• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of free surface on cloud cavitating flow around a blunt body *

    2017-03-14 07:06:30ChangXu徐暢YiweiWang王一偉ChenguangHuang黃晨光JianHuang黃薦
    水動力學研究與進展 B輯 2017年6期
    關鍵詞:晨光

    Chang Xu (徐暢), Yi-wei Wang (王一偉), Chen-guang Huang (黃晨光), Jian Huang (黃薦),

    Chao Yu (余超)1,2,

    1. Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

    2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China,

    E-mail: xuchang@imech.ac.cn

    Introduction

    The cavitation is one of the classic problems in high-speed hydrodynamics when underwater vehicles move in great speed[1-4]. The induced instable phenomena can cause serious consequences, such as noises,erosion, and vibrations of the structure. The problem becomes complicated when the interaction between the free surface and the cloud cavitating flow on the model is considered. The water tunnel[5]and water tank[6,7]tests are usually performed to analyze the problem. In recent years, the CFD method becomes one of the main research methods used for the cavitation flow, including the potential flow theory[8,9],the boundary element method (BEM)[10-12], the large eddy simulation (LES)[13-16], and other approaches[17-19]with commercial software, such as the CFX, the FLUENT[20,21]and other open source software, such as the OpenFOAM[22-24].

    The interaction between the free surface and the cavitating flow is a very complex and interesting problem. Based on the numerical and experimental methods mentioned above, the flow characteristics and the mechanism of unsteady cavities were studied.The mechanism of main control parameters, such as the submerged depth, the cavitation number, the Froude number, and the gravity, which affect the cavitating flow, were analyzed based on experiments and numerical simulations[1,9,25]. Wang[13,26]studied the cloud cavitating flow around an axisymmetric projectile near the free surface, including the effect of the free surface on the cavity shape, the cavity evolution process, the re-entrant jet inside the cavity,and the vortex structure. The CFD simulations were conducted, and the results were found to be consistent with the water tank experiment data. Moreover, the atmospheric ventilation flow around a blunt body near the free surface was discussed[27]. Ventilated cavitation occurs when the model is sufficiently close to the free surface. The entrainment of a strong air into the ca-vity on the upper side of the blunt body induces a large and stable cavity. The effects of other boundary conditions, such as that of the near-wall on the cloud cavitating flow around vehicles were also discussed in the recent studies[28-30].

    Fig.1 Water tank test facilities

    In this work, the water tank experiments and the numerical simulations are performed to analyze the effect of the free surface on the cloud cavitating flow around a blunt body in various submerged depths. The accuracy of the numerical method and the mesh independence are verified. The cavity evolution processes,including the cavity growth, the re-entrant jet, the cavity shedding, and the collapse, can be observed through the experimental data. We first discuss the effects of the free surface on the cavity length, the thickness, and the cavity evolution period. Then, the effects of the free surface on the cavity stability, the asymmetry, and the thickness and the velocity of the re-entrant jet inside the cavity of various submerged depths are examined under a series of working conditions.

    1. Water tank experiment

    The water tank test facilities are shown in Fig.1.The tested model in the experiment is a slender,polished stainless-steel cylinder of 37 mm in diameter.The launching process is based on the Split-Hopkinson pressure bar technology[6], which could accelerate the launched model to a speed of 18.5 m/s in less than 50 μs. The entire cavity evolution process could be recorded by a high-speed camera with 25 000 frames per second. The water temperature is approximately 20oC. In the following sections, the cavity evolution will be mainly discussed based on experimental pictures and numerical results. The cavity shape changes with the submerged depth at the launch time, the cavitation phenomenon can be classified by the shape development into the cloud cavitation[13],the natural ventilation[27]and the supercavitation as the submerged depth decreases. We mainly focus on the cloud cavitating flow in this paper with the submerged depth varying from 15 mm to 40 mm. There will be no free surface effect on the cloud cavi- tating flow around the projectile when the distance between the upper side of the projectile and the free surface exceeds 40 mm.

    2. Numerical methods

    2.1 Governing equations

    The multiphase flow equations are extensively used for solving the water-liquid/water-vapor twophase flow problems. The governing and momentum equations are expressed as:

    whereiu is the velocity component in the i direction, ρ is the mixture density, p is the pressure, and μ is the laminar viscosity, which can be defined as

    where α is the volume fraction of the different phases, and l and v represent the liquid water and the water vapor, respectively. The mixture density ρ is defined as

    The transport equation of the water vapor volume fraction is

    Table 1 Numerical schemes and parameters

    where R =10-6mis the generalized bubble radius,

    B pv=2340Pais the saturated vapor pressure,anuc=5× 1 0-4is the nucleation site volume fraction,Fvap=50 is the evaporation coefficient, and Fcond=

    0.01 is the condensation coefficient. The selected parameter values are based on the work of Zwart et al..The parameters are evaluated and found to work well for a variety of fluids and devices. The parameters and the recommended values of the cavitation model were extensively used[13]. In addition, several studies indicated that the parameters had a small effect on the results of the cloud cavitating flow within a certain range[32].

    2.2 Numerical schemes and parameters

    In this study, the commercial software FLUENT is used for simulating the cloud cavitating flow around a blunt body near the free surface. The 1.2 m×0.8 m×0.4 m computational domain and the defined boundary conditions include the velocity-inlet, the pressure-outlet, and no-slip wall, as shown in Fig.2, where half of the model is considered. The depth between the upper side of the blunt body and the free surface(15 mm) and the simulated velocity (18.5 m/s) are the same as those in the water tank experiment. The tail effect on the cavity is neglected by using a semiinfinite projectile model. Other simulation conditions are consistent with the experimental conditions.During the calculation, the VOF method and the LES approach with the Smagorinsky-Lilly model are used for simulating the turbulent flow. Other detailed numerical schemes and parameters are shown in Table 1.

    Fig.2 Computational domain and boundary conditions

    Fig.3 Mesh near the head of the projectile

    Fig.4 Comparison of cavity lengths on the upper and lower sides of the model between the experimental and simulated results

    2.3 Validation

    Fig.5 Comparison of simulated results of cavity length at the upper and lower sides of the model of original mesh and refined mesh, and experimental results

    The numerical results of a block-structured mesh(Fig.3) with a cell number of approximately 4×106are compared with the water tank experimental data in Fig.4. l is the distance between the upper side of the projectile and the free surface, t is time. The first layer height is set at 1 m to ensure that+Y is approximately equal to 1. The total cell number is approximately 4×106with a good orthogonality, which is refined around the model and near the free surface.The results are consistent with each other, which validates the accuracy of the numerical methods. The cavity evolution process shown in the figure includes four stages: the cavity growth, the re-entrant jet, the cavity shedding, and the collapse.

    2.4 Mesh independence study

    Based on the original mesh plan, a refined mesh is generated with a total cell number of 3×107. The mesh independence is confirmed by comparing the cavity length at the upper and lower sides of the blunt body among the experimental results, and the simulated results with the original mesh, and the refined mesh, as shown in Fig.5. The results of the new mesh plan are in good agreement with those of the previous models. The cavity shapes of the simulated results are also compared in Fig.6, which shows that the refined mesh simulation results are consistent with the original results of the cavity evolution. As the main features of the cavity evolution are our concern to a greater extent than other attributes, the mesh independence of the simulation method can be verified. The LES approach is widely used in the calculation of the cavitating flow nowadays, but without much validation and verification (V&V) study[33]. The V&V is necessary for numerical calculations[34]and the V&V research for the LES methods will be conducted in the future.

    3. Results and discussions

    Figure 7 shows the comparison of cavity patterns between the experiment and simulation results during the cavity evolution process. The preceding four stages mentioned above can be clearly observed through the figures. The cavity is generated in the first stage. The re-entrant jet appears inside the end of the cavity and moves toward the shoulder of the model when the cavity turns into a stable shape. In the third stage, the re-entrant jet removes the cavity by interfering with the outside flow. Thereafter, the cavity shedding occurs. In the last stage, the cavity collapses,and the cavity length is significantly decreased. The differences of the cavity shape between the upper and lower sides of the body reflect the effect of the free surface on the cavitating flow. With a small upper constraint and the effect of the free surface, the upper side of the cavity has a larger curvature than that of the lower side cavity. Cavities can be thick and short near the free surface. The entire cavity evolution period is also shortened. Detailed discussions and analyses of the flow characteristics and the mechanism of the cavity are given in Ref.[13].

    Fig.6 (Color online) Comparison of the cavity evolutions between simulated results with the original mesh and the refined mesh

    Fig.7 (Color online) Comparison of cavity patterns between experiment and simulation results at =t 2 ms, 4 ms, 6 ms,8 ms, 10 ms, 12 ms and 16 ms. Re-entrant jets are marked by red lines

    In this study, various submerged depths (15 mm,20 mm, 25 mm, 30 mm and 40 mm) are considered to analyze the cavity stability and the asymmetry, the re-entrant jet thickness, and the velocity with the free surface effect. If the submerged depth is reduced, a natural ventilation will occur[27].

    3.1 The effect of free surface on cavity stability and asymmetry

    Plotted data are shown in Figures 8 and 9. The cavity stability on the upper side of the blunt body increases with the decrease of the submerged depth,whereas the stability on the lower side cavity is generally unchanged. The cavity asymmetry increases with the decrease of the submerged depth. The relationship between the average cavity length difference and the submerged depth can be expressed by the following equation

    where l is the cavity length, and d is the submerged depth.

    Fig.8 Standard deviation of cavity length ()lσ on the upper and lower sides of blunt body at 1 ms-17 ms

    3.2 The effect of free surface on re-entrant jet thickness and velocity

    Fig.10 (Color online) Comparison of simulation results for various submerged depths (15 mm, 20 mm, 25 mm, 30 mm and 40 mm) at 6 ms (velocity contour charts show the velocity distribution around the model at the added symmetry plane)

    Fig.11 Thickness of re-entrant jet inside the cavity for various submerged depths (15 mm, 20 mm, 25 mm, 30 mm and 40 mm) at 6 ms

    The re-entrant jet is one of the important factors for the cavity instability. By putting the velocity contour charts on the symmetry plane of the model,we can clearly see the re-entrant jet inside the cavity based on the numerical results. Figure 10 shows the velocity distribution around the blunt body and the cavitating flow on the model at =6 mst . With the increase of the distance between the free surface and the model, the difference between the cavity length on the upper and lower sides of the body decreases. The thickness of the re-entrant jet inside the cavity at t =6 ms is plotted in Fig.11, which shows that the thickness of the re-entrant jet is proportional to the water layer thickness. When the model is sufficiently close to the free surface, the re-entrant jet on the upper side is very thin and does not have a sufficient strength to remove the cavity. Thus, several fluctuations of the cavity shape are found on the upper side; however, no shedding occurs[27]. The thin re-entrant jet also induces a stable cavity when the blunt body moves close to the free surface. The relationship between the reentrant jet thickness and the submerged depth can be expressed by the following linear equation

    where δ is the re-entrant jet thickness.

    The re-entrant jet inside the cavity moves toward the shoulder of the blunt body during the cavity evolution. The re-entrant jet profiles are marked by red lines in Fig.12. Finally, the main cavity is removed by interfering with the outside flow at t = 8ms . Figures 13 and 14 compare the re-entrant jet velocities (Vre-entryjet) of the simulated cases with various submerged depths (15 mm, 20 mm, 25 mm,30 mm and 40 mm) in terms of the re-entrant jet length from the end of the main cavity to the re-entrant jet front inside the cavity. Generally, the re-entrant jet velocity increases as the submerged depth decreases. The re-entrant jet inside the upper side cavity of the blunt rapidly moves under the free surface effect. The re-entrant jet takes a considerable time to reach the leading edge of the hydrofoil due to the increase of the cavity length and the decrease of the speed of the re-entrant jet.

    Fig.12 (Color online) Cavity evolution of simulation results with submerged depth of 15 mm at 2 ms, 4 ms, 6 ms and 8 ms (velocity contour charts show the velocity distribution around the model at the added symmetry plane)

    Fig.13 The re-entrant jet velocities of the simulated cases with various submerged depths (15 mm, 20 mm, 25 mm,30 mm and 40 mm) at 6 ms

    Fig.14 The re-entrant jet velocities of the simulated cases with various submerged depths (15 mm, 20 mm, 25 mm,30 mm and 40 mm) at 6 ms

    4. Conclusions

    In this study, the effect of the free surface on the cloud cavitating flow around an underwater- launched blunt body is analyzed. The results of the water tank experiment and the CFD simulation are in good agreement. The mesh independence study is also carried out.The results of a series of water tank experiments and simulations for various submerged depths are analyzed.

    Generally, the effect of the free surface on the cavitating flow around the blunt body is enhanced with the decrease of the submerged depth. The cavity on the upper side of the model is stable, thick, and short under the free surface effect. The cavity asymmetry, the difference between the upper and lower side cavities, increases as the submerged depth decreases.

    The thickness of the re-entrant jet is proportional to the water layer thickness as shown by the simulation results. Therefore, the thin re-entrant jet also induces a stable cavity when the blunt body moves close to the free surface. In addition, the re-entrant jet velocity increases as the submerged depth decreases.The free surface effect near the blunt body can induce a fast re-entrant jet inside the upper side cavity.

    The cavitating flow around the model near the free surface is complex. Apart from the submerged depth of the model, many other control parameters,such as the head type of the projectile and the boundary conditions, may influence the cavity. The author will focus on the effect of the free surface on the cavitating flow in case of wave movement in the future. Further study on the V&V research with the LES methods is also necessary. In this study, the results are limited to typical working conditions for a typically shaped model, and an in-depth analysis is required.

    [1] Franc J. P., Michel J. M. Fundamentals of cavitation [J].Fluid Mechanics and Its Applications, 2005, 76(11): 1-46.

    [2] Wang G., Senocak I., Wei S. et al. Dynamics of attached turbulent cavitating flows [J]. Progress in Aerospace Sciences, 2001, 37(6): 551-581.

    [3] Knapp R. T., Daily J. W., Hammitt F. G. Cavitation [M].New York, USA: McGraw-Hill, 1970.

    [4] Brennen C. E. Cavitation and bubble dynamics [M].Oxford, UK: Oxford University Press, 1995.

    [5] Leroux J. B., Coutierdelgosha O., Astolfi J. A. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil [J]. Physics of Fluids, 2005, 17(5):515-13.

    [6] Wei Y. P., Wang Y. W., Fang X. et al. A scaled underwater launch system accomplished by stress wave propagation technique [J]. Chinese Physics Letters, 2011,28(2): 024601-72.

    [7] Hu C. L., Wang G. Y., Huang B. et al. The inception cavitating flows over an axisymmetric body with a blunt head-form [J]. Journal of Hydrodynamics, 2015, 27(3):359-366.

    [8] Faltinsen O. M. Hydrodynamics of high-speed marine vehicles [M]. Cambridge, UK: Cambridge University Press, 2005.

    [9] Faltinsen O. M., Semenov Y. A. The effect of gravity and cavitation on a hydrofoil near the free surface [J]. Journal of Fluid Mechanics, 2008, 597: 371-394.

    [10] Bal S. High-speed submerged and surface piercing cavitating hydrofoils, including tandem case [J]. Ocean Engineering, 2007, 34(14): 1935-1946.

    [11] Bal S. The effect of finite depth on 2D and 3D cavitating hydrofoils [J]. Journal of Marine Science and Technology,2011, 16(2): 129-142.

    [12] Bal S, Kinnas S. A. A BEM for the prediction of free surface effects on cavitating hydrofoils [J]. Computational Mechanics, 2002, 28(3-4): 260-274.

    [13] Wang Y., Wu X., Huang C. et al. Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile [J]. International Journal of Multiphase Flow, 2016, 85: 48-56.

    [14] Ji B., Long Y., Long X. P. et al. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavita-tion interactions [J]. Journal of Hydrodynamics, 2017, 29(1): 27-39.

    [15] Ji Bin, Luo X. W., Peng X. X. et al. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J]. Journal of Hydrodynamics, 2013, 25(4): 510-519.

    [16] Xu C., Wang Y., Huang C. et al. Cloud cavitating flow that surrounds a vertical hydrofoil near the free surface [J].Journal of Fluids Engineering, 2017, 139(10): 101302.

    [17] Ma J., Hsiao C. T., Chahine G. L. A physics based multiscale modeling of cavitating flows [J]. Computers and Fluids, 2017, 145: 68-84.

    [18] Ma J., Oberai A. A., Drew D. A. et al. A quantitative subgrid air entrainment model for bubbly flows–plunging jets[J]. Computers and Fluids, 2010, 39(1): 77-86.

    [19] Cheng H. Y., Long X. P., Ji B. et al. Numerical investigation of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint [J].Journal of Hydrodynamics, 2016, 28(4): 709-712.

    [20] Kanfoudi H., Lamloumi H., Zgolli R. Numerical investigation for steady and unsteady cavitating flows, advances in modeling of fluid dynamics [M]. Rijeka, Croatia:INTECH Open Access Publisher, 2012.

    [21] Wu Q., Huang B., Wang G. Numerical simulation of transient flows around a 3D pitching hydrofoil [J]. Advances in Mechanical Engineering, 2014, 7(2): 808034.

    [22] Yu X. X., Huang C. G., Du T. Z. et al. Study of characteristics of cloud cavity around axisymmetric projectile by large eddy simulation [J]. Journal of Fluids Engineering,2014, 136(5): 051303.

    [23] Bensow R. E., Bark G. Implicit LES predictions of the cavitating flow on a propeller [J]. Journal of Fluids Engineering, 2010, 132(4): 041302.

    [24] Pendar M. R., Roohi E. Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models [J].Ocean Engineering, 2016, 112: 287-306.

    [25] Dawson T. E. An experimental investigation of a fully cavitating two-dimensional flat plate hydrofoil near a free surface [J]. California Institute of Technology, 1959,11(12): 1651-1655.

    [26] Wang Y. W., Xu C., Huang J. et al. Study on flow characteristics and stability mechanism of unsteady cavitating flow near the free surface [C]. Proceedings of the 14th National congress on Hydrodynamics and the 28th National Conference on Hydrodynamics. Changchun,2017, 94-104(in Chinese).

    [27] Wang Y. W., Xu C., Wu X. C. et al. Ventilated cloud cavitating flow around a blunt body close to the free surface[J]. Physical Review Fluids, 2017, 2(8): 084303.

    [28] Yu C., Wang Y. W., Huang C. G. et al. Experimental and numerical investigation on cloud cavitating flow around an axisymmetric projectile near the wall with emphasis on the analysis of local cavity shedding [J]. Ocean Engineering, 2017, 140: 377-387.

    [29] Xu C., Wang Y. W., Huang C. G. et al. Analysis of Nearwall effect on cloud cavitating flow that surrounds an axisymmetric projectile using large eddy simulation with Cartesian cut-cell mesh method [J]. European Journal of Mechanics-B/Fluids, 2018, 67: 15-24.

    [30] Xu C., Yu C., Huang J. et al. Experimental and numerical analysis of cloud cavitating flow that surrounds an axisymmetric projectile in shallow water [C]. Proceedings of the 14th National Congress on Hydrodynamics and the 28th National Conference on Hydrodynamics. Changchun,China, 2017, 518-524(in Chinese).

    [31] Zwart P. J., Gerber A G., Belarmri T. A two-phase on model for predicting cavitation dynamics [C]. Fifth International Conference on Multi-phase Flow. Yokohama,Japan, 2004.

    [32] Yu X., Wang Y., Huang C. et al. Study on the influence of phase change rate on cloud cavitation [J]. Procedia Engineering, 2013, 61(7): 204-206.

    [33] Long Y., Long X. P., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J]. Journal of Hydrodynamics,2017, 29(4): 610-620.

    [34] Xing T. A general framework for verification and validation of large eddy simulation [J]. Journal of Hydrodynamics, 2015, 27(2): 163-175.

    猜你喜歡
    晨光
    牛來了
    瓷上賞青花
    大雁銜魚來
    航天晨光
    中國核電(2021年3期)2021-08-13 08:57:00
    晨光
    晨光與小鹿
    中外文摘(2020年23期)2020-01-01 13:56:52
    灞橋月
    晨光改造大多數(shù)
    晨光
    讀者(2016年3期)2016-01-13 16:50:34
    晨光
    海燕(2015年2期)2015-10-12 10:11:38
    亚洲久久久国产精品| 欧美xxⅹ黑人| 男女免费视频国产| 日韩av不卡免费在线播放| 天天躁夜夜躁狠狠久久av| 国产精品国产三级专区第一集| 91aial.com中文字幕在线观看| 免费观看在线日韩| 欧美精品一区二区免费开放| 少妇人妻久久综合中文| 亚洲内射少妇av| 成人漫画全彩无遮挡| 亚洲欧美日韩卡通动漫| 看免费av毛片| 精品卡一卡二卡四卡免费| 咕卡用的链子| 人妻系列 视频| 中文字幕亚洲精品专区| 日韩电影二区| 免费看光身美女| 精品人妻熟女毛片av久久网站| 老女人水多毛片| 午夜福利视频在线观看免费| 亚洲国产精品999| 人人妻人人澡人人爽人人夜夜| 免费观看av网站的网址| 91国产中文字幕| 搡女人真爽免费视频火全软件| 久久久久视频综合| 成人18禁高潮啪啪吃奶动态图| 亚洲伊人久久精品综合| 午夜久久久在线观看| 国产视频首页在线观看| 天堂8中文在线网| 嫩草影院入口| 男男h啪啪无遮挡| 久久99热6这里只有精品| 久久久久久久国产电影| 国产一区二区激情短视频 | 99re6热这里在线精品视频| 国产黄色视频一区二区在线观看| 啦啦啦在线观看免费高清www| 18在线观看网站| 成人亚洲精品一区在线观看| 国产av一区二区精品久久| 中文乱码字字幕精品一区二区三区| 欧美国产精品一级二级三级| 日本wwww免费看| 国产精品国产三级专区第一集| 最近中文字幕2019免费版| 免费大片黄手机在线观看| 成人午夜精彩视频在线观看| 国产欧美日韩一区二区三区在线| 欧美精品高潮呻吟av久久| 精品一品国产午夜福利视频| 亚洲精品美女久久av网站| 肉色欧美久久久久久久蜜桃| 一级毛片 在线播放| 免费av中文字幕在线| 亚洲,一卡二卡三卡| 侵犯人妻中文字幕一二三四区| 久久久久久久大尺度免费视频| tube8黄色片| 久久久国产精品麻豆| 人成视频在线观看免费观看| 国产极品粉嫩免费观看在线| 国产精品久久久久久av不卡| 黄网站色视频无遮挡免费观看| 国产日韩欧美亚洲二区| 精品少妇黑人巨大在线播放| 女人久久www免费人成看片| 欧美日韩视频精品一区| 一边亲一边摸免费视频| 99九九在线精品视频| 最近的中文字幕免费完整| 天堂俺去俺来也www色官网| 久久精品aⅴ一区二区三区四区 | 精品久久久精品久久久| 2021少妇久久久久久久久久久| 狠狠精品人妻久久久久久综合| 成人综合一区亚洲| 九九在线视频观看精品| 国产一区二区在线观看日韩| 97在线视频观看| 在线 av 中文字幕| 国产色爽女视频免费观看| 日韩在线高清观看一区二区三区| 街头女战士在线观看网站| 国产精品国产三级国产av玫瑰| 久久韩国三级中文字幕| 国产欧美日韩一区二区三区在线| 久久狼人影院| 国产福利在线免费观看视频| 成人国产麻豆网| 免费观看性生交大片5| 国产老妇伦熟女老妇高清| 啦啦啦啦在线视频资源| 免费在线观看完整版高清| 永久网站在线| 亚洲国产精品专区欧美| 久久97久久精品| 毛片一级片免费看久久久久| 黑人巨大精品欧美一区二区蜜桃 | 在线天堂中文资源库| 精品福利永久在线观看| 国产精品欧美亚洲77777| av国产久精品久网站免费入址| 一边摸一边做爽爽视频免费| 香蕉精品网在线| 少妇的逼水好多| videosex国产| 亚洲天堂av无毛| av一本久久久久| 色婷婷久久久亚洲欧美| 亚洲欧美色中文字幕在线| 亚洲精品美女久久av网站| 国产精品 国内视频| 欧美人与性动交α欧美精品济南到 | 久久久久人妻精品一区果冻| av电影中文网址| 99九九在线精品视频| 新久久久久国产一级毛片| 国产成人一区二区在线| 国产在线视频一区二区| 天堂中文最新版在线下载| 国产精品成人在线| 丰满乱子伦码专区| 在线免费观看不下载黄p国产| 丁香六月天网| 欧美最新免费一区二区三区| 少妇被粗大猛烈的视频| 街头女战士在线观看网站| 亚洲中文av在线| 日本欧美视频一区| 成年动漫av网址| 国产日韩欧美亚洲二区| 国产亚洲精品第一综合不卡 | 久久久久精品人妻al黑| 18+在线观看网站| 免费黄网站久久成人精品| 免费黄频网站在线观看国产| 国产在线一区二区三区精| 自线自在国产av| 丝瓜视频免费看黄片| 天天影视国产精品| 五月开心婷婷网| 最黄视频免费看| 国产视频首页在线观看| 九九爱精品视频在线观看| 人妻一区二区av| 纵有疾风起免费观看全集完整版| 成人漫画全彩无遮挡| 欧美精品亚洲一区二区| 少妇被粗大的猛进出69影院 | 99热网站在线观看| 亚洲精品日本国产第一区| 极品少妇高潮喷水抽搐| 欧美精品人与动牲交sv欧美| 国产精品三级大全| 飞空精品影院首页| 日韩成人伦理影院| 1024视频免费在线观看| 久久午夜综合久久蜜桃| 久久久久久人人人人人| 十八禁网站网址无遮挡| 久久精品国产自在天天线| 中国国产av一级| 亚洲成人一二三区av| 少妇被粗大的猛进出69影院 | 亚洲精品久久午夜乱码| 免费看av在线观看网站| 黄色配什么色好看| 桃花免费在线播放| 亚洲精品日本国产第一区| 一个人免费看片子| 亚洲av中文av极速乱| 又粗又硬又长又爽又黄的视频| 丰满迷人的少妇在线观看| 欧美亚洲日本最大视频资源| 亚洲精品美女久久av网站| 亚洲伊人久久精品综合| 日本欧美国产在线视频| 亚洲国产欧美日韩在线播放| 99精国产麻豆久久婷婷| 中文天堂在线官网| 日日爽夜夜爽网站| av线在线观看网站| 久久久久久久久久人人人人人人| 日韩不卡一区二区三区视频在线| 一级毛片我不卡| 三级国产精品片| 考比视频在线观看| 亚洲美女黄色视频免费看| 亚洲伊人久久精品综合| 一边摸一边做爽爽视频免费| 久久久欧美国产精品| 午夜av观看不卡| 日韩成人av中文字幕在线观看| 伊人久久国产一区二区| 日本黄大片高清| 国产一区二区在线观看av| 成人漫画全彩无遮挡| 久久精品久久久久久久性| 国产成人午夜福利电影在线观看| 国产国语露脸激情在线看| 亚洲精品av麻豆狂野| 啦啦啦啦在线视频资源| 日韩欧美一区视频在线观看| 制服诱惑二区| 久久 成人 亚洲| 麻豆乱淫一区二区| 日韩,欧美,国产一区二区三区| 只有这里有精品99| 日本av手机在线免费观看| 亚洲欧美日韩另类电影网站| 国产精品一区二区在线观看99| 免费播放大片免费观看视频在线观看| 校园人妻丝袜中文字幕| 十八禁高潮呻吟视频| 亚洲成色77777| 国产 精品1| 18禁动态无遮挡网站| 亚洲成人av在线免费| 亚洲美女视频黄频| 男男h啪啪无遮挡| 99久久人妻综合| 伦理电影大哥的女人| 国产精品秋霞免费鲁丝片| 极品人妻少妇av视频| 久久韩国三级中文字幕| 又黄又爽又刺激的免费视频.| 亚洲欧美一区二区三区黑人 | 国产一区二区在线观看av| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 午夜福利网站1000一区二区三区| 亚洲 欧美一区二区三区| 久久久久久久大尺度免费视频| 黄色一级大片看看| 国产一区二区在线观看日韩| 91精品伊人久久大香线蕉| 精品99又大又爽又粗少妇毛片| 久久女婷五月综合色啪小说| 久久人人爽人人爽人人片va| 99热这里只有是精品在线观看| 尾随美女入室| 国产精品一国产av| 美女内射精品一级片tv| 久久精品国产鲁丝片午夜精品| videosex国产| 多毛熟女@视频| 少妇熟女欧美另类| 亚洲性久久影院| 日韩中字成人| 亚洲综合精品二区| 亚洲欧美一区二区三区国产| 最近的中文字幕免费完整| 99久国产av精品国产电影| 成年人午夜在线观看视频| 日本欧美国产在线视频| 人妻系列 视频| 飞空精品影院首页| 18禁国产床啪视频网站| videosex国产| 母亲3免费完整高清在线观看 | 丝袜在线中文字幕| 一级爰片在线观看| 老司机影院毛片| av网站免费在线观看视频| 欧美精品一区二区免费开放| 色哟哟·www| 美女国产高潮福利片在线看| 亚洲丝袜综合中文字幕| 日韩人妻精品一区2区三区| 日本vs欧美在线观看视频| 国产精品三级大全| 天天躁夜夜躁狠狠躁躁| 欧美+日韩+精品| 大话2 男鬼变身卡| av一本久久久久| 18禁动态无遮挡网站| 看十八女毛片水多多多| 免费在线观看黄色视频的| 亚洲欧洲精品一区二区精品久久久 | 韩国av在线不卡| 国产成人一区二区在线| 最近最新中文字幕免费大全7| 亚洲国产色片| 九九在线视频观看精品| 中文字幕最新亚洲高清| 在线观看一区二区三区激情| 日产精品乱码卡一卡2卡三| 777米奇影视久久| 少妇 在线观看| 国产一区二区三区综合在线观看 | 大香蕉97超碰在线| 免费看光身美女| 国产成人免费观看mmmm| 久久精品夜色国产| 欧美人与善性xxx| 欧美精品国产亚洲| 热re99久久精品国产66热6| 欧美激情极品国产一区二区三区 | 久热久热在线精品观看| 成人亚洲欧美一区二区av| 亚洲美女黄色视频免费看| 99久国产av精品国产电影| 国产不卡av网站在线观看| 日本与韩国留学比较| 成年人午夜在线观看视频| 久久国产精品男人的天堂亚洲 | av女优亚洲男人天堂| 黄色配什么色好看| 在线观看三级黄色| 水蜜桃什么品种好| 国产男女超爽视频在线观看| 精品少妇久久久久久888优播| 新久久久久国产一级毛片| 精品人妻偷拍中文字幕| 一区二区三区乱码不卡18| 久久久精品免费免费高清| 又大又黄又爽视频免费| 久久人人爽人人片av| 日韩电影二区| 国产男人的电影天堂91| 女人被躁到高潮嗷嗷叫费观| 人成视频在线观看免费观看| 大香蕉97超碰在线| 欧美日本中文国产一区发布| 在线观看三级黄色| 在线观看一区二区三区激情| 美女主播在线视频| 51国产日韩欧美| 久久久久国产网址| 九色成人免费人妻av| 国产 精品1| 国产成人精品在线电影| 国产男女内射视频| 熟女人妻精品中文字幕| 欧美老熟妇乱子伦牲交| 色哟哟·www| 内地一区二区视频在线| 丝袜人妻中文字幕| 老司机影院成人| 99国产精品免费福利视频| 91aial.com中文字幕在线观看| 男人爽女人下面视频在线观看| 亚洲国产精品999| 欧美少妇被猛烈插入视频| 亚洲国产成人一精品久久久| 人成视频在线观看免费观看| 亚洲国产精品成人久久小说| 久久久久精品人妻al黑| 亚洲内射少妇av| 丰满迷人的少妇在线观看| 亚洲国产看品久久| 极品人妻少妇av视频| 青春草国产在线视频| 男的添女的下面高潮视频| 女人精品久久久久毛片| 精品亚洲乱码少妇综合久久| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美中文字幕日韩二区| 亚洲av电影在线进入| 国产亚洲最大av| 欧美丝袜亚洲另类| 丝袜人妻中文字幕| 亚洲四区av| 日韩,欧美,国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 国产爽快片一区二区三区| 边亲边吃奶的免费视频| 欧美日韩国产mv在线观看视频| 国产免费又黄又爽又色| 国产欧美日韩综合在线一区二区| 美女内射精品一级片tv| 国产成人一区二区在线| 丰满乱子伦码专区| 久久这里有精品视频免费| 久久这里只有精品19| 一边摸一边做爽爽视频免费| 国产成人精品在线电影| 国产免费视频播放在线视频| 成年动漫av网址| 亚洲综合色惰| 女的被弄到高潮叫床怎么办| 国产成人精品福利久久| 久久99热这里只频精品6学生| 国产又爽黄色视频| 亚洲色图 男人天堂 中文字幕 | 亚洲精品一二三| 亚洲国产av新网站| 韩国精品一区二区三区 | 黄网站色视频无遮挡免费观看| 黑丝袜美女国产一区| 黑人欧美特级aaaaaa片| 欧美精品亚洲一区二区| 亚洲美女搞黄在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品乱码久久久久久按摩| 久久99蜜桃精品久久| 国产国语露脸激情在线看| 精品一区二区三区四区五区乱码 | 国产高清三级在线| 久久久精品免费免费高清| 九草在线视频观看| av.在线天堂| 国产精品国产三级专区第一集| 亚洲精品aⅴ在线观看| 国产一区二区在线观看日韩| 国产亚洲精品久久久com| 三上悠亚av全集在线观看| 久久久久久久久久久免费av| 亚洲国产欧美在线一区| 亚洲国产精品成人久久小说| 久久鲁丝午夜福利片| 一区在线观看完整版| 亚洲欧洲精品一区二区精品久久久 | 免费久久久久久久精品成人欧美视频 | 亚洲欧洲精品一区二区精品久久久 | 一级毛片 在线播放| 国产成人欧美| 成人黄色视频免费在线看| 曰老女人黄片| av.在线天堂| 国产精品嫩草影院av在线观看| 久久久国产精品麻豆| 亚洲av电影在线观看一区二区三区| 日韩一区二区视频免费看| 日日撸夜夜添| 熟妇人妻不卡中文字幕| 美女国产视频在线观看| 精品99又大又爽又粗少妇毛片| av女优亚洲男人天堂| 少妇高潮的动态图| 国产精品三级大全| 亚洲人成网站在线观看播放| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| av免费观看日本| 亚洲国产色片| 高清黄色对白视频在线免费看| 精品卡一卡二卡四卡免费| 美女脱内裤让男人舔精品视频| 啦啦啦视频在线资源免费观看| 国产免费现黄频在线看| 成人18禁高潮啪啪吃奶动态图| 久久狼人影院| 久久午夜综合久久蜜桃| 国产xxxxx性猛交| 国产精品三级大全| 日本欧美视频一区| 国产片内射在线| 80岁老熟妇乱子伦牲交| 一级a做视频免费观看| 热99久久久久精品小说推荐| 午夜激情久久久久久久| 蜜桃在线观看..| 免费久久久久久久精品成人欧美视频 | 午夜免费男女啪啪视频观看| 久久ye,这里只有精品| 99国产精品免费福利视频| 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| 久久韩国三级中文字幕| 黄色配什么色好看| 国产精品免费大片| 久久久久久久亚洲中文字幕| 少妇人妻久久综合中文| tube8黄色片| 一级毛片 在线播放| 亚洲国产成人一精品久久久| 国产精品成人在线| 熟妇人妻不卡中文字幕| 最黄视频免费看| 亚洲少妇的诱惑av| 视频区图区小说| 九色亚洲精品在线播放| 男人操女人黄网站| 超碰97精品在线观看| 最黄视频免费看| 亚洲av综合色区一区| 天堂中文最新版在线下载| 精品人妻熟女毛片av久久网站| 丰满迷人的少妇在线观看| 免费大片黄手机在线观看| 视频中文字幕在线观看| 成人午夜精彩视频在线观看| 久久人人爽av亚洲精品天堂| 国产淫语在线视频| 欧美日韩成人在线一区二区| 亚洲精品国产av蜜桃| 亚洲美女黄色视频免费看| 国产日韩欧美视频二区| 亚洲精品自拍成人| 久久久久国产精品人妻一区二区| 男的添女的下面高潮视频| 在线观看www视频免费| 亚洲精品久久久久久婷婷小说| 日本欧美国产在线视频| 高清黄色对白视频在线免费看| 中文字幕精品免费在线观看视频 | 成人漫画全彩无遮挡| 久久久国产欧美日韩av| √禁漫天堂资源中文www| 久久婷婷青草| 精品一区在线观看国产| 尾随美女入室| 高清av免费在线| 国产爽快片一区二区三区| 国产福利在线免费观看视频| 亚洲色图综合在线观看| av线在线观看网站| 国产一区二区三区av在线| 人妻人人澡人人爽人人| 人人妻人人澡人人爽人人夜夜| 中文字幕最新亚洲高清| 丝袜喷水一区| 看非洲黑人一级黄片| 国产无遮挡羞羞视频在线观看| 亚洲一区二区三区欧美精品| 亚洲精品第二区| 亚洲av中文av极速乱| 最近的中文字幕免费完整| 天天躁夜夜躁狠狠久久av| 97人妻天天添夜夜摸| 国产福利在线免费观看视频| 亚洲国产精品成人久久小说| 亚洲av欧美aⅴ国产| 久久午夜福利片| 久久这里有精品视频免费| 国产熟女午夜一区二区三区| 咕卡用的链子| 热99久久久久精品小说推荐| 99香蕉大伊视频| 夜夜骑夜夜射夜夜干| 宅男免费午夜| 精品一区二区三区四区五区乱码 | 成人亚洲欧美一区二区av| 两个人看的免费小视频| 伊人久久国产一区二区| 91aial.com中文字幕在线观看| 大香蕉97超碰在线| 黄色配什么色好看| 日韩成人av中文字幕在线观看| 美女中出高潮动态图| 国产精品秋霞免费鲁丝片| 欧美成人午夜免费资源| 只有这里有精品99| 妹子高潮喷水视频| 国产免费福利视频在线观看| 久久国内精品自在自线图片| 欧美精品一区二区免费开放| 久久久久久人人人人人| 免费久久久久久久精品成人欧美视频 | 水蜜桃什么品种好| 美女主播在线视频| av黄色大香蕉| 啦啦啦在线观看免费高清www| av视频免费观看在线观看| 国产成人免费无遮挡视频| 精品国产露脸久久av麻豆| 国产成人aa在线观看| 中文欧美无线码| 成年人午夜在线观看视频| 最黄视频免费看| 亚洲精品一区蜜桃| av天堂久久9| 精品人妻熟女毛片av久久网站| 国产亚洲最大av| 亚洲成av片中文字幕在线观看 | 国产黄频视频在线观看| 黄色视频在线播放观看不卡| 99热国产这里只有精品6| 精品亚洲乱码少妇综合久久| 成人18禁高潮啪啪吃奶动态图| 免费在线观看完整版高清| 高清欧美精品videossex| 欧美精品一区二区大全| 欧美成人午夜免费资源| 久久久久视频综合| 久久久久精品人妻al黑| 9191精品国产免费久久| 亚洲精品,欧美精品| 晚上一个人看的免费电影| 一级a做视频免费观看| 欧美变态另类bdsm刘玥| 亚洲婷婷狠狠爱综合网| 色94色欧美一区二区| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 极品少妇高潮喷水抽搐| 两性夫妻黄色片 | 巨乳人妻的诱惑在线观看| 亚洲精品乱久久久久久| 国产精品国产av在线观看| 亚洲 欧美一区二区三区| 日韩一区二区视频免费看| 18禁在线无遮挡免费观看视频| 午夜福利在线观看免费完整高清在| 热re99久久国产66热| 高清黄色对白视频在线免费看| 成人二区视频| 女人精品久久久久毛片| 深夜精品福利| 丰满少妇做爰视频| 日本av免费视频播放| 99久久人妻综合| 久久综合国产亚洲精品| 伦精品一区二区三区| 国产在视频线精品| 你懂的网址亚洲精品在线观看| 欧美3d第一页| 一区二区三区精品91| 欧美 日韩 精品 国产|