• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flexural-gravity wave resistances due to a moving point source on 2-D infinite floating beam *

    2017-03-14 07:06:35JisuoLi李繼鎖DongqiangLu盧東強(qiáng)

    Ji-suo Li (李繼鎖), Dong-qiang Lu (盧東強(qiáng)),2,3

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,E-mail: jsli_shu@yeah.net

    2. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072,China

    3. Shanghai Key Laboratory of Mechanics in Engineering, Shanghai University, Shanghai 200072, China

    Introduction

    A very large floating structures (VLFS) is often used as an aircraft runway or a wind turbine power plant in the ocean engineering. VLFS has two basic hull types: the pontoon-type and the semi-submersible-type[1]. In the present work, we consider the pontoon-type VLFS only. In order to estimate operational safety, we need a theory to describe the wave resistance due to a moving load on the VLFS. A useful model is to idealize VLFS as a thin viscoelastic plate and the water as an inviscid incompressible fluid[2,3]. The vehicles and aircrafts on the VLFS can be modeled as a surface-moving source, which is associated with the Dirac delta function[2,4-6]. It has been demonstrated that this physical model provides possibility to get analytical solutions.

    The wave resistance for a moving load has been a topic of interest. The generation of capillary-gravity waves due to a concentrated load was well studied in last decades. Applying the method of the Fourier integral transform and the stationary phase method,Raphael and De Gennes[7]derived the capillarygravity wave resistance equation for the source speed U larger than the minimal phase speedminc . Rather than assuming the fluid to be inviscid, Richard and Raphael[8]studied the effect of viscosity on the capillary-gravity wave resistance for the uniform velocity, and found that the wave resistance remains bounded as U approachesminc , unlike the prediction by the inviscid theory. A non-straight motion source was recently studied by Chepelianskii et al.[9]who investigated theoretically and experimentally the capillary-gravity wave resistance created by a small steel needle moving at the water-air interface along a circular trajectory, and demonstrated no critical velocity exists for a steady circular motion. The finite wave resistance exists even for U <cmin, and the similar phenomena was also found by Closa et al.[10]who investigated a load with accelerated and decelerated rectilinear motions.

    All the above-mentioned work is concerned with capillary-gravity waves. As is well known, the flexural- and capillary-gravity waves have some similar characteristics in view of their dispersion relation.So the flexural-gravity wave resistance can be studied like the capillary-gravity one[11]. A well-known monograph by Squire et al.[12]was devoted to the rich topic of moving sources on the thin plate. Davys et al.[5]studied the wave patterns caused by a steadily moving point source, and found that the short-wavelength elastic waves propagate ahead while the long gravity waves appear behind. A further investigation was conducted by Schulkeset al.[13]who considered the effects of a lateral stress imposed on the plate, a uniform flow in the underlying water and the stratification of the underlying water. It showed that the internal wave remains a variety of wave patterns in a two-layer model and the laminar water increases the wave resistance. Yeung and Kim[14]studied the effects of a translating load on a plate, and found the transition of the drag near the critical speed. For a thin viscoelastic plate, Hosking et al.[2]investigated dynamic response of the plate to a steady moving source with a two-parameter memory function to express the viscoelastic behavior of the plate, and concluded that a small viscoelastic dissipation produces a lag behind the load. More complicated physical model was studied by Wang et al.[6]who derived the timedependent response of a viscoelastic plate to an impulsively started moving load. For the viscoelastic thin plate model, Kozin and Pogorelova[15]studied the linear Maxwell and Kelvin-Voigt models, and a generalized Maxwell-Kelvin model, concluding the calculate results agree with the experimental ones.Matiushinaet al.[16]analyzed the deflections of the ice cover during the landing of the airplane. Recently, Lu and Zhang[17]provided the analytical solutions of the flexural-gravity wave resistance due to a surfacemoving line source on a thin elastic plate.

    There are many other researchers who investigated the flexural-gravity wave due to a surfacemoving source on a fluid covered by a thin plate. But most of their investigations were just concentrated on the wave profile. A major motivation for this study is that some features of the flexural-gravity wave has not been satisfactorily described by the elastic theory,such as the lag position of maximum depression behind the source[18]. The flexural-gravity wave resistance due to a moving load on an inviscid fluid covered by VLFS are studied in this paper. The moving load and VLFS are simulated by concentrated line source and a thin viscoelastic plate, respectively.The deflection of VLFS is described by the linear equation of thin viscoelastic plate, and the Kelvin-Voigt model is chosen to describe this viscoelastic plate. In order to make our calculation more precise,we consider two types of motion for the moving load,namely a uniform straight motion and an accelerated straight motion. By applying the method of the Fourier transform, the integral solutions for the surface deflections and the flexural-gravity wave resistances are obtained. In order to analyze the dynamic characteristics of the flexural-gravity waves,the asymptotic representation for the uniform straight motion is explicitly obtained by the residue theorem.With the method of stationary phase, the corresponding asymptotic solutions are derived for large time during the accelerated straight motion.

    1. Mathematical formulation

    The infinite homogenous viscoelastic plate floating on the fluid is investigated. The fluid is assumed to be incompressible, inviscid and the motion be irrotational. Let d andeρ denote the thickness and density of the plate, respectively. The -xaxis coincides with the plate-water interface while the -zaxis points upwards. The undisturbed fluid surface is at z = 0 and the impenetrable bed is at z = - H , as shown in Fig.1.

    Fig.1 A single fluid of finite depth covered by an infinite viscoelastic beam

    Let (,,)x z tφ represent the water velocity potential, then the governing equation satisfy the Laplace equation

    For the ocean of finite depth, the boundary condition at the no-permeability bottom is given by

    Let ζ(x, t) represent the vertical deflection of the thin plate subjected to a downward external load- Pext(x, t ). The period of the flexural-gravity wave is assumed to be much smaller than the relation time of plate. Thus the VLFSis modeled by athin viscoelasticplate. Following ,we usea linearretarded elastic Kelvin-Voigt medium to describe the thin viscoelastic plate. Then the linearized kinematical and dynamical conditions at z = 0 are written as

    where D = Ed3/[1 2 (1-ν2)] is the flexural rigidity of the plate, E and ν are Young’s modulus and Possion’s ratio, respectively[19], ρ is the density of the fluid, τφ= η /E is the retardation time[3], η is the viscosity of the plate, M=ρed is the mass coefficient of plate. Obviously, Eq.(4) expresses the balance between the viscoelastic force and inertial force of the plate, the hydrodynamic force of the fluid and the downward external load.

    In order to solve the forementioned equations, we introduce the Fourier transform

    Applying the Fourier transforms to the combined equation of Eqs.(3) and (4), we can get

    Obviously, Eq.(8) represents the dispersion relation between ω and k for the flexural-gravity wave motion on the elastic plate floating on an inviscid fluid.

    2. Wave responses due to a steadily moving load

    2.1 The ocean of finite depth

    We consider a concentrated load steadily moving along a straight line with a constant speed U in the positive -xdirection[2,10,17,20]. Then the external load function reads

    where δ(·) is the Dirac delta function and=. Substituting Eq.(10) into Eq.(6), we obtain the equation for the plate deflection, which can be solved by looking for the steady-state solutions with the form e-iαUt. Then the deflection function is

    According to Kim and Webster[21], the wave resistance R on the moving load is calculated by the formula

    where

    wheresR denotes the steady-state wave resistance,and =/ckω is the phase speed of the flexuralgravity wave motion on the elastic plate. For the travelling wave in the thin viscoelastic plate, the wave length is much larger than the thickness of the plate.

    We assume 1kσ?, neglecting the accelerated term of the plate or 0σ→ in the following discussion[18].The wave resistance equation reduces to

    where

    with τ = g/ Lτφ, l = U2/g and L =γ1/4

    Equation (14) can be evaluated by the residue theorem. The non-dimension retardation time τ will be used as the perturbation parameter throughout the asymptotic analysis. For small τ, we assume the solution for Q (α)=0 takes the form of α=α0+iτα1, where α1is associated with the viscoelastic dissipation. Substituting α into Eq.(15), one obtains

    where

    According to Lu and Zhang[17], no far-field wave exists for U <cmin. We only consider the case for U≥cmin. As>U>cmin, there are two zeros of Q(α), denoted by αp,j, which are given as

    where

    where

    Once the zeros of ()Qαare worked out from Eq.(17), the residue theorem, according to Lighthill[22],can be used to calculate the wave resistance as follows

    2.2 The ocean of infinite depth

    For a finite value of H, we only have numerical solution for αp,jand αo,min. As H trends to ∞,we have exact analytical solution as follows.

    When U >cmin, two real roots for B(α) = 0,denoted by α0,j, can be analytically expressed by[17]

    where

    When U =cmin, there is only one real root, denoted by α =(3γ )-1/4. By substituting α into0,min0,minEq.(21), the zero point can be obtained.

    A graphical representation of Eq.(23) is shown in Fig.2, for the case of infinite depth. The wave resistance due to a moving load on a fluid covered by a thin viscoelastic plate is discontinuous with U = cmin.The wave resistance is zero when U <cmin. The source speed is too small to produce the far-field wave motion[10]. As U >cmin, after the wave resistance reaches the peak of the curve and then decreases monotonously as U increases. This phenomenon is very similar to the characteristic of the capillarygravity wave resistance due to a slow moving object which was studied by Closa et al.[10]with the aid of asymptotic and numerical techniques. The dynamical similarity between the flexural- and capillary-gravity waves was studied by Lu and Dai[11]and is confirmed here for the wave resistance. Furthermore, a larger τ will produce a less wave resistance for the same speed.The effects of viscoelastic dissipation become heavy as U increases.

    Fig.2 (Color online) Non-dimensional wave resistance R/( /ρ gL2)vs. U/ c min

    3. Wave responses due to an unsteadily moving load

    3.1 The ocean of finite depth

    Now, we consider the case that the load moving on the viscoelastic plate is suddenly accelerated to a constant velocity U at =0t[6,10]. Accordingly the external load function reads

    where H (·) is the Heaviside unit step function. We have P ?ext= P0H( t)e-iαUt.

    It is assumed that there are no initial elevation or speed at the plate-fluid interface. Equation (6) is solved with the initial conditions

    With the initial conditions Eq.(28), the deflection function becomes

    where

    and sgn()α is the sign function of α.

    By inserting Eq.(29) into Eq.(12), the wave resistance ()R t becomes

    where

    It is difficult to calculate Eq.(33) directly. We evaluate I( t) and Rsseparately. It is noted Rshas been given by Eq.(14). By applying the method of stationary phase, Eq.(34) is evaluated from the main contribution at the points of stationary phase.

    For simplicity the subscript “2” in ψ2(k)is hereinafter neglected. With thephysical parameters typical givenby Squire et al.[12], E =5 GPa,ν = 0.3, d =2.5 m, H = 350 m , ρ=1024 kg/m3and ρ=917 kg/m3, a graphical representation for

    ethe phase speed cand the group speed cgis shown in Fig.3, where cg= ? ω/?k. From Fig.3, we can see ψ( k ) has no stationary points when U <cgmin. ψ(k)is a monotonic decreasing function of k. It means that I( t) decays exponentially and approaches to the steady state relatively rapidly.

    As U =cgmin, ψ(k) has an inflexion point at k=ks, and ψ(k) is expanded at k=ksby the Taylor series expansion[11]. For U ≈cgmin, one obtains

    where ψs= ψ ( ks), ψs′ = ψ ′(ks) and ψs′= ψ ′(ks).By substituting Eq.(35) into Eq.(34), I( t)can be analytically expressed as

    where

    Arg{·} is the argument function, Ai(·) the Airy func- tion, and Gi(·) the Scorer function[23].

    When cgmin<U<cmin, ψ(k) has two stationary points, denoted by ks1and ks2. We have

    By applying the method of stationary phase[22],()I t can be obtained as follows

    where

    When the source speed U is equal to the critical velocityminc , it is a complex case from the mathematical viewpoint. ()kψ has two positive stationary points and one of them coincides with one zero point of ()kψ ats2k(see Fig.3). The contour of integral ()I t should be deformed to avoid this singularity points2k . ()I tcan be evaluated by the method of steepest descent ats1=k k[22]. Then the asymptotic expression for ()I t froms1=k kcan be given by

    To find the asymptotic expansion for I( t)nearby k = ks2, we use the method which was derived by Schulkeset al.[4]. For the positive pole ks2, z=i(k - ks2) and the Taylor series expansion ofψ(k)at k = ks2is inserted into I( t) to obtain

    where

    the subscript “s2 ” denotes the values of I( t) at k =ks2, and csis an contour apart from k =ks2.Then the asymptotic expansion for Is2(t) takes the form

    where

    Now, we have

    As cmin< U <, Eq.(34) has two positive poles, denoted by k =kz1and k = kz2at which ψ≈0, and two stationary points ks1and ks2for ψ. In order to give the asymptotic expansion of I( t) nearby the stationary points, the method of steepest descent is used. The contour of I( t) is deformed near the real axis and together with four steepest-descent links across the points of stationary phase, such that ψ (k)will have no zeros in the new contour. Now I( t)is given by

    Fig.3 (Color online) c and gc vs. k. Note that the wave number scale is logarithmic

    cois contour apart from k =ko. Then the asymptotic expansion is obtained

    where

    By combining the above equation, the asymptotic expansion of I( t) is found as I ( t) = Is2( t) + Io(t).

    When cmin<U <, ψ2(k) has one point of stationary phase at k =ks2and one zero point at k=kz2. The method for the case with cmin<U<can be applied to evaluate the wave resistance nearby k =ks2and k =kz2.

    3.2 The ocean of infinite depth

    In this section, we consider the cases for the ocean of finite depth. When U =cgmin, ψ(k) has an inflexion point ks. Now the analytical formula for ksis given by

    In combination with Eq.(36), a graphical representation of the wave resistance is shown in Fig.4(a).We can see that when the moving source is suddenly accelerated, the wave resistances appear and decay rapidly with time. Eventually the wave resistances approach to zero.

    When cgmin<U<cmin, ψ(k) has two stationary points, ks1and ks2, which can be given by

    where

    where

    By inserting Eq.(62) into Eq.(42), an analytical form of the wave resistance is obtained. Figure 4(b)shows the wave resistance versus time. Obviously, the wave resistances attenuate rapidly after the first peak and approach to zero exponentially with alternating signs. Comparing with Fig.4(a), we can see that the amplitude of the wave resistance becomes larger when the source speed approaches to cmin. Mathematically, when U is nearby cminwith the wave number approaching to the pole of the integrand, the integral value becomes large. Physically, when U→cmin, the wave energy will accumulate instead of radiation. The flexural-gravity wave resistance becomes large. Moreover, a larger τ has larger energy dissipation, as shown in Fig.4(b).

    As U =cmin, ψ(k) has two stationary points ks1and ks2and ks2coincides with one zero point of ψ at kmin, where

    Fig.4 (Color online) Non-dimensional wave resistance R/( /ρ gL2)vs. t for various source speeds

    Substituting Eq.(71) into Eqs.(45) and (50), we get the flexural-gravity wave resistance. A graphical representation for the wave resistance is shown in Fig.4(c). The initial wave resistance is extremely large.The physical reason is that the energy continuously accumulate instead of radiate at this critical speed,U = cmin=cg, and the similar physical explanation for wave profile has been given by Davys et al.[5]. In addition, the inset highlights that the wave resistance decaying is an extraordinarily slow process. However,the viscoelastic dissipation eventually makes the wave resistance return to the steady state.

    For U >cmin, ψ(k) has two stationary points at k =ks1, ks2and two zero points at k =kz1, kz2.Thus analytical solutions for the stationary points become

    where

    Andm=1/k L. Then ()I t is obtained from Eq.(54).The wave resistance is shown inFig.4(d).

    4. Conclusion

    In this article, the flexural-gravity wave resistance responses to a surface-moving line source undergoing a rectilinear uniform or accelerated motion is analytically studied within the framework of linear potential theory. Asymptotic solutions are derived by means of the residue theorem and the method of stationary phase. It is found that the velocity threshold exists for the uniform straight motion in this thin viscoelastic plate model, while the wave resistance is zero for the subcritical speed. The flexural-gravity waves consist of the steady-state and transient component during the accelerated straight motion. When the source speed is less than the minimal group velocity,only the transient-state wave resistance exists and the wave resistance decays to zero at last. When the source speed is equal to the minimal phase speed, the transient wave resistance is extremely large and decays very slowly with time due to the viscoelastic dissipation. When the source speed is close to the minimal phase speed, the amplitude of the wave resistance becomes large. It also shows that larger retardation time will dissipate more energy and the wave resistance will decay to the steady-state wave resistance much faster.

    [1] Suzuki H., Bhattacharya B. Very large floating structures[M]. Boca Raton, USA: CRC Press, 2007, 397-398.

    [2] Hosking R. J., Sneyd A. D., Waugh D. W. Viscoelastic response of a floating ice plate to a steadily moving load[J]. Journal of Fluid Mechanics, 1988, 196: 409-430.

    [3] Pogorelova A. V. Plane problem of the impact of several shock pulses on a viscoelastic plate floating on a fluid surface [J]. Journal of Applied Mechanics and Technical Physics, 2010, 51(2): 155-163.

    [4] Schulkes R. M. S. M., Sneyd A. D. Time-dependent response of floating ice to a steadily moving load [J]. Journal of Fluid Mechanics, 1988, 186: 25-46.

    [5] Davys J. W., Hosking R. J., Sneyd A. D. Waves due to a steadily moving source on a floating ice plate [J]. Journal of Fluid Mechanics, 1985, 158: 269-287.

    [6] Wang K., Hosking R. J., Milinazzo F. Time-dependent response of a floating viscoelastic plate to an impulsively started moving load [J]. Journal of Fluid Mechanics, 2004,521: 295-317.

    [7] Raphael E., De Gennes P. G. Capillary-gravity waves caused by a moving disturbance: Wave resistance [J].Physical Review E, 1996, 53(4): 3448-3455.

    [8] Richard D., Raphael E. Capillary-gravity waves: The effect of viscosity on the wave resistance [J]. Europhysics Letters, 1999, 48(1): 49-52.

    [9] Chepelianskii A. D., Chevy F., Raphael E. Capillarygravity waves generated by a slow moving object [J].Physical Review Letters, 2008, 100(7): 074504.

    [10] Closa F., Chepelianskii A. D., Raphael E. Capillarygravity waves generated by a sudden object motion [J].Physics of Fluids, 2010, 22(5): 052107.

    [11] Lu D. Q., Dai S. Q. Flexural-and capillary-gravity waves due to fundamental singularities in an inviscid fluid of finite depth [J]. International Journal of Engineering Science, 2008, 46(11): 1183-1193.

    [12] Squire V., Hosking R. J., Kerr A. D. et al. Moving loads on ice plates [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1996, 105-106.

    [13] Schulkes R. M. S. M., Hosking R. J., Sneyd A. D. Waves due to a steadily moving source on a floating ice plate.Part 2 [J]. Journal of Fluid Mechanics, 1987, 180: 297-318.

    [14] Yeung R. W., Kim J. W. Effects of a translating load on a floating plate-structural drag and plate deformation [J].Journal of Fluids and Structures, 2000, 14(7): 993-1011.

    [15] Kozin V. M., Pogorelova A. V. Effect of the viscosity properties of ice on the deflection of an ice sheet subjected to a moving load [J]. Journal of Applied Mechanics and Technical Physics, 2009, 50(3): 484-492.

    [16] Matiushina A. A., Pogorelova A. V., Kozin V. M. Effect of impact load on the ice cover during the landing of an airplane [J]. International Journal of Offshore and Polar Engineering, 2016, 26(1): 6-12.

    [17] Lu D. Q., Zhang H. Flexural-gravity wave resistances due to a surface-moving line source on a fluid covered by a thin elastic plate [J]. Theoretical and Applied Mechanics Letters, 2013, 3(2): 022002.

    [18] Nugroho W. S., Wang K., Hosking R. J. et al. Timedependent response of a floating flexible plate to an impulsively started steadily moving load [J]. Journal of Fluid Mechanics, 1999, 381: 337-355.

    [19] Kozin V. M., Pogorelova A. V. Wave resistance of amphibian aircushion vehicles during motion on ice fields [J].Journal of Applied Mechanics and Technical Physics,2003, 44(2): 193-197.

    [20] Lu D. Q., Chwang A. T. Unsteady free-surface waves due to a submerged body moving in a viscous fluid [J].Physical Review E, 2005, 71(6): 066303.

    [21] Kim J. W., Webster W. C. The drag on an airplane taking off from a floating runway [J]. Journal of Marine Science and Technology, 1998, 3(2): 76-81.

    [22] Lighthill J. Waves in fluids [M]. Cambridge, UK: Cambridge University Press, 2001.

    [23] Vallee O., Soares M. Airy functions and applications to physics [M]. Singapore: World Scientific, 2004, 27-30.

    国内精品宾馆在线| 国产国语露脸激情在线看| 高清视频免费观看一区二区| 热re99久久精品国产66热6| 亚洲欧洲精品一区二区精品久久久 | 久久午夜福利片| 搡女人真爽免费视频火全软件| 久久精品人人爽人人爽视色| 久久精品国产鲁丝片午夜精品| 最近手机中文字幕大全| 精品午夜福利在线看| 22中文网久久字幕| 考比视频在线观看| 国产精品久久久久久精品古装| 日韩成人av中文字幕在线观看| 波多野结衣一区麻豆| 国产在线视频一区二区| 少妇的丰满在线观看| 边亲边吃奶的免费视频| 成年女人在线观看亚洲视频| 少妇 在线观看| 亚洲精品久久午夜乱码| 一区二区av电影网| 国产精品久久久久久久电影| 免费人成在线观看视频色| 三级国产精品片| 久久午夜福利片| 亚洲欧洲日产国产| 亚洲精品,欧美精品| 久久久国产精品麻豆| 成年女人在线观看亚洲视频| 国产精品一二三区在线看| 国产1区2区3区精品| 亚洲欧洲日产国产| 亚洲精品色激情综合| 亚洲国产精品专区欧美| 18在线观看网站| 日韩熟女老妇一区二区性免费视频| 国产成人午夜福利电影在线观看| 熟妇人妻不卡中文字幕| 水蜜桃什么品种好| 又黄又粗又硬又大视频| 在线观看美女被高潮喷水网站| 成人国产av品久久久| 成年女人在线观看亚洲视频| 天天躁夜夜躁狠狠躁躁| 免费黄色在线免费观看| 国产在视频线精品| 综合色丁香网| 一级a做视频免费观看| 波多野结衣一区麻豆| 中文字幕人妻丝袜制服| 黄色配什么色好看| 久久国产精品男人的天堂亚洲 | 免费观看av网站的网址| 久久久久精品人妻al黑| 精品国产一区二区三区四区第35| 妹子高潮喷水视频| 在线亚洲精品国产二区图片欧美| 免费黄色在线免费观看| 午夜免费鲁丝| 18禁裸乳无遮挡动漫免费视频| 一区在线观看完整版| 永久免费av网站大全| 欧美老熟妇乱子伦牲交| 男女午夜视频在线观看 | 久久人妻熟女aⅴ| 欧美激情国产日韩精品一区| 深夜精品福利| 亚洲精品久久成人aⅴ小说| 在线亚洲精品国产二区图片欧美| 少妇熟女欧美另类| 一本大道久久a久久精品| av国产久精品久网站免费入址| 欧美日韩视频高清一区二区三区二| 国产激情久久老熟女| 日韩大片免费观看网站| 十分钟在线观看高清视频www| 久久精品国产自在天天线| 欧美精品一区二区免费开放| 满18在线观看网站| 人体艺术视频欧美日本| 亚洲在久久综合| 午夜福利,免费看| 亚洲国产看品久久| 内地一区二区视频在线| 少妇 在线观看| 2021少妇久久久久久久久久久| 青青草视频在线视频观看| 亚洲国产精品专区欧美| 日本与韩国留学比较| 男女下面插进去视频免费观看 | 国产精品一区二区在线不卡| 一本—道久久a久久精品蜜桃钙片| 国产一区二区在线观看日韩| 久久久久久久久久久久大奶| 免费高清在线观看日韩| 色5月婷婷丁香| 亚洲欧美色中文字幕在线| 亚洲av在线观看美女高潮| 亚洲人与动物交配视频| 亚洲四区av| 一级毛片我不卡| 亚洲情色 制服丝袜| 精品一区在线观看国产| 亚洲国产av新网站| 黄片无遮挡物在线观看| 熟女电影av网| 色94色欧美一区二区| 国产探花极品一区二区| 亚洲欧美色中文字幕在线| 亚洲精品一区蜜桃| 国产精品蜜桃在线观看| 建设人人有责人人尽责人人享有的| 美女国产高潮福利片在线看| 国产片特级美女逼逼视频| 精品久久久精品久久久| 久久韩国三级中文字幕| av在线播放精品| 黄片播放在线免费| 狂野欧美激情性xxxx在线观看| 高清av免费在线| 大片电影免费在线观看免费| 亚洲内射少妇av| 男女边吃奶边做爰视频| 国产精品欧美亚洲77777| 中国三级夫妇交换| 久久这里只有精品19| 亚洲国产av影院在线观看| 欧美日韩精品成人综合77777| 91午夜精品亚洲一区二区三区| kizo精华| 十八禁高潮呻吟视频| 日本91视频免费播放| 熟女人妻精品中文字幕| 久久韩国三级中文字幕| 日韩中字成人| 这个男人来自地球电影免费观看 | 高清av免费在线| 爱豆传媒免费全集在线观看| 国产精品人妻久久久影院| 少妇人妻久久综合中文| 99热国产这里只有精品6| 少妇被粗大猛烈的视频| 欧美精品一区二区免费开放| 亚洲激情五月婷婷啪啪| 91国产中文字幕| 天天躁夜夜躁狠狠久久av| 日本-黄色视频高清免费观看| 婷婷色麻豆天堂久久| 日本与韩国留学比较| 欧美亚洲 丝袜 人妻 在线| 91午夜精品亚洲一区二区三区| 国产福利在线免费观看视频| 久久人妻熟女aⅴ| 99国产综合亚洲精品| 最近中文字幕2019免费版| 久久久久精品人妻al黑| 亚洲精品美女久久av网站| 日韩,欧美,国产一区二区三区| 亚洲欧美成人精品一区二区| 欧美变态另类bdsm刘玥| 成人午夜精彩视频在线观看| 国产成人精品一,二区| av在线老鸭窝| 亚洲图色成人| 高清毛片免费看| 韩国精品一区二区三区 | 欧美日本中文国产一区发布| 国产精品不卡视频一区二区| 18禁国产床啪视频网站| 男人添女人高潮全过程视频| 精品一区二区三卡| 久久婷婷青草| 国产精品人妻久久久久久| 亚洲性久久影院| 久久久久久久久久成人| 久久av网站| 国产成人午夜福利电影在线观看| 蜜桃在线观看..| 欧美激情国产日韩精品一区| 久久久久精品人妻al黑| 国产精品一区二区在线观看99| 黑丝袜美女国产一区| 国产福利在线免费观看视频| 人成视频在线观看免费观看| 免费人妻精品一区二区三区视频| 又大又黄又爽视频免费| 免费观看a级毛片全部| 国产一区二区在线观看av| 男女边吃奶边做爰视频| 欧美性感艳星| 午夜91福利影院| 欧美日韩av久久| 国产一级毛片在线| 亚洲国产欧美日韩在线播放| 高清在线视频一区二区三区| 亚洲欧美色中文字幕在线| 亚洲丝袜综合中文字幕| 宅男免费午夜| 咕卡用的链子| 精品少妇内射三级| 在线观看免费高清a一片| 精品少妇久久久久久888优播| 午夜久久久在线观看| 最近最新中文字幕免费大全7| 亚洲美女黄色视频免费看| 18在线观看网站| av网站免费在线观看视频| 日韩视频在线欧美| 天天影视国产精品| 乱码一卡2卡4卡精品| 日日啪夜夜爽| 久久精品国产亚洲av天美| 亚洲国产成人一精品久久久| 丰满少妇做爰视频| av电影中文网址| 亚洲av免费高清在线观看| 久久韩国三级中文字幕| 亚洲成人手机| 免费观看性生交大片5| 色视频在线一区二区三区| 99久久中文字幕三级久久日本| 欧美bdsm另类| 极品人妻少妇av视频| 国产精品偷伦视频观看了| 国产一区二区三区av在线| 最黄视频免费看| 少妇人妻久久综合中文| 精品一区二区免费观看| 黑人高潮一二区| 五月玫瑰六月丁香| 五月玫瑰六月丁香| 青青草视频在线视频观看| 观看美女的网站| 久久人人爽av亚洲精品天堂| 激情五月婷婷亚洲| 中国国产av一级| 黑人猛操日本美女一级片| 综合色丁香网| 丝袜美足系列| 亚洲四区av| 老司机影院成人| 亚洲欧美中文字幕日韩二区| 一级黄片播放器| 欧美亚洲日本最大视频资源| 如何舔出高潮| 国产爽快片一区二区三区| 女人被躁到高潮嗷嗷叫费观| 久久久久久久国产电影| videos熟女内射| 免费黄频网站在线观看国产| 日韩电影二区| a级片在线免费高清观看视频| 亚洲成av片中文字幕在线观看 | 国产极品天堂在线| 亚洲精品自拍成人| 如日韩欧美国产精品一区二区三区| 中文精品一卡2卡3卡4更新| 日韩成人av中文字幕在线观看| 9热在线视频观看99| 日韩一区二区三区影片| 日日啪夜夜爽| 免费黄频网站在线观看国产| 秋霞在线观看毛片| 晚上一个人看的免费电影| 亚洲丝袜综合中文字幕| 99国产精品免费福利视频| 亚洲成av片中文字幕在线观看 | 日本-黄色视频高清免费观看| 国产亚洲最大av| √禁漫天堂资源中文www| 搡老乐熟女国产| 久久午夜综合久久蜜桃| 成人18禁高潮啪啪吃奶动态图| 久久影院123| 搡老乐熟女国产| 青青草视频在线视频观看| 国产综合精华液| 国产av国产精品国产| 精品少妇久久久久久888优播| 最近中文字幕高清免费大全6| 亚洲精品乱久久久久久| 中文天堂在线官网| 一级毛片黄色毛片免费观看视频| 国产女主播在线喷水免费视频网站| 边亲边吃奶的免费视频| 2022亚洲国产成人精品| 天天躁夜夜躁狠狠久久av| 美女脱内裤让男人舔精品视频| 国产熟女欧美一区二区| 亚洲国产精品一区二区三区在线| 国产免费一级a男人的天堂| 日本免费在线观看一区| 天天操日日干夜夜撸| 久久99精品国语久久久| 母亲3免费完整高清在线观看 | 国产精品久久久久久av不卡| 久久午夜福利片| 精品一区在线观看国产| 日韩成人av中文字幕在线观看| 美女福利国产在线| 热99国产精品久久久久久7| 下体分泌物呈黄色| 久久久精品区二区三区| 18禁观看日本| 自线自在国产av| 97在线人人人人妻| 国产成人精品一,二区| 宅男免费午夜| 伦理电影大哥的女人| 久久婷婷青草| 伦精品一区二区三区| 女人久久www免费人成看片| 亚洲欧美精品自产自拍| 国产免费一级a男人的天堂| 日韩av不卡免费在线播放| 国产黄频视频在线观看| 国产国语露脸激情在线看| av片东京热男人的天堂| 亚洲综合色网址| 青春草亚洲视频在线观看| 亚洲精品av麻豆狂野| 男人爽女人下面视频在线观看| 妹子高潮喷水视频| 99久久人妻综合| 亚洲美女搞黄在线观看| 日韩一区二区视频免费看| 两个人免费观看高清视频| 黄色一级大片看看| 久久久久久久久久人人人人人人| 久久久久久久久久久免费av| 国产av精品麻豆| 男的添女的下面高潮视频| 最新的欧美精品一区二区| 日韩中字成人| 亚洲欧美成人综合另类久久久| 亚洲一级一片aⅴ在线观看| 欧美少妇被猛烈插入视频| 看免费av毛片| 国内精品宾馆在线| 青春草国产在线视频| 伊人久久国产一区二区| 少妇的逼水好多| 国产白丝娇喘喷水9色精品| 男的添女的下面高潮视频| 国产一区亚洲一区在线观看| 搡老乐熟女国产| 嫩草影院入口| 99久久精品国产国产毛片| 国产精品一二三区在线看| 国产精品麻豆人妻色哟哟久久| 国产成人午夜福利电影在线观看| av有码第一页| 男的添女的下面高潮视频| 最黄视频免费看| 免费av中文字幕在线| 精品少妇内射三级| 久久久精品区二区三区| 少妇精品久久久久久久| 亚洲欧美成人精品一区二区| 你懂的网址亚洲精品在线观看| 丝袜人妻中文字幕| 中国三级夫妇交换| 久久99热这里只频精品6学生| 国产老妇伦熟女老妇高清| 在线观看www视频免费| 一级爰片在线观看| av在线老鸭窝| 国产一区二区三区综合在线观看 | 香蕉国产在线看| 精品午夜福利在线看| 一二三四中文在线观看免费高清| 国产精品久久久久久精品电影小说| 久久久久久久国产电影| 国产xxxxx性猛交| 欧美激情极品国产一区二区三区 | 在线观看三级黄色| 日本猛色少妇xxxxx猛交久久| 人人妻人人添人人爽欧美一区卜| 男人爽女人下面视频在线观看| 久久精品国产a三级三级三级| 久久毛片免费看一区二区三区| 99国产综合亚洲精品| 香蕉国产在线看| 亚洲欧洲精品一区二区精品久久久 | 两个人免费观看高清视频| 亚洲av电影在线进入| 婷婷色综合大香蕉| 91久久精品国产一区二区三区| 欧美日韩国产mv在线观看视频| 啦啦啦啦在线视频资源| 女的被弄到高潮叫床怎么办| 国产免费又黄又爽又色| 女人久久www免费人成看片| 欧美日韩成人在线一区二区| 精品久久久久久电影网| 久久热在线av| 下体分泌物呈黄色| videos熟女内射| 欧美精品一区二区免费开放| 五月玫瑰六月丁香| 国产精品久久久久久av不卡| 国产69精品久久久久777片| 免费人成在线观看视频色| 波野结衣二区三区在线| 婷婷色麻豆天堂久久| 91久久精品国产一区二区三区| 久久久久网色| av在线老鸭窝| 久久久国产精品麻豆| 日产精品乱码卡一卡2卡三| 有码 亚洲区| 水蜜桃什么品种好| kizo精华| 最新的欧美精品一区二区| 久久久国产一区二区| 亚洲精品日本国产第一区| 久久国产精品男人的天堂亚洲 | 亚洲色图 男人天堂 中文字幕 | 中文精品一卡2卡3卡4更新| 王馨瑶露胸无遮挡在线观看| 免费日韩欧美在线观看| 精品亚洲成a人片在线观看| 看十八女毛片水多多多| 大香蕉久久成人网| 夫妻午夜视频| 免费日韩欧美在线观看| 精品亚洲成a人片在线观看| 成人免费观看视频高清| 亚洲熟女精品中文字幕| 免费大片18禁| 久久精品夜色国产| 久久久精品区二区三区| 色5月婷婷丁香| 久久久久久久久久久久大奶| 2022亚洲国产成人精品| 久久久久视频综合| 婷婷色综合www| 免费黄网站久久成人精品| 丝袜喷水一区| 九九在线视频观看精品| 精品人妻熟女毛片av久久网站| 久久久亚洲精品成人影院| 久久人人爽人人爽人人片va| 亚洲四区av| 久久久久久久亚洲中文字幕| 热99久久久久精品小说推荐| 满18在线观看网站| 亚洲精品色激情综合| 99久久精品国产国产毛片| 91成人精品电影| 亚洲人成77777在线视频| 视频在线观看一区二区三区| 九草在线视频观看| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 国产一区亚洲一区在线观看| 毛片一级片免费看久久久久| 女人被躁到高潮嗷嗷叫费观| 日韩成人伦理影院| 欧美精品人与动牲交sv欧美| 一本色道久久久久久精品综合| 国产亚洲精品久久久com| 免费看不卡的av| 免费高清在线观看视频在线观看| 男女国产视频网站| 国产精品国产三级国产专区5o| 亚洲第一av免费看| 黑丝袜美女国产一区| 日本色播在线视频| 国产日韩一区二区三区精品不卡| 婷婷色综合www| 高清在线视频一区二区三区| 97超碰精品成人国产| 午夜福利网站1000一区二区三区| 搡女人真爽免费视频火全软件| 91精品伊人久久大香线蕉| 18禁观看日本| av.在线天堂| 一本色道久久久久久精品综合| 咕卡用的链子| 久久久久久久亚洲中文字幕| 99国产综合亚洲精品| 爱豆传媒免费全集在线观看| 一本久久精品| 国产亚洲一区二区精品| 成年人免费黄色播放视频| 观看av在线不卡| 男男h啪啪无遮挡| 侵犯人妻中文字幕一二三四区| 热99久久久久精品小说推荐| 91国产中文字幕| 啦啦啦中文免费视频观看日本| 久久99热6这里只有精品| 欧美+日韩+精品| 制服诱惑二区| 国国产精品蜜臀av免费| 美女福利国产在线| 高清在线视频一区二区三区| 精品国产一区二区三区久久久樱花| 日韩精品有码人妻一区| 黄色毛片三级朝国网站| 国产精品蜜桃在线观看| 国产欧美亚洲国产| 香蕉国产在线看| 少妇猛男粗大的猛烈进出视频| 香蕉精品网在线| 在线天堂中文资源库| 国产精品三级大全| 中文字幕免费在线视频6| 看十八女毛片水多多多| 成人国语在线视频| 亚洲av免费高清在线观看| 精品一区二区三卡| 精品亚洲成a人片在线观看| 黑丝袜美女国产一区| 国产熟女午夜一区二区三区| 久久午夜福利片| 久热这里只有精品99| freevideosex欧美| 天美传媒精品一区二区| 蜜桃国产av成人99| 精品酒店卫生间| 黑人高潮一二区| 国产成人aa在线观看| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 成人无遮挡网站| 欧美97在线视频| 亚洲av中文av极速乱| 2021少妇久久久久久久久久久| 久久久久久久久久成人| 精品国产乱码久久久久久小说| 99九九在线精品视频| 免费看不卡的av| 国产一区二区在线观看av| 97精品久久久久久久久久精品| 91精品三级在线观看| 少妇的丰满在线观看| 亚洲av综合色区一区| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 午夜影院在线不卡| 婷婷色综合大香蕉| 精品少妇内射三级| 亚洲人成网站在线观看播放| 欧美bdsm另类| 精品一区二区三区视频在线| 国产成人精品在线电影| 欧美日韩视频高清一区二区三区二| 成年女人在线观看亚洲视频| 中国三级夫妇交换| 如何舔出高潮| av福利片在线| 激情视频va一区二区三区| 熟女电影av网| 日本av手机在线免费观看| 国产xxxxx性猛交| 制服诱惑二区| 久久久久网色| 中国美白少妇内射xxxbb| 亚洲av男天堂| 热re99久久精品国产66热6| 美女脱内裤让男人舔精品视频| 97在线视频观看| 男女午夜视频在线观看 | 成人手机av| av不卡在线播放| 亚洲在久久综合| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久国产电影| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 亚洲丝袜综合中文字幕| 一区二区三区精品91| 一本大道久久a久久精品| 蜜桃在线观看..| 日日撸夜夜添| 啦啦啦啦在线视频资源| 日本免费在线观看一区| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| 亚洲综合色网址| 精品99又大又爽又粗少妇毛片| 18在线观看网站| 精品久久久精品久久久| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| 亚洲精品自拍成人| 美女国产高潮福利片在线看| 国产精品久久久久久久电影| 久久99热这里只频精品6学生| 精品一品国产午夜福利视频| 又粗又硬又长又爽又黄的视频| 国产xxxxx性猛交| 一级片'在线观看视频| 男女无遮挡免费网站观看| 777米奇影视久久| 巨乳人妻的诱惑在线观看| 国产精品免费大片| 亚洲人成网站在线观看播放| 综合色丁香网| 精品酒店卫生间| 国产亚洲欧美精品永久| 国产爽快片一区二区三区| 亚洲精品视频女| 大香蕉97超碰在线| 成人免费观看视频高清| 成人影院久久| 精品国产一区二区三区四区第35| 亚洲国产av新网站| 久久精品久久久久久久性| 永久免费av网站大全|