析.
圖16 DIC實(shí)驗(yàn)裝置Fig.16 DIC apparatus
圖17 噴涂散斑的MCTS試樣Fig.17 Speckled MCTS specimen
圖18 SHTB實(shí)驗(yàn)裝置示意圖Fig.18 Schematic diagram of SHTB apparatus
3.2 實(shí)驗(yàn)結(jié)果
圖19與圖20顯示的是MCTS試樣在t=0.75ms至t=0.9ms時(shí)的應(yīng)變場(chǎng).其中t=0對(duì)應(yīng)著子彈剛剛撞擊法蘭的時(shí)刻,即有限元分析的起始時(shí)刻.圖19與圖20中應(yīng)變的單位為微應(yīng)變.根據(jù)彈性力學(xué)理論,位移與應(yīng)變的關(guān)系為
圖19 MCTS試樣x方向應(yīng)變場(chǎng)Fig.19 Strain fiel of MCTS specimen inx-direction
圖20 MCTS試樣y方向應(yīng)變場(chǎng)Fig.20 Strain fiel of MCTS specimen iny-direction
理論上DIC可以測(cè)得試樣表面的位移場(chǎng)與應(yīng)變場(chǎng),但由于圖像處理軟件計(jì)算的位移場(chǎng)會(huì)出現(xiàn)一定程度的不連續(xù)現(xiàn)象,而計(jì)算應(yīng)變場(chǎng)時(shí)應(yīng)用了smooth算法,減小了這種不連續(xù)性,故給出試樣的應(yīng)變場(chǎng),根據(jù)式(4)反演出位移場(chǎng),代入式(1)即可得到裂紋尖端應(yīng)力強(qiáng)度因子,如圖21所示.
根據(jù)實(shí)驗(yàn)結(jié)果計(jì)算出來(lái)的應(yīng)力強(qiáng)度因子與有限元計(jì)算的應(yīng)力強(qiáng)度因子相比,II型應(yīng)力強(qiáng)度因子峰值約偏小5%,但整體趨勢(shì)相同.其中I型應(yīng)力強(qiáng)度因子的數(shù)值遠(yuǎn)小于II型應(yīng)力強(qiáng)度因子.這證明了MCTS試樣的斷裂模式為純II型.
圖21 MCTS試樣裂紋尖端應(yīng)力強(qiáng)度因子實(shí)驗(yàn)值Fig.21 Detected SIF of MCTS specimen at crack tip
基于SHTB實(shí)驗(yàn)裝置對(duì)CTS試樣進(jìn)行了改進(jìn),提出一種新型緊湊拉伸剪切試樣.并且通過(guò)有限元方法分析了MCTS試樣與CTS試樣裂紋尖端應(yīng)力強(qiáng)度因子隨時(shí)間變化關(guān)系.有限元結(jié)果表明,在垂直于裂紋面的方向上施加約束能夠保證裂紋的斷裂模式為純II型.采用DIC方法進(jìn)行的實(shí)驗(yàn)也驗(yàn)證了這一點(diǎn),可見(jiàn)MCTS試樣相對(duì)于CTS試樣以及其他類(lèi)型的II型動(dòng)態(tài)斷裂試樣具有突出的優(yōu)越性.
1 Blackman B,Kinloch A,Wang Y,et al.The failure of fibr composites and adhersively bonded fibr composites under high rates of test.Journal of Material Science,1996,31(17):4451-4466
2 Blackman B,Kinloch A,Ro driguez-Sanchez FS,et al.The fracture behavior of adhersively bonded composite joints:Ef f ects of rate of test and mode of loading.International Journal of Solid and Structures,2012,49(13):1434-1452
3 Todo M,Nakamura T,Takashi K.Mode II interlaminar fracture behavior of fibe reinforced polyamide composites under static and dynamic loading conditions.Journal of Reinforced Plastics and Composites,1999,18(15):1415-1427
4 Todo M,Nakamura T,Mada T,et al.Measurement of dynamic interlaminar fracture toughness of FRP laminates using dynamic displacement measuring apparatus.Advanced Composite Materials, 1998,7(3):285-297
5 Iqbal MA,Senthil K,Sharma P,et al.An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material.International Journal of Impact Engineering, 2016,96:146-164
6 許澤建,丁曉燕,張煒琪等.一種用于材料高應(yīng)變率剪切性能測(cè)試的新型加載技術(shù).力學(xué)學(xué)報(bào),2016,48(3):654-659(Xu Zejian, Ding Xiaoyan,Zhang Weiqi,et al.A new loading technique for measuring shearing properties of materials under high strain rates.ChineseJournalofTheoreticalandAppliedMechanics,2016,48(3):654-659(in Chinese))
7 于金程,劉正,董陽(yáng)等.高應(yīng)變速率下Mg-Gd-Y鎂合金動(dòng)態(tài)拉伸性能與失效行為.沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào),2015,37(6):650-655(Yu Jincheng,Liu Zheng,Dong Yang,et al.Dynamic tensile properties and failure behavior of Mg-Gd-Y alloy at high strain rates.Journal of Shenyang University of Technology,2015,37(6):650-655(in Chinese))
8 鄒廣平,沈昕慧,趙偉玲等.SHTB加載緊湊拉伸試樣斷裂韌性測(cè)試仿真.哈爾濱工程大學(xué)學(xué)報(bào),2015,36(7):917-921(Zou Guangping,Shen Xinhui,Zhao Weiling,et al.Numerical simulation of dynamic fracture toughness tests on the compact tension specimen loaded by SHTB.Journal of Harbin Engineering University,2015, 36(7):917-921(in Chinese))
9 Xia KW,Yao W.Dynamic rock tests using split Hopkinson(Kolsky) bar system—A review.Journal of Rock Mechanics and Geotechnical Engineering,2015,7(1):27-59
10 李玉龍,劉會(huì)芳.加載速率對(duì)層間斷裂韌性的影響.航空學(xué)報(bào), 2015,36(8):2620-2650(Li Yulong,Liu Huifang.Loading rate ef f ect on interlaminar fracture toughness.Acta Aeronautica et Astronautica Sinica,2015,36(8):2620-2650(in Chinese))
11 Kusaka T,Hojo M,Mai YW,et al.Rate dependence of mode I fracture behavior in carbon-fibe/epoxy composite laminates.Composite Science and Technology,1998,58(3-4):591-602
12 Kusaka T,Kurokawa T,Hojo M,et al.Evaluation of mode II interlaminar fracture composite of laminates under impact loading.Key Engineering Materials,1997,141-143:477-500
13 Kusaka T,Yamaguchi Y,Kurokawa T.Ef f ect of strain rates on mode II interlaminar fracture toughness in carbon-fibe/epoxy laminated composites.Journal of Physics IV France,1994,4(8):671-676
14 Jiang F,Vecchio KS.Hopkinson bar loaded fracture experimental technique:A critical review of dynamic fracture toughness tests.Applied Mechanics Reviews,2009,62(6):1-39
15 Yokoyama T,Kishida K.A novel impact three-point bend test method for determining dynamic fracture initiation toughness.Experimental Mechanics,1989,29(2):188-194
16 Rubio L,Fernandez-Saze J,Navarro C.Determination of dynamic fracture initiation toughness using three-point bending tests in a modifie Hopkinson pressure bar.Experimental Mechanics,2003, 43(2):379-386
17 LambrosJ,RosakisAJ.Dynamiccrackinitiationandgrowthinthick unidirectional graphite/epoxy plates.Composite Science and Technology,1997,57(1):413-421
18 Wu XF,Dzenis YA.Determination of dynamic delamination toughness of a graphite-fibe/epoxy composite using Hopkinson bar.Polymer Composites,2005,26(2):165-180
19 Sohn MS,Hu XZ.Impact and high strain rate delamination characteristics of carbon fibe epoxy composites.Theoretical and Applied Fracture Mechanics,1996,25(1):17-29
20 Wen X,Lu F,Chen R,et al.Experimental studies on mixed-mode dynamic fracture behaviour of aluminium alloy plates with narrow U-notch.Fatigue and Fracture of Engineering Materials and Structures,2016,39(11):1379-1390
21 沈昕慧.應(yīng)力波加載下材料動(dòng)態(tài)斷裂韌性相關(guān)實(shí)驗(yàn)技術(shù)研究.[博士論文].哈爾濱:哈爾濱工程大學(xué),2016(Shen Xinhui.Investigation on dynamic fracture toughness experimental technique under stress wave load.[PhD Thesis].Harbin:Harbin Engineering University,2016(in Chinese))
22 Richard HA.A new compact shear specimen.International Journal of Fracture,1981,17(5):105-107
23 Anderson TL.Fracture Mechanics,Foundations and Applications. Boca Raton,CRC Press,1991
24 王自強(qiáng),陳少華.高等斷裂力學(xué).北京:科學(xué)出版社,2009:43-76(Wang Ziqiang,Chen Shaohua.Advanced Fracture Mechanics. Beijing:Science Press,2009:43-76(in Chinese))
25 Xu Z,Li Y.A novel method in determination of dynamic fracture toughness under mixed mode I/II impact loading.International Journal of Solids and Structures,2012,49:366-376
26 酈正能.應(yīng)用斷裂力學(xué).北京:北京航空航天大學(xué)出版社,2012:64-72(Li Zhengneng.Applied Fracture Mechanics.Beijing:Beihang University Press,2012:64-72(in Chinese))
27 Peters WH,Ranson WH.Digital imaging technique in experimental mechanics.Opt Eng,1982,21(3):427-431
28 Yamaguchi I.Speckle displacement and deformation in the dif f raction and image field for small object deformation.Opt Acta,1981,28(10):1359-1376
29 周忠彬,陳鵬萬(wàn),黃風(fēng)雷.PBX材料宏細(xì)觀斷裂行為的數(shù)字散斑相關(guān)法實(shí)驗(yàn)研究.高壓物理學(xué)報(bào),2011,25(1):1-7(Zhou Zhongbin,Chen Pengwan,Huang Fenglei.An experimental study on the micro/macro fracture behavior of PBX using digital speckle correlation method.Chinese Journal of High Pressure Physics,2011, 25(1):1-7(in Chinese))
30 鄒廣平,汪艷偉,唱忠良等.基于數(shù)字散斑相關(guān)法的緊湊拉伸試樣斷裂韌性實(shí)驗(yàn)研究.實(shí)驗(yàn)力學(xué),2015,30(3):275-281(Zou Guangping, Wang Yanwei, Chang Zhongliang, et al. Experimental study of compact tension specimen fracture toughness based on digital speckle correlation method. Journal of Experimental Mechanics,2015, 30(3): 275-281 (in Chinese))
A MODIFIED MODE II DYNAMIC FRACTURE TEST TECHNIQUE BASED ON SHTB1)
Zou Guangping2)Chen He Chang Zhongliang3)
(College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin150001,China)
Dynamic fracture toughness under impact shear loading is an essential aspect in fracture behavior and mechanical property of material.Experiments have been done by several researchers using dif f erent specimens and test methods in order to measure mode II fracture toughness.But due to crack opening during loading process,the results obtained in these tests are not mode II but mixed mode I+II.Since crack opening are not be considered,dynamic shear fracture toughness of material can not be accurately detected.In view of this problem,a modifie compact tension shear(MCTS) specimen based on split Hopkinson tension bar(SHTB)apparatus is proposed in this paper.The specimen was constrained with special designed clamp to prevent crack opening,so mode II fracture are ensured.Numerical analysis was carried out using experimental-numerical method.The incident pulse detected in test are introduced in ANSYS-LSDYNA as input pulse.Stress intensity factor at crack tip of MCTS specimen was calculated by relative displacement of corresponding nodes on crack surface in two directions.Simulation of compact tension shear(CTS)specimen was also done with same incident pulse as control.In addition,experimental study was also carried out using digital image correlation method based on SHTB apparatus to validate numerical results.Experimental results shows that during loading process,MCTS specimen ensuresKI?KIIand crack opening are not observed.However,for same incident pulse,the maximum mode I stress intensity factor of CTS specimen is even higher than mode II.Which indicates that dynamic shear fracture toughness of material can be measured ef f ectively using MCTS specimen.This work provides an ef f ective and convenient test technique for evaluating dynamic properties of a certain material.
dynamic loading method,MCTS specimen,SHTB,dynamic fracture toughness,stress intensity factor,digital image correlation method
O347.4
A doi:10.6052/0459-1879-16-239
2016-08-29收稿,2016-11-26錄用,2016-11-29網(wǎng)絡(luò)版發(fā)表.
1)國(guó)家自然科學(xué)基金資助項(xiàng)目(11372081).
2)鄒廣平,教授,主要研究方向:動(dòng)態(tài)斷裂力學(xué).E-mail:gpzou@hotmail.com
3)E-mail:czl19820228@163.com
鄒廣平,諶赫,唱忠良.一種基于SHTB的II型動(dòng)態(tài)斷裂實(shí)驗(yàn)技術(shù).力學(xué)學(xué)報(bào),2017,49(1):117-125
Zou Guangping,Chen He,Chang Zhongliang.A modifie mode II dynamic fracture test technique based on SHTB.Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):117-125