• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of a two-dimensional flapping wing in advanced mode *

    2017-03-14 07:06:53ZhiyongLiang梁志勇LiangWei魏亮JingyuLu盧錦煜XiaohongQin覃小紅

    Zhi-yong Liang (梁志勇), Liang Wei (魏亮), Jing-yu Lu (盧錦煜), Xiao-hong Qin (覃小紅)

    1. College of Science, Donghua University, Shanghai 201620, China, E-mail: zhyliang@dhu.edu.cn

    2. Key Laboratory of Textile Science and Technology, Ministry Education, College of Textiles,

    Donghua University, Shanghai 201620, China

    Introduction

    The micro-flapping wing aircraft is an aircraft based on the bionic principle, as the flying birds and insects. Compared with the fixed wing and rotary wing aircraft, the main features of the micro-flapping wing aircraft are that they are integrated systems that integrate the functions of lifting, hovering and propelling, they can complete a long-distance flight with a small amount of energy, and with a stronger mobility.A very small Reynolds number (about 101-104smaller)is involved, in which the viscosity effect of air increases greatly. In the boundary layer, the laminar flow separates, resulting in laminar separating bubbles and the aerodynamic characteristics are significantly different from those in a high Reynolds number situation[1]. The flight of flapping wings was studied extensively.

    Zhang et al.[2]simulated the periodic motion of small insects by the dynamic hybrid grid technology and the unsteady method of incompressible flow based on the virtual compression technology. Bai et al.[3]simulated the hovering flight of a single flapping wing of fruit flies in three modes: the advanced mode,the symmetric mode and the delay mode, and combined with aerodynamic coefficients and flow structures, they analyzed the mechanism by which fruit flies obtain a high lift force in their hovering flight.Ohmiet et al.[4,5]studied the starting process of the vortex at a high attack angle with the wing?s pitching movement, including the forms of the vortex, and the factors that affect the formation of the vortex.Triantafyllou et al.[6]proved that the structure of the trailing vortex has a great influence on the formation of the propulsion. Nskata et al.[7]presented a new model of flapping-wing aerodynamics, called a CIQSM, based on a combination of the CFD data and the quasi-steady modelling. Tay et al.[8,9]used a numerical simulation method to investigate the validation of the immersed boundary method and the flapping micro-aerial vehicle. The aerodynamic performance of the flexible flapping wing was investigated through numerical simulations based on the fluid-structure coupling method[10]. Banazadeh and Taymourtash[11]presented the modeling and the simulation of open loop dynamics of a rigid body insect-like flapping wing. MH Dickson?s research indicates that the turning phase of insect’s wings will affect the direction of the first peak lift force and it?s emergence moment, and that the flapping wing flight has a unique advantage in using the trail flow to obtain a part of lift force, which leads to a conclusion that the flapping wing could absorb the energy of the trailing flow. Based on the insect wing study a twodimensional single flapping wing model is built, and the dynamic mesh technique and the UDF function are used to simulate the flight of a flapping wing in the advanced mode. The unsteady mechanism is studied and some useful conclusions are drawn.

    1. The model

    This paper takes the NACA0012 wing as the two-dimensional simplified wing section, and studiesthe flapping motion in the state of the hovering flight. The controlling parameters for the wing moving up and down are set symmetrically, and the axis of rotation is set a quarter chord length from the leading edge. The following functions in the model are adopted to describe the translation and the rotationof the hovering flapping movement. Thevelocity is expressed as:

    where τ is the time,mu is the maximum speed of the translational motion,tτΔ is the total time of the translational motion, andcτ is the flapping cycle.

    The angular velocity function[12]of the rotation motion is expressed as

    wheremω is the maximum angular velocity,rτΔ is the total time of the pitching rotation, and φΔ is the phase difference of the rotation and the translation.

    Some main physical parameters are:

    The attack angle iso30, the rotation angle is 120o, and the leading phase is 8.0%. The calculation area is a rectangle of 0.16 m×0.06 m, and the chord length of the wing NACA0012 is c = 0.01m. The four edges of the calculation field are static wall boundaries, and the boundary of the wing is the dynamic wall boundary. The triangular unstructured grids are used in this model. The total number of the grids is 4.67×104. The movement of the flapping wing has a high speed, it behaves as in the turbulence model. The smooth spring model and the local reforming model are used to produce the dynamic grids.

    2. The results and discussions

    2.1 Lift and drag coefficients

    Figure 1 shows the lift and drag coefficients in a cycle, the vertical axis is the lift or drag coefficients,and the abscissa is the time, covering the range of 0-1.As shown in the Fig.1(a), the lift coefficient changes slowly in the intermediate stage, and there are two areas in which the lift coefficient changes dramatically.In the range of -0.05-0.02, the lift coefficient reduces rapidly and then has a rapid increase in the other direction and the lowest value of the lift coefficient increases to 2.23 quickly. In this stage the attack angle becomes an obtuse angle due to the fact that the flapping wing turns in the advance phase. In the end of the turning phase, the flapping wing turns into the other phase, in which the wing keeps a same attack angle flapping and the lift coefficient decreases rapidly from the first peak 2.23 to 0.07, and then it turns into the translation motion, in which the attack angle and the velocity keep unchanged, the lift coefficient turns into the rising and stable stages. In the range of 0.25-0.38, the lift coefficient comes into its second rising stage and it reaches the peak value. In this rising stage, the flapping wing keeps in a same attitude of pitching nose-up. After that, the wing turns into the position of its stalling angle, so that the lift coefficient decreases rapidly to negative values.Figure 1(b) shows that the drag coefficient behaves quite differently when flapping up and down. When in the range of 0-0.05, the drag coefficient is positive,there are two peaks, and also the velocity increases rapidly. In this stage, the flapping wing keeps in an attitude of pitching nose-up. While in the range of 0.50-0.10 the drag coefficient is negative and also sees two valley values.

    2.2 The vortex distribution of the flapping wing

    Fig.1 The lift and drag coefficients in a cycle

    Fig.2 (Color online) The vortex distributions at different times

    Figure 2 shows the vortex distribution at different times. The interaction between the vortex and the flapping wing is a significant factor of the high lift coefficient. With a proper angle of the flapping wing,a high lift force can be achieved. As shown in the pictures, in the stage of a uniform velocity (Fig.2(a)), the horizontal angle of attack remains a constant and there is a continuous vortex shedding from the wake flow.At the same time, the backflow area of the front edge constantly strengthens and finally, a strong front vortex is formed. And the vortex attached at the front edge provides a certain lift force for the wing, makes a gentle change of the lift coefficient in this phase. And then, the wing pulls up with a constant or rapid speed(Figs.2(a), 2(b)), the vortex of the trailing edge breaks away from the wing and a rotating vortex is formed,acting on the wing. Along with the continuous enhancement of the leading edge vortex, the lift coefficient of the flapping wing reaches the high peak. Then the wing enters into a deceleration phase (Figs.2(b), 2(c)).At about τ / τc= -0 .07, the states on the top and the bottom of the wing alternate each other, the vortex of the trailing edge accumulates on the direction of the forward motion and interacts with the wing, to form the trailing edge vortex at this time and the previous turning vortex cannot alternate each other, with a continuous decline of the lift coefficient. In the next stage, the wing accelerates in the other direction(Figs.2(e), 2(g)), the latter trailing edge vortex and the previous turning vortex which sheds from the trailing edge can alternate each other. And since the two vortexes are opposite in their circling directions, so they can produce a strong vortex to raise the lift coefficient again.

    2.3 The pressure distribution of the flapping wing

    Figure 3 clearly demonstrates the pressure distribution around the wing. In the translational stage(Fig.3(a)), there are two pressure centers, respectively located in the front and the back of the trailing edge.The forward total pressure obviously is higher than the other, which steadies the lift coefficient in the stage. In the initial stage (Figs.3(a), 3(b)), the wing begins to overturn, the low-pressure center near the wing is destroyed. Since the angular velocity increases,the volume of the bottom wing increases suddenly, the air becomes thin and the intensity of the pressure reduces, which leads to a stable low pressure area.Oppositely a high-pressure zone appears on the top.Due to the pressure difference, the lift coefficient increases at this stage. As the wing goes into the early deceleration phase (Figs.3(b), 3(c)), due to the fact that the states on the top and the bottom alternate,together with the fact that the original high pressure area under the wing gradually sheds to the wake flow.A low pressure center forms on the upper area of the original leading edge, which makes the pressure difference decrease and results in the falling of the lift coefficient. Then the wing goes into the later deceleration stage. Because the original high pressure area under the plane turns into the low pressure area and the shedding high pressure area is attached at the trailing edge of the original upper plane, the pressure difference increases again, this makes the lift coefficient rise again. The different angles and speeds of the movement can lead to different pressure distributions,pressure center behind the wing (Fig.3(a)), keeping two pressure centers in the following phase of equal attack angle.

    Fig.3 (Color online) The pressure distributions at different times

    Fig.4 (Color online) The velocity vector distributions at different times

    2.4 The Velocity vector distribution of the flapping wing

    From the velocity distribution, we can clearly see the velocity distribution around the wing. As shown in Fig.4, two annular flows appear, respectively, on the front and behind areas of the flapping wing. The two centers are on a horizontal line and the flapping wing moves back and forth between the two centers.Because of the influence of the two airstream, the vortex constantly sheds from the trailing edge. In the process of a uniform motion, the speed of the airstream away from the wing is greater than the other,while the overturn of the wing just makes the two airstream change their speeds. In the whole process the wing always maintains to have two annular flow centers. When the wing approaches one of them the annular flow center is destroyed (Figs.4(b)-4(e)), but then it will be replaced immediately by the rotational center of the wing.

    3. Conclusions

    In this paper the flapping wing is simulated numerically in the advanced mode, and the high lift mechanism of the flapping wing is studied from the following aspects: the lift and drag coefficients, the vortex distribution, the pressure distribution, and the velocity vector distribution. Based on this study some conclusions are drawn. The interaction between the leading edge vortex and the trailing edge vortex is an important factor regarding the high lift coefficient,and this conclusion is consistent with the Refs.[13-20].In different stages the flapping wing needs a proper attack angle to obtain a high lift force. Before and after the uniform-motion stage of the flapping wing,two pressure centers appear and the low pressure center falls off later. In the whole movement process,there always exist two annular airstream centers and they change their speeds alternatively.

    in different stages of time, the movement style of the flapping wing is variable. In the following stage, the wing speeds up in the other direction, with the low pressure area shedding from the leading edge of the bottom plane, the high pressure area is pushed out from the trailing edge and the pressure difference reduces again, with the falling of the lift coefficient.The detached low pressure area forms, with a low

    [1] Zaitsev A. A., Sharina L. V. Aerodynamic calculation of normal hovering flight [J]. Fluid Dynamics, 1983, 18(4):554-560.

    [2] Zhang L. P., Chang X. H., Duan X. P. et al.Numerical simulations of the “clap-fling” motion for tiny insect wings [J]. Acta Aerodynamica Sinica, 2009, 27(2):246-254.

    [3] Bai P., Cuie J., Li F. et al. Study of high aerodynamic lift mechanics of hovering insect flapping wing at low Reynolds number [J]. Acta Aerodynamica Sinica, 2007,25(2): 175-182.

    [4] Ohmi K., Coutanceau M., Loc T. P. et al.Vortex formation around an oscillating and translating airfoil at large incidences [J]. Journal of Fluid Mechanics, 1990, 211:37-60.

    [5] Ohmi K., Coutanceau M., Daube O. et al. Further experiments on vortex formation around an oscillating and translating airfoil at large incidences [J]. Journal of Fluid Mechanics, 1991, 225: 607-630.

    [6] Triantafyllou M. S., Triantafyllou G. S., Gopalkrishnan R.Wake mechanics for thrust generation in oscillating foils[J]. Physics of Fluids A-Fluid Dynamics, 1991, 3(12):2835-2837.

    [7] Nakata T., Liu H., Bomphrey R. J. A CFD-informed quasi-steady model of flapping-wing aerodynamics [J].Journal of Fluid Mechanics, 2015, 783: 323-343.

    [8] Tay W. B., DENG S., Van Oudheusden B. W. et al.Validation of immersed boundary method for the numerical simulation of flapping wing flight [J]. Computers and Fluids, 2015, 115: 226-242.

    [9] Tay W. B.,Van Oudheusden B. W., Bijl H. Numerical simulation of a flapping four-wing micro-aerial vehicle [J].Journal of Fluids and Structures, 2015, 55: 237-261.

    [10] Yang W., Wang L., Xue D. et al. Aerodynamic performance of micro flexible flapping wing by numerical simulation [J]. Procedia Engineering, 2015, 99(1): 1506-1513.

    [11] Banazadeh A., Taymourtash N. Nonlinear dynamic modeling and simulation of an insect-like flapping wing [J].Applied Mechanics and Materials, 2014, 555: 3-10.

    [12] Zhao P. F., Liu C. Y., Zhu L. W. et al. Visualization of vortex field of 2-D flapping wing motion [J]. Journal of University of Science and Technology of China, 2005,35(4): 441-447.

    [13] Liu H., Ellington C. P., Kawachi K. et al. A computational fluid dynamic study of hawkmoth hovering [J].Journal of Experimental Biology, 1998, 201(4): 461-477.

    [14] Lan S. L., Sun M. Aerodynamic properties of a wing performing unsteady rotational motions [J]. Acta Mechanica Sinica, 2001, 33(2): 173-182.

    [15] Lu K., Xie Y. H., Zhang D. et al. Numerical investigations into the asymmetric effects on the aerodynamic response of a pitching airfoil [J]. Journal of Fluids and Structures,2013, 39(5): 76-86.

    [16] Zhou C. H., Lin Y. F. Numerical study on aerodynamic performance of flapping wings [J]. Journal of Harbin Institute of Technology, 2006, 38(9): 1403-1405.

    [17] Zhang L., Shang J. H., Zhang Z. Y. et al. Tidal current energy update 2015-Hydrodynamics [J]. Journal of Hydroelectric Engineering, 2016, 35(2): 1-15(in Chinese).

    [18] Lin J., Lin B. L., Sun J. et al. Modelling hydrodynamic processes in tidal stream energy extraction [J]. Journal of Hydrodynamics, 2016, 28(6): 1-11.

    [19] Wang S. Q., Sun K., Zhang J. H. et al. The effects of roll motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine [J]. Journal of Marine Science and Technology, 2015, 74(C): 1058-1064.

    [20] Zhang L., Wang S. Q., Sheng Q. H. et al. The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine[J]. Journal of Marine Science and Technology, 2015,74(C): 796-802.

    最后的刺客免费高清国语| 极品教师在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最后的刺客免费高清国语| 国产精品久久久久久精品电影| 亚洲美女搞黄在线观看| 国产亚洲91精品色在线| 日韩欧美精品v在线| 免费看不卡的av| 美女内射精品一级片tv| 最近手机中文字幕大全| 综合色丁香网| 亚洲精品乱久久久久久| 国产成人精品福利久久| 国产黄片美女视频| 午夜免费观看性视频| 青春草国产在线视频| 狂野欧美白嫩少妇大欣赏| 日本猛色少妇xxxxx猛交久久| 五月伊人婷婷丁香| 成年版毛片免费区| 国产乱来视频区| 一区二区三区四区激情视频| 亚洲欧美精品自产自拍| 在线播放无遮挡| 99久久人妻综合| 91精品国产九色| 国产亚洲精品久久久com| 99久久精品国产国产毛片| av一本久久久久| 黄片无遮挡物在线观看| 国产成人一区二区在线| 非洲黑人性xxxx精品又粗又长| 免费av毛片视频| 国产乱人视频| 91精品一卡2卡3卡4卡| 成人综合一区亚洲| 国产精品嫩草影院av在线观看| 亚洲av男天堂| 3wmmmm亚洲av在线观看| 神马国产精品三级电影在线观看| 夫妻性生交免费视频一级片| 久久久久久久大尺度免费视频| 成人午夜高清在线视频| 日日撸夜夜添| 日本免费在线观看一区| 免费无遮挡裸体视频| 国产成人a区在线观看| 日韩强制内射视频| www.av在线官网国产| 亚洲国产精品国产精品| 91久久精品国产一区二区三区| 舔av片在线| 精品午夜福利在线看| 国产精品三级大全| 国产高清有码在线观看视频| 亚洲av电影在线观看一区二区三区 | 国产色爽女视频免费观看| 久久久久久久亚洲中文字幕| 国产成人精品一,二区| 欧美+日韩+精品| 午夜福利网站1000一区二区三区| 人人妻人人澡欧美一区二区| www.色视频.com| 久久久精品欧美日韩精品| 美女内射精品一级片tv| 免费在线观看成人毛片| 亚洲人成网站在线播| 少妇的逼水好多| 99视频精品全部免费 在线| 久久99精品国语久久久| 色吧在线观看| 美女xxoo啪啪120秒动态图| 婷婷色综合www| 午夜福利网站1000一区二区三区| 亚洲精品,欧美精品| 亚洲精品乱久久久久久| 久久精品久久精品一区二区三区| 秋霞在线观看毛片| 亚洲美女搞黄在线观看| 日韩电影二区| 熟妇人妻久久中文字幕3abv| 国产成人精品久久久久久| 26uuu在线亚洲综合色| 欧美另类一区| 婷婷色综合www| 韩国高清视频一区二区三区| 日韩欧美一区视频在线观看 | 国内精品美女久久久久久| 少妇丰满av| 亚洲精品久久午夜乱码| 三级国产精品片| a级一级毛片免费在线观看| 亚洲欧美精品自产自拍| 美女黄网站色视频| 国产成人a∨麻豆精品| 久热久热在线精品观看| 亚洲无线观看免费| 日本黄大片高清| 久久精品久久久久久噜噜老黄| 国产精品爽爽va在线观看网站| 午夜福利视频1000在线观看| 亚洲av不卡在线观看| 中文字幕av在线有码专区| 最近中文字幕2019免费版| 亚洲成人精品中文字幕电影| 一级片'在线观看视频| 啦啦啦中文免费视频观看日本| av女优亚洲男人天堂| 久久久久久久久久久丰满| 大香蕉97超碰在线| 精品久久久久久电影网| 天天一区二区日本电影三级| 国产午夜精品一二区理论片| 国产av码专区亚洲av| 1000部很黄的大片| 日韩不卡一区二区三区视频在线| 一边亲一边摸免费视频| 天美传媒精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产av新网站| 国国产精品蜜臀av免费| 性色avwww在线观看| 亚洲精品乱码久久久v下载方式| 中文乱码字字幕精品一区二区三区 | 日本一本二区三区精品| 国产在视频线在精品| 日韩在线高清观看一区二区三区| 99久久九九国产精品国产免费| 免费无遮挡裸体视频| 天天躁夜夜躁狠狠久久av| 久久久成人免费电影| 搡老妇女老女人老熟妇| 国产精品美女特级片免费视频播放器| 国产在线一区二区三区精| 免费av观看视频| 国产av码专区亚洲av| 日韩伦理黄色片| 超碰av人人做人人爽久久| 国产精品熟女久久久久浪| 直男gayav资源| 18+在线观看网站| 国产精品久久久久久久电影| 少妇丰满av| 舔av片在线| 日韩av在线免费看完整版不卡| 久久久久久久久久黄片| 69人妻影院| 亚洲精品456在线播放app| 日韩成人伦理影院| 大话2 男鬼变身卡| 26uuu在线亚洲综合色| 少妇的逼好多水| 亚洲va在线va天堂va国产| 嘟嘟电影网在线观看| 18禁动态无遮挡网站| 久久久久久久久久久丰满| 欧美变态另类bdsm刘玥| .国产精品久久| 欧美激情国产日韩精品一区| 成年女人看的毛片在线观看| 日日啪夜夜撸| 久久久国产一区二区| 乱人视频在线观看| 国产黄片视频在线免费观看| 亚洲18禁久久av| 国产精品.久久久| 神马国产精品三级电影在线观看| 欧美日韩在线观看h| 99久久精品热视频| 日日干狠狠操夜夜爽| 亚洲成人一二三区av| 91狼人影院| 国产av在哪里看| 又粗又硬又长又爽又黄的视频| 综合色丁香网| 丰满少妇做爰视频| 午夜激情欧美在线| 午夜福利成人在线免费观看| 国产激情偷乱视频一区二区| 最近最新中文字幕大全电影3| 亚洲天堂国产精品一区在线| kizo精华| 一区二区三区高清视频在线| 亚洲国产欧美人成| 简卡轻食公司| 国产色爽女视频免费观看| 国产黄片美女视频| 少妇丰满av| 色哟哟·www| 国产黄a三级三级三级人| 一个人观看的视频www高清免费观看| 久久精品国产鲁丝片午夜精品| 国产男女超爽视频在线观看| av免费观看日本| 亚洲av男天堂| 亚洲av电影在线观看一区二区三区 | 久久6这里有精品| 亚洲av电影在线观看一区二区三区 | 久久人人爽人人片av| 亚洲国产精品成人久久小说| 69av精品久久久久久| 高清日韩中文字幕在线| 国产成人精品婷婷| 国产精品国产三级专区第一集| 免费看a级黄色片| 欧美一区二区亚洲| 欧美3d第一页| 日韩国内少妇激情av| 精华霜和精华液先用哪个| 国产黄a三级三级三级人| 卡戴珊不雅视频在线播放| 中文乱码字字幕精品一区二区三区 | 国产激情偷乱视频一区二区| 欧美日韩综合久久久久久| 日本wwww免费看| 一边亲一边摸免费视频| 久久综合国产亚洲精品| 精品久久久久久久末码| 欧美 日韩 精品 国产| 亚洲国产日韩欧美精品在线观看| 亚洲精品乱码久久久久久按摩| 国产国拍精品亚洲av在线观看| 天天躁日日操中文字幕| 亚洲av免费高清在线观看| 亚洲av电影不卡..在线观看| 免费少妇av软件| 日韩av在线免费看完整版不卡| 免费看美女性在线毛片视频| 亚洲国产色片| 亚洲在线观看片| 国产色爽女视频免费观看| 国产老妇女一区| 成人毛片a级毛片在线播放| 男人舔奶头视频| 亚洲熟女精品中文字幕| 九九久久精品国产亚洲av麻豆| 男女边吃奶边做爰视频| 老司机影院成人| 国产日韩欧美在线精品| 国产欧美日韩精品一区二区| 久久久久久久大尺度免费视频| 国产淫片久久久久久久久| 亚洲av电影在线观看一区二区三区 | 国产单亲对白刺激| 一本一本综合久久| 一二三四中文在线观看免费高清| 午夜激情久久久久久久| 国产不卡一卡二| 日韩精品青青久久久久久| av福利片在线观看| 亚洲精华国产精华液的使用体验| 久久久久久久久久久丰满| 99热这里只有是精品在线观看| 国模一区二区三区四区视频| 一级毛片久久久久久久久女| 国产精品一区二区三区四区久久| 观看美女的网站| 免费观看性生交大片5| 九色成人免费人妻av| 久久99热这里只有精品18| 国产亚洲5aaaaa淫片| 永久网站在线| 国产黄片美女视频| 免费大片黄手机在线观看| 亚洲人成网站在线观看播放| 精品久久久久久久久久久久久| 干丝袜人妻中文字幕| 国产老妇伦熟女老妇高清| 美女内射精品一级片tv| 青青草视频在线视频观看| 日本猛色少妇xxxxx猛交久久| 精品久久久久久电影网| av免费观看日本| 丝袜美腿在线中文| 亚洲国产成人一精品久久久| 一区二区三区乱码不卡18| 精品人妻视频免费看| 国产欧美日韩精品一区二区| 少妇猛男粗大的猛烈进出视频 | 国模一区二区三区四区视频| 日本与韩国留学比较| 最近最新中文字幕大全电影3| 日韩成人av中文字幕在线观看| 亚洲精品aⅴ在线观看| 亚洲av在线观看美女高潮| 国产精品女同一区二区软件| 精品一区二区三区人妻视频| 欧美成人午夜免费资源| 我要看日韩黄色一级片| 亚洲av日韩在线播放| 国产淫语在线视频| 欧美一级a爱片免费观看看| 欧美变态另类bdsm刘玥| 伦理电影大哥的女人| 两个人的视频大全免费| 国产一区二区三区av在线| 国产 亚洲一区二区三区 | 一边亲一边摸免费视频| 国产黄片视频在线免费观看| 最近手机中文字幕大全| 国产精品国产三级国产专区5o| 亚洲国产精品国产精品| 精品久久久久久久人妻蜜臀av| 99久久九九国产精品国产免费| 两个人的视频大全免费| 美女主播在线视频| 日韩av免费高清视频| av在线播放精品| 久久精品夜色国产| 免费黄网站久久成人精品| 日韩电影二区| 国产精品.久久久| 男女边摸边吃奶| 亚洲av成人精品一二三区| 久久久精品94久久精品| 国产精品久久视频播放| 韩国av在线不卡| 免费黄频网站在线观看国产| 麻豆成人av视频| 午夜福利在线观看免费完整高清在| av播播在线观看一区| 久久久久久久久久黄片| 免费观看性生交大片5| 亚洲欧美中文字幕日韩二区| 久久久久久久国产电影| 国产午夜精品一二区理论片| 人体艺术视频欧美日本| 亚洲自拍偷在线| 国产成人福利小说| 97热精品久久久久久| 啦啦啦啦在线视频资源| 精品久久久噜噜| 色综合色国产| 午夜日本视频在线| 亚洲精品乱久久久久久| 精品一区二区免费观看| av免费观看日本| 黄片无遮挡物在线观看| 男女边摸边吃奶| 久久久久久九九精品二区国产| 全区人妻精品视频| 免费无遮挡裸体视频| 不卡视频在线观看欧美| 久久久久国产网址| 天堂av国产一区二区熟女人妻| 日韩欧美国产在线观看| 中文字幕亚洲精品专区| 午夜精品国产一区二区电影 | 久久鲁丝午夜福利片| 中文资源天堂在线| 看黄色毛片网站| 成人欧美大片| 天堂网av新在线| 99热这里只有是精品50| 高清在线视频一区二区三区| 久久久久久久国产电影| 91精品国产九色| 超碰97精品在线观看| 丝袜喷水一区| 网址你懂的国产日韩在线| 免费看a级黄色片| 麻豆国产97在线/欧美| 国语对白做爰xxxⅹ性视频网站| 91精品国产九色| 91精品一卡2卡3卡4卡| 午夜福利网站1000一区二区三区| 又大又黄又爽视频免费| av在线天堂中文字幕| 能在线免费观看的黄片| 十八禁国产超污无遮挡网站| 日韩国内少妇激情av| 免费高清在线观看视频在线观看| 国产国拍精品亚洲av在线观看| 日韩一本色道免费dvd| 婷婷六月久久综合丁香| 一夜夜www| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 国产免费一级a男人的天堂| 国产av不卡久久| 午夜免费激情av| 亚洲美女搞黄在线观看| 国产一区二区三区综合在线观看 | 大香蕉久久网| 91av网一区二区| 超碰av人人做人人爽久久| 国产中年淑女户外野战色| 成人综合一区亚洲| 免费观看在线日韩| 日日撸夜夜添| 毛片一级片免费看久久久久| 极品教师在线视频| 国产伦在线观看视频一区| 婷婷色麻豆天堂久久| 国国产精品蜜臀av免费| 日韩亚洲欧美综合| 观看免费一级毛片| 国产av码专区亚洲av| 久久久久久久久大av| 亚洲婷婷狠狠爱综合网| 中文字幕制服av| 不卡视频在线观看欧美| 自拍偷自拍亚洲精品老妇| 激情 狠狠 欧美| 人妻系列 视频| 91精品一卡2卡3卡4卡| 日日啪夜夜撸| 噜噜噜噜噜久久久久久91| 最近的中文字幕免费完整| 美女被艹到高潮喷水动态| 亚洲精品aⅴ在线观看| 床上黄色一级片| 能在线免费观看的黄片| 秋霞伦理黄片| 22中文网久久字幕| 一二三四中文在线观看免费高清| 午夜视频国产福利| 免费电影在线观看免费观看| 韩国高清视频一区二区三区| 国产免费福利视频在线观看| 一个人观看的视频www高清免费观看| 欧美高清成人免费视频www| 日韩欧美三级三区| 久久久久久久大尺度免费视频| ponron亚洲| 日日摸夜夜添夜夜爱| 少妇的逼水好多| 国产一区二区三区av在线| 日本免费a在线| 欧美3d第一页| 十八禁网站网址无遮挡 | 亚洲三级黄色毛片| 麻豆久久精品国产亚洲av| 少妇的逼好多水| 日日啪夜夜爽| 国产精品福利在线免费观看| 最近手机中文字幕大全| 夜夜爽夜夜爽视频| 精品人妻熟女av久视频| 国产精品久久久久久久电影| 免费观看性生交大片5| 国产色婷婷99| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 国产精品国产三级专区第一集| 在线免费十八禁| 99视频精品全部免费 在线| 观看美女的网站| 中国美白少妇内射xxxbb| 2018国产大陆天天弄谢| 国产日韩欧美在线精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 2018国产大陆天天弄谢| 午夜精品一区二区三区免费看| 久久久久久伊人网av| 亚洲精品一区蜜桃| 天堂网av新在线| av女优亚洲男人天堂| 国产熟女欧美一区二区| 一级二级三级毛片免费看| 欧美成人午夜免费资源| 久久久午夜欧美精品| 高清av免费在线| 免费不卡的大黄色大毛片视频在线观看 | 久久久亚洲精品成人影院| 国产综合精华液| 亚洲国产精品国产精品| 人妻夜夜爽99麻豆av| 激情 狠狠 欧美| 欧美高清性xxxxhd video| 亚洲av日韩在线播放| 国产高清国产精品国产三级 | 国内少妇人妻偷人精品xxx网站| 青青草视频在线视频观看| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版 | 毛片女人毛片| 波多野结衣巨乳人妻| 久久精品国产自在天天线| 亚洲最大成人手机在线| 国产亚洲精品av在线| 九九久久精品国产亚洲av麻豆| 久久久久网色| 五月天丁香电影| 欧美日本视频| 亚洲成人中文字幕在线播放| 99久久精品国产国产毛片| 日韩在线高清观看一区二区三区| 国产一区二区在线观看日韩| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 成人漫画全彩无遮挡| 蜜桃亚洲精品一区二区三区| 精品酒店卫生间| 日韩av免费高清视频| 九九爱精品视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 99久国产av精品国产电影| 国产伦一二天堂av在线观看| 亚洲伊人久久精品综合| 乱系列少妇在线播放| 欧美不卡视频在线免费观看| 一边亲一边摸免费视频| 久久久久久久大尺度免费视频| 1000部很黄的大片| 一区二区三区四区激情视频| 午夜精品一区二区三区免费看| 亚洲国产精品sss在线观看| 亚洲最大成人手机在线| 久久精品国产亚洲av涩爱| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品人妻视频免费看| 2021少妇久久久久久久久久久| 欧美激情国产日韩精品一区| 在线免费观看的www视频| 色尼玛亚洲综合影院| 丰满人妻一区二区三区视频av| 日本三级黄在线观看| 99视频精品全部免费 在线| 欧美一区二区亚洲| 亚洲人成网站高清观看| 免费观看a级毛片全部| 好男人在线观看高清免费视频| 亚洲最大成人中文| 亚洲国产欧美人成| 国产在视频线在精品| 亚洲自拍偷在线| 久久久久精品性色| 老司机影院毛片| 欧美日韩视频高清一区二区三区二| 天堂网av新在线| 日韩不卡一区二区三区视频在线| 国产精品美女特级片免费视频播放器| 国产精品一区二区在线观看99 | 99久国产av精品国产电影| 免费大片黄手机在线观看| 亚洲内射少妇av| 国产在线一区二区三区精| av播播在线观看一区| av女优亚洲男人天堂| 国内精品一区二区在线观看| 久久人人爽人人爽人人片va| 午夜爱爱视频在线播放| 一个人看的www免费观看视频| 舔av片在线| 日韩欧美国产在线观看| 午夜福利高清视频| 在线观看美女被高潮喷水网站| 国产又色又爽无遮挡免| 亚洲自偷自拍三级| 别揉我奶头 嗯啊视频| 国产精品福利在线免费观看| 午夜激情欧美在线| 亚洲av日韩在线播放| 春色校园在线视频观看| 国产黄片美女视频| 搡老妇女老女人老熟妇| 91精品一卡2卡3卡4卡| 亚洲内射少妇av| 精品久久久噜噜| 亚洲综合色惰| 中文字幕免费在线视频6| 亚洲精品成人久久久久久| 免费看av在线观看网站| 亚洲精品,欧美精品| 欧美zozozo另类| 国产伦理片在线播放av一区| 淫秽高清视频在线观看| 伊人久久精品亚洲午夜| 欧美日韩国产mv在线观看视频 | 日韩一区二区三区影片| 欧美日韩精品成人综合77777| 中文字幕亚洲精品专区| 日韩不卡一区二区三区视频在线| 久久久久久久大尺度免费视频| 91av网一区二区| 国产精品久久久久久久久免| 欧美日韩在线观看h| 国产单亲对白刺激| 日本色播在线视频| 欧美成人精品欧美一级黄| 热99在线观看视频| 丝袜喷水一区| 久久久精品94久久精品| www.av在线官网国产| 午夜福利视频精品| 老司机影院毛片| 日本欧美国产在线视频| 2022亚洲国产成人精品| 高清毛片免费看| 日日啪夜夜撸| 精品99又大又爽又粗少妇毛片| 日本wwww免费看| 免费观看精品视频网站| 淫秽高清视频在线观看| 80岁老熟妇乱子伦牲交| 一个人免费在线观看电影| 精品少妇黑人巨大在线播放| 久久午夜福利片| 22中文网久久字幕| 亚洲精品456在线播放app| 国产精品一及| 国产成人午夜福利电影在线观看| 色播亚洲综合网| av在线蜜桃| 51国产日韩欧美| 亚洲国产精品sss在线观看| 国产 一区 欧美 日韩| 综合色av麻豆| 久久久久久久久久久免费av| 午夜爱爱视频在线播放| av国产免费在线观看| 国产在视频线在精品| 男女国产视频网站|