• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of cavitation induced by water hammer *

    2017-03-14 07:06:28JieGeng耿介XiuleYuan苑修樂DongLi李冬GuangshengDu杜廣生SchoolofEnergyandPowerEngineeringShandongUniversityJinan250061Chinamailgj8944163com
    水動力學研究與進展 B輯 2017年6期

    Jie Geng (耿介), Xiu-le Yuan (苑修樂), Dong Li (李冬), Guang-sheng Du (杜廣生)School of Energy and Power Engineering, Shandong University, Jinan 250061, China,E-mail: gj_8944@163.com

    Introduction

    The cavitation might happen when the local pressure is lower than the working fluid’s saturated vapor pressure, which is a discontinuous process. The cavitation widely exists in nature, such as, behind blades of the rotor propeller, under the waterfall and on the surface of rocks in high-speed rivers[1,2].

    In the hydraulic system, the cavitation generally consists of four processes, the gas nuclear generation,the expansion, the compression, and the collapse process. The noise and the vibration, caused by the pressure pulsation with bubble collapsing, are harmful in most cases. The cavitation will seriously affect the reliability and durability[1]. Therefore, the prevention of the cavitation is an important issue in the industrial designs. The water hammer can create a pressure transient in the pipeline, which may lead to the cavitation[3]. The phenomenon is often induced by an instantaneous closure of the valve. Nowadays, with the increasing demands for the precise flow control, a high speed valve is very common. Consequently, the water hammer prevention becomes more and more important. Since the nineteenth century when Russian scientist Joukowski (1898) firstly introduced the theory of water hammer, the water hammer has been a research focus for more than a hundred years. The main numerical methods include: the MOC, the wave front method, the finite difference (FD) method, and the finite volume method (FVM). The MOC is the most popular technique for solving partial differential equations for the water hammer, with a high computational efficiency, and a programming simplicity.Acrivos[4]developed the method of characteristic(MOC) for heat and mass transfer problems.Tijsseling and Bergant[5]removed the need of grid development by introducing the meshless method. An Implicit Method of Characteristics is proposed by Afshar and Rohani[6]and any arbitrary combination of devices can be allowed with implicit method. Zhao and Ghidaoui[7]compared the application of FVM schemes and MOC schemes with space line interpolation and found that MOC produces the same results with first-order FV Godunov-scheme. Meniconi et al.[8]studied the interaction between valve action and an in-line devices using MOC. The predictions with the MOC are relatively reliable, widely used in energy plants, environment industry, agriculture automation,chemical industry, urban water supply and other fields.

    The water hammer is a complex process, and the simulation is mostly limited to one-dimensional cases[9].The industrial design is restricted by an unreal dimension. With the progress of computer science and hardware, the computational cost is greatly reduced.Many approaches of three-dimensional cavitation simulation with the FVM were proposed in recent years. A general cavitation prediction method was developed by Singhal et al.[10]and introduced to improve the performance of turbo-machinery. Bakir et al.[11]investigated the cavitating behavior of an Inducer. Shang et al.[12]studied the cavitation around a high speed submarine. To the best of the authors’knowledge, the related references mainly focused on the cases of pumps and high speed airfoils[13-18], the cavitation induced by the water hammer has not yet been studied by using three-dimensional numerical methods.

    In the following, joint simulation by one-dimensional water hammer software “Hammer” and open source FVM software “OpenFOAM” is introduced.Firstly, pressure changes on the boundary will be calculated by MOC with Hammer. Then, the threedimensional prediction of cavitation will be achieved and three-dimensional visualization will be realized with the help of FVM. By analysis of the causes of cavitation from a three-dimensional perspective, it can provide new ideas for the industrial design of the fluid equipment.

    1. Model description

    1.1 Equations of water hammer

    The propagation velocity of the wave that would induce the water hammer[4]

    wherevE is the bulk modulus of liquid, E is the elastic modulus of tube’s wall, D is the pipe diameter, and T is the wall thickness.

    The basic differential equations of the water hammer[19,20]:

    where H is the static pressure head, α is the inclined angle of the pipeline, λ is the resistance coefficient and s is the axial length.

    1.2 Equations of turbulence and cavitation

    The --kωSST model[21]is used to model the turbulence, which enjoys a robust convergence rate and a relatively accurate inverse pressure gradient and separated vortex. The cavitation model is based on the volume of fluid model (VOF), the interPhaseChangeFoam in OpenFOAM.

    The k and ω equations in the - -kω SST model:

    The phase transition is described by the Merkle mass transformation equation:

    where m˙-is the transition rate from the liquid phase to the gas phase, and m ˙+is the transition rate from the gas phase to the liquid phase, Cc, Cv, t∞, U∞are constants depending on the mean velocity, and psatis the saturated vapor pressure.

    1.3 Boundary condition and grid settings

    The physical model, initially designed by Nicolaus Bernoulli, is a flow measurement system operated in the Fluid Dynamics Laboratory of Shandong University[13,22,23], as shown in Fig.1.

    Fig.1 Physical model

    Table 1 The material properties

    High speed valves are used to ensure the accuracy of the flow control (the valve closing process involves nonlinear changes of the flow rate. Improving Note: d is the pipe diameter of the simulation, l is the length between the water tank and the valve, h stands for the pressure head, tΔ is the closing time for the valve,wavec is the velocity of the water hammer wave, andpipeλ is the resistance loss of the pipe.

    the speed of the valve can reduce the impact of the nonlinear part of the measurement). In the actual process, the test bench will witness undesirable vibrations. The water hammer effect is significant. On the other hand, the ultrasonic flowmeter is very sensitive to the bubbles when there is cavitation. The potential damage caused by the pressure pulsation with bubble collapsing should also be considered. The cavitation control is the key in the design. The basic parameters of the structure are shown in Table 1.

    In the OpenFOAM, the x plane at =0 mx is set as the total pressure for the fluid inlet. The x plane at =0.2 mx is set as the total pressure for the fluid outlet. Other boundaries are the wall.

    In normal cases, the cavitation would happen at the valve end of the pipeline. However, this paper would specifically study the cavitation when the water hammer wave interacts with the flow resistance piece.The fluid delivering devices often connect the parts with the rubber gasket to strengthen the sealing. In some cases, the rubber gasket will extend into the pipe and generate disturbance in the flow, as shown in Fig.1. The stability of the equipment will be influenced in some extreme situation, such as that with cavitation. The boundary condition of the VOF is introduced based on the result of the MOC, and the grid setting is shown in Fig.2.

    Fig.2 Normal section mesh of pipeline

    The calculation region consists of a circular tube and a rubber gasket. Because the accuracy in the boundary layer will dramatically affect the simulation result around the gasket, the first layer of the boundary grid is set to 3×10-6m, and y+is 5. The direct solution is used instead of wall functions. The total grid number is 1.7×106, as shown in Fig.2. The calculation tolerance for P is 1×10-5, tolerances for U and k are 1×10-4.

    1.4 Model verification

    The flow rate fluctuation calculated by the FVM is verified by the counterpart based on the MOC. The method of characteristics, which has been applied for the water hammer simulation for years, is developed and tested[5,6]. The cost of the computing resource is small, and the accuracy of the calculation for the extreme pressure is reliable. Therefore, the MOC for the water hammer calculation is regarded as the verification basis.

    The boundary conditions of the FVM simulation are based on the pressure transient calculated by the MOC, and the flow rates of the same section downstream obtained from the two simulation methods, on a normal section 0.5 m before the valve, are compared.The simulation results are shown in Fig.3.

    Fig.3 Flow rate fluctuation based on MOC and FVM

    Due to the introduction of the no slip wall and the cavitation in the FVM, different scale vortexes are generated. The results are slightly different from the counterpart in the MOC simulation, and the correlation between the data from the two methods is 0.87. If the two curves are time averaged over 5 ms, they will be perfectly overlapped and the difference will be within 1%. The results of the FVM are relatively smoother. Overally, the trend is consistent. Therefore,the joint simulation is reliable.

    2. Results and discussions

    The simulation is carried out by using jointly the one-dimensional MOC and the three-dimensional FVM. Firstly, the pressure transient of the water hammer is calculated by the MOC. Then, the cavitation process is predicted by the FVM simulation.

    Based on the boundary conditions as shown in Table 1, an indirect water hammer is induced. The pressure fluctuation curve calculated by the Hammer is shown in Fig.4, with the highest pressure of 2.75×105Pa at 0.106 s and the lowest pressure of 3.30×103Pa at 0.115 s. The cycle length of the water hammer pulsation at about 0.1s is equal to the ratio of the pipe length to the wave propagation velocity. In a normal situation, the temperature is approximately, the saturated pressure is 2.30×103Pa, which is lower than the lowest point in the simulation. Theoretically, there will be no cavitation. However, the structure of the fluid segments is also an important factor,which can be considered by the three-dimensional FVM.

    Fig.4 Boundary pressure calculated by MOC ( 0.5 m beforethe valve)

    The boundary conditions in the OpenFOAM are set according to the results of the Hammer’s simulation. The FVM segment is 0.202 m long and the start point is 2 m before the valve. The gasket is 2 mm wide and the extending section is 2 mm long. For the pressure boundary, the information on the related nodes of the MOC is used, which covers the whole pipe of 5 m long. The averaged pressure of the entire fluid region over time is shown in Fig.5, with the highest point at 0.105 s and the lowest point at 0.109 s.It is reasonable that the pressure difference is greatly reduced due to the space averaging. However, it is hard to explain why the lowest pressure comes a half cycle earlier than that on the boundary. At the same time, the cavitation is observed (In Fig.5, the solid line represents the volume percentage of the liquid).

    Fig.5 Spatial averaged pressure fluctuation and volume fraction of water ( αwater )

    Due to the cavitation, the pressure rebounds a little. At the same time, the pressure declines on the boundary. The cavitation is induced by the local extremely low pressure, and the generation of bubbles would compensate for the low pressure. The cavitation is an indicator of the extreme situation.

    When the pressure is lower than the saturation vapor pressure, the cavitation is induced. On one hand,the pressure is constrained by the boundary conditions.On the other hand, the cavitation can be influenced by the pressure drop caused by the flow field structure.The pressure drop caused by the local resistant part is proportional to the velocity squared. The averaged space velocity over time is shown in Fig.6.

    Fig.6 Spatial mean velocity

    When t < 0 .100 s, the average velocity is about 2.5 m/s, which is the maximum over the time span.

    The cavitation appears when the inverse velocity reaches the maximum at 0.109 s. The flow fluctuates regularly and changes directions every half cycle, and the fluctuation energy is gradually dissipated. The interaction between the high-speed motion and the flow resistance is an important factor for the pressure drop. The transient flow field is used to study the localized situation.

    Figure 7(a), a combination of the pressure field and the velocity vector field, illustrates the flow around the gasket. Initially, the flow is in the positive direction of the -xaxis. At the moment of 0.109 s,the flow reverses its direction and a strong vortex is formed at the front edge of the gasket, as shown in the figure. The local pressure declines remarkably around the core of the vortex. Bubbles are generated at the same time, as shown in Fig.7(b). In this practical case of the water hammer, where the minimum boundary pressure is higher than the saturated vapor pressure condition, the cavitation only happens at this specified time in this specified area.

    Fig.7 Cavitation at t =0.109 s

    The cavitation is localized in time and space. To a certain extent, the temporal analysis of the velocity and the pressure can explain the localization. The inverse velocity comes to the maximum and the boundary pressure is relatively low at 0.109 s. However,the cavitation usually happens at the back edge of the resistance and the absolute velocity before the water hammer is even higher than that at 0.109 s. Comparison is needed to illustrate the more significant pressure drop at 0.109 s.

    A pressure and velocity vector field at =t 0.900s is shown in Fig.8(a). It is obvious that vortexes are generated behind the gasket and propagate along the flow direction, which is remarkably different from the standing vortexes in Fig.7(a). The squared vorticity shown in Fig.8(b) can be expressed as

    Fig.8 Flow information at t=0.900 s

    Fig.9 Squared vorticity at t =0.109 s

    Before t = 0.100s, the flow is relatively stable.The squared vorticity in Fig.8(b) is time-averaged over 0.05 s.

    The surface integral of the squared vorticity fluctuates at the downstream of the gasket at t = 0.900s . By contrast, the same parameter concentrates locally at t = 0.109s demonstrated in Fig.9(a), and the concentration synchronizes with the cavitation shown in Fig.7(b). As illustrated in Fig.9(b),the surface integral of the squared vorticity reaches the maximum around x = 0.09 m and remains low in the range of x< 0 .09 m (the flow is along the negative direction of the x-axis). Therefore, the vorticity can be used to characterize the possibility of the cavitation. The transfer equation of the vorticity is

    The cycle of the pressure transient in our case is relatively short due to the short length of the operating pipeline. The effects of the convection, the diffusion and the viscous loss are negligible in this process.Consequently, the pressure gradient would be dramatically influenced by the vorticity changes.Therefore, we may conclude that the standing vortexes and the cavitation are locally generated in Fig.7(a).

    3. Conclusions

    The MOC has been widely adopted over decades,since it was developed. However, it is limited to onedimension, and the variables of internal structures in the flow field cannot be adequately considered. The simulation is carried out by using jointly the one dimensional MOC and the three-dimensional FVM.The three-dimensional FVM enjoys advantages of three-dimensional visualization. A practical case of the water hammer, with the minimum boundary pressure higher than the saturated vapor pressure condition, is simulated. Based on the temporal and spatial analyses, the possible cavitation area around a gasket is predicted, at the front edge of the gasket0.09 m and at the moment of t = 0.109s. The boundary pressure is relatively low, not reaching the minimum. The reverse speed is the highest0.109=v

    2.0 m/s. Due to the short cycle of the pressure transient caused by the water hammer, vortexes cannot be developed downstream. When the standing vortexes are triggered, a remarkable pressure drop induces the cavitation.

    In conclusion, there are three causes of the cavitation in pipes, the low boundary pressure, the strong vorticity, and the fast pressure transient. This theory provides some insight for further studies of the cavitation induced by the water hammer. Secondly,the joint simulation is a good way to realize the visualization, which could help the industrial design.Thirdly, in the case of a pipe of 5 m long with an indirect water hammer, the structure has to be reinforced at the front edge of the gasket to compensate for the potential harm due to the cavitation.

    [1] Washio S. Recent developments in cavitation mechanisms:A guide for scientists and engineers [M]. Sawston, UK:Woodhead Publishing, 2014.

    [2] Brennen C. E. Cavitation and bubble dynamics [M].Cambridge, UK: Cambridge University Press, 2013.

    [3] Ghidaoui M. S., Zhao M., Mcinnis D. A. et al. A review of water hammer theory and practice [J]. Applied Mechanics Reviews, 2005, 58(1): 49-76.

    [4] Acrivos A. Method of characteristics technique: Application to heat and mass transfer problems [J]. Industrial and Engineering Chemistry, 1956, 48(4): 703-710.

    [5] Tijssenling A. S., Bergant A. Meshless computation of water hammer [C]. Proceedings of the 2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems.Timisoara, Romania, 2007, 65-76.

    [6] Afshar M. H., Rohani M. Water hammer simulation by implicit method of characteristic [J]. International Journal of Pressure Vessels and Piping, 2008, 85(12): 851-859.

    [7] Zhao M., Ghidaoui M. S. Godunov-type solutions for water hammer flows [J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(4): 341-348.

    [8] Meniconi S., Brunone B., Ferrante M. In-line pipe device checking by short-period analysis of transient tests [J].Journal of Hydraulic Engineering, ASCE, 2010, 137(7):713-722.

    [9] Zeng Q., Ma G. Y., Jiang D. F. et al. A review of calculation methods for pipeline water hammer [J]. Contemporary Chemical Industry, 2013, 42(8): 1189-1193.

    [10] Singhal A. K., Athavale M., Li H. et al. Mathematical basis and validation of the full cavitation model [J].Journal of Fluids Engineering, 2002, 124(3): 617-624.

    [11] Bakir F., Rey R., Gerber A. G. et al. Numerical and experimental investigations of the cavitating behavior of an inducer [J]. International Journal of Rotating Machinery, 2004, 10(1): 15-25.

    [12] Shang Z., Emerson D. R., Gu X. Numerical investigation of cavitation around a high speed submarine using OpenFOAM with LES [J]. International Journal of Computational Methods, 2012, 9(9): 1-14.

    [13] Zheng Y. Research on current rush to interception airmass with delivery pipeline system and water hammer with gas [D]. Doctoral Thesis, Nanjing, China: Hohai University, 2004(in Chinese).

    [14] Li J., Chen H. S. Numerical simulation of micro bubble collapse near solid wall in Fluent environment [J].Tribology, 2008, 28(4): 311-5.

    [15] Ding H., Visser F., Jiang Y. et al. Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications [J].Journal of Fluids Engineering, 2011, 133(1): 011101.

    [16] Luo X., Jin B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016,28(3): 335-358.

    [17] Zhang H. M. Studies on numerical simulation of weakly compressible coupling water hammer and cavitation flow in hydroturbine [D]. Doctoral Thesis, Kunming, China:Kunming University of Science and Technology, 2013(in Chinese).

    [18] Li W. F., Feng J. J., Luo X. J. et al. Numerical simulation of transient flows in Francis turbine runner based on dynamic mesh method [J]. Journal of Hydroelectric Engineering, 2015, 34(7): 64-73.

    [19] Bergant A., Simpson A. R., Tijssenling A. S. Water hammer with column separation: A historical review [J].Journal of Fluids and Structures, 2006, 22(2): 135-171.

    [20] Mambretti S. Water hammer simulations [M]. Southampton, UK: Wit Press, 2013.

    [21] Menter F. R. Improved two-equation -kω turbulence models for aerodynamic flows [R]. NASA STI/Recon Technical Report N, 1992, 93.

    [22] GUO L. L. Research on the key questions of the influence on the performance of a water flowrate calibration facility[D]. Doctoral Thesis, Shandong, China: Shandong University, 2014(in Chinese).

    [23] Guo L. L., Geng J., Shi S. et al. Computing research of the water hammer pressure in the process of the variable speed closure of valve based on UDF method [J]. Journal of Shandong University (Natural Edition), 2014, 49(3):27-30(in Chinese).

    国产永久视频网站| 久久精品久久精品一区二区三区| 日韩一本色道免费dvd| 人妻 亚洲 视频| 麻豆精品久久久久久蜜桃| 欧美日韩视频高清一区二区三区二| 国产亚洲5aaaaa淫片| 色5月婷婷丁香| 美女视频免费永久观看网站| 自拍偷自拍亚洲精品老妇| 久久久国产欧美日韩av| 久久人人爽人人片av| 久久久久人妻精品一区果冻| 五月伊人婷婷丁香| 精品国产一区二区三区久久久樱花| 国产淫语在线视频| 99热全是精品| 毛片一级片免费看久久久久| 国产亚洲91精品色在线| 日本午夜av视频| 久久久久久久久久人人人人人人| 精品一区二区三卡| 国产精品一二三区在线看| 亚洲色图综合在线观看| 国产欧美另类精品又又久久亚洲欧美| 人妻夜夜爽99麻豆av| a级片在线免费高清观看视频| 如何舔出高潮| 亚洲四区av| 在线观看美女被高潮喷水网站| 久久久久久久久大av| 2022亚洲国产成人精品| 大香蕉久久网| 在线观看免费视频网站a站| 免费看av在线观看网站| 大片免费播放器 马上看| 九色成人免费人妻av| 日韩中字成人| 午夜福利在线观看免费完整高清在| 国产伦理片在线播放av一区| 亚洲美女搞黄在线观看| 日韩 亚洲 欧美在线| 少妇猛男粗大的猛烈进出视频| 中文精品一卡2卡3卡4更新| 少妇被粗大猛烈的视频| 永久免费av网站大全| 麻豆成人av视频| 免费少妇av软件| 亚洲国产欧美日韩在线播放 | 亚洲欧美日韩东京热| 极品少妇高潮喷水抽搐| 在线免费观看不下载黄p国产| 观看美女的网站| 色哟哟·www| 久久久久久久久大av| 国产精品福利在线免费观看| av.在线天堂| 一个人看视频在线观看www免费| 日韩视频在线欧美| 中文字幕制服av| 在线免费观看不下载黄p国产| 欧美日韩国产mv在线观看视频| 国产高清国产精品国产三级| 日韩精品有码人妻一区| 两个人的视频大全免费| 精品人妻熟女毛片av久久网站| av视频免费观看在线观看| 亚洲国产精品999| a级片在线免费高清观看视频| av在线老鸭窝| 自线自在国产av| 亚洲国产色片| 69精品国产乱码久久久| av天堂中文字幕网| 久久婷婷青草| 观看免费一级毛片| 99热这里只有是精品在线观看| 六月丁香七月| 欧美精品国产亚洲| 街头女战士在线观看网站| 欧美最新免费一区二区三区| 在线观看免费视频网站a站| 成年av动漫网址| 日韩亚洲欧美综合| 国产综合精华液| 精品久久国产蜜桃| 精品国产一区二区久久| 国产永久视频网站| 黄色日韩在线| 熟女av电影| 久久久a久久爽久久v久久| 青春草国产在线视频| 免费观看的影片在线观看| 搡老乐熟女国产| 久久国产乱子免费精品| 亚洲欧美精品自产自拍| 日本黄色日本黄色录像| 日韩制服骚丝袜av| 成人毛片a级毛片在线播放| 国产伦精品一区二区三区四那| 亚洲高清免费不卡视频| 久久久久视频综合| 亚洲天堂av无毛| 91久久精品电影网| 色网站视频免费| 黄色配什么色好看| 国产色婷婷99| 亚洲图色成人| 18禁动态无遮挡网站| 97精品久久久久久久久久精品| 免费观看无遮挡的男女| 国产亚洲最大av| 亚洲精品色激情综合| 国产一区二区三区av在线| 全区人妻精品视频| 欧美+日韩+精品| 精品一区二区三卡| 老熟女久久久| 韩国高清视频一区二区三区| 婷婷色综合www| 久久 成人 亚洲| 丰满迷人的少妇在线观看| 日韩三级伦理在线观看| 久久精品国产自在天天线| 国内少妇人妻偷人精品xxx网站| 六月丁香七月| 黄色怎么调成土黄色| 国产精品免费大片| 女人精品久久久久毛片| 久久99蜜桃精品久久| 99精国产麻豆久久婷婷| 久久久久国产网址| 国产伦精品一区二区三区四那| 91成人精品电影| 亚洲国产欧美日韩在线播放 | 三级经典国产精品| 日韩成人伦理影院| 黄色欧美视频在线观看| 色视频www国产| 能在线免费看毛片的网站| 偷拍熟女少妇极品色| www.色视频.com| 国产 一区精品| 蜜臀久久99精品久久宅男| 亚洲国产精品一区二区三区在线| 国产精品.久久久| 亚洲性久久影院| 国产又色又爽无遮挡免| 免费人成在线观看视频色| 国产黄片美女视频| 18+在线观看网站| 精品久久久噜噜| 国产乱人偷精品视频| 建设人人有责人人尽责人人享有的| 多毛熟女@视频| 少妇人妻 视频| 99热国产这里只有精品6| 久久99蜜桃精品久久| 日韩人妻高清精品专区| 我的老师免费观看完整版| 欧美三级亚洲精品| 波野结衣二区三区在线| 国产在线视频一区二区| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区四那| 欧美97在线视频| 国产成人精品一,二区| 伊人久久国产一区二区| 午夜精品国产一区二区电影| 丝袜在线中文字幕| 成人二区视频| 日本黄色片子视频| 亚洲欧美日韩另类电影网站| 国产精品熟女久久久久浪| 国产精品久久久久成人av| 好男人视频免费观看在线| 国产成人免费无遮挡视频| 午夜免费鲁丝| 日本黄色片子视频| 中国美白少妇内射xxxbb| 一级,二级,三级黄色视频| 啦啦啦在线观看免费高清www| 大片免费播放器 马上看| av在线老鸭窝| 成人亚洲精品一区在线观看| 街头女战士在线观看网站| 国精品久久久久久国模美| 亚洲欧美中文字幕日韩二区| 亚洲美女搞黄在线观看| 欧美人与善性xxx| 免费看光身美女| 黄色一级大片看看| av免费观看日本| 久久99热这里只频精品6学生| 一级二级三级毛片免费看| 国产精品免费大片| 伦理电影免费视频| 18禁裸乳无遮挡动漫免费视频| 国产欧美另类精品又又久久亚洲欧美| 一本色道久久久久久精品综合| 五月玫瑰六月丁香| 国产亚洲91精品色在线| 九色成人免费人妻av| 激情五月婷婷亚洲| 久久ye,这里只有精品| 欧美国产精品一级二级三级 | 晚上一个人看的免费电影| 晚上一个人看的免费电影| 亚洲美女搞黄在线观看| 在线观看人妻少妇| 人妻 亚洲 视频| 日韩成人伦理影院| 久久久久国产网址| 人体艺术视频欧美日本| 在线看a的网站| 精品人妻偷拍中文字幕| 亚洲av中文av极速乱| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久亚洲| 精品久久久久久久久亚洲| 亚洲国产av新网站| 99久久中文字幕三级久久日本| 丰满人妻一区二区三区视频av| 国产一区亚洲一区在线观看| 有码 亚洲区| 天堂8中文在线网| 热re99久久国产66热| 插阴视频在线观看视频| 亚洲av免费高清在线观看| 狂野欧美激情性bbbbbb| 成人二区视频| 亚洲精品一区蜜桃| 欧美97在线视频| a级片在线免费高清观看视频| 日韩,欧美,国产一区二区三区| .国产精品久久| 91久久精品电影网| 国产午夜精品久久久久久一区二区三区| 看非洲黑人一级黄片| 亚洲欧洲国产日韩| 啦啦啦在线观看免费高清www| 国产高清国产精品国产三级| 免费观看无遮挡的男女| 大香蕉97超碰在线| 99热全是精品| 另类精品久久| a级毛色黄片| 国产日韩欧美视频二区| 啦啦啦啦在线视频资源| 水蜜桃什么品种好| 欧美成人精品欧美一级黄| 国产高清三级在线| 精品亚洲成a人片在线观看| 成年美女黄网站色视频大全免费 | 不卡视频在线观看欧美| av福利片在线观看| 日韩人妻高清精品专区| 国产精品无大码| 亚洲伊人久久精品综合| 永久网站在线| 亚洲av国产av综合av卡| 亚洲怡红院男人天堂| 男女边吃奶边做爰视频| 嫩草影院新地址| 婷婷色综合www| 久久99热6这里只有精品| 九九爱精品视频在线观看| av专区在线播放| 成人亚洲精品一区在线观看| 91久久精品电影网| 国产欧美日韩综合在线一区二区 | 丰满少妇做爰视频| 人妻系列 视频| 亚洲美女搞黄在线观看| a级一级毛片免费在线观看| 大香蕉久久网| 亚洲精品视频女| 精品国产一区二区久久| 国产亚洲欧美精品永久| 国产日韩一区二区三区精品不卡 | 国产一区二区在线观看av| av一本久久久久| 最后的刺客免费高清国语| 建设人人有责人人尽责人人享有的| av在线app专区| 人人妻人人爽人人添夜夜欢视频 | 一区二区av电影网| 亚洲欧美清纯卡通| 久久99热6这里只有精品| 久久久久久久亚洲中文字幕| 尾随美女入室| 国产免费福利视频在线观看| 一区在线观看完整版| 国产精品三级大全| 精品少妇内射三级| 水蜜桃什么品种好| 精品人妻一区二区三区麻豆| 午夜免费男女啪啪视频观看| 高清午夜精品一区二区三区| 国产 一区精品| 一级a做视频免费观看| 精品卡一卡二卡四卡免费| 少妇人妻精品综合一区二区| 国产日韩欧美亚洲二区| kizo精华| 免费观看av网站的网址| 深夜a级毛片| 男女边吃奶边做爰视频| 一区二区三区乱码不卡18| 免费在线观看成人毛片| 免费少妇av软件| 人人妻人人澡人人爽人人夜夜| 免费人妻精品一区二区三区视频| 国产探花极品一区二区| 久久热精品热| 最近最新中文字幕免费大全7| av天堂久久9| 五月天丁香电影| 久久精品国产鲁丝片午夜精品| 欧美激情国产日韩精品一区| 日韩人妻高清精品专区| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩卡通动漫| 免费在线观看成人毛片| 久久国产精品男人的天堂亚洲 | 久久97久久精品| 免费黄色在线免费观看| 午夜影院在线不卡| 99精国产麻豆久久婷婷| 少妇被粗大猛烈的视频| 久久影院123| 国内精品宾馆在线| 亚洲精品国产av蜜桃| 欧美人与善性xxx| 2022亚洲国产成人精品| 午夜激情久久久久久久| 人妻人人澡人人爽人人| 欧美 日韩 精品 国产| 中国美白少妇内射xxxbb| a级毛片在线看网站| 18禁裸乳无遮挡动漫免费视频| 91精品伊人久久大香线蕉| 亚洲精品中文字幕在线视频 | 日韩av不卡免费在线播放| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲网站| 成年女人在线观看亚洲视频| 免费观看av网站的网址| 九九久久精品国产亚洲av麻豆| 久久精品久久精品一区二区三区| 国产中年淑女户外野战色| 精品视频人人做人人爽| 成年美女黄网站色视频大全免费 | 最新中文字幕久久久久| 久久综合国产亚洲精品| 国产中年淑女户外野战色| 精品一品国产午夜福利视频| 亚洲欧美精品自产自拍| 日韩大片免费观看网站| 能在线免费看毛片的网站| 国产深夜福利视频在线观看| 国产成人精品久久久久久| 日韩成人av中文字幕在线观看| videos熟女内射| 在线精品无人区一区二区三| 国产精品国产三级专区第一集| 免费av中文字幕在线| 一本一本综合久久| 国产精品麻豆人妻色哟哟久久| 欧美97在线视频| 亚洲成色77777| 亚洲国产av新网站| 国产免费一区二区三区四区乱码| 99久久人妻综合| 国产精品.久久久| 99热国产这里只有精品6| av在线播放精品| 亚洲精品456在线播放app| 内射极品少妇av片p| 日本与韩国留学比较| 丰满迷人的少妇在线观看| 久久人人爽人人片av| 国产精品不卡视频一区二区| a级毛片在线看网站| 欧美少妇被猛烈插入视频| 中文乱码字字幕精品一区二区三区| 男人添女人高潮全过程视频| 纵有疾风起免费观看全集完整版| 日韩av免费高清视频| 亚洲国产色片| 精品一品国产午夜福利视频| 一级,二级,三级黄色视频| 久久ye,这里只有精品| 欧美3d第一页| 亚洲久久久国产精品| 日本午夜av视频| 毛片一级片免费看久久久久| 久久久久久久久久久丰满| 人体艺术视频欧美日本| 18禁裸乳无遮挡动漫免费视频| 免费观看的影片在线观看| 国产色婷婷99| 亚洲激情五月婷婷啪啪| 亚洲情色 制服丝袜| 晚上一个人看的免费电影| av有码第一页| 久久久久久久久大av| 婷婷色av中文字幕| 久热这里只有精品99| freevideosex欧美| 久久人人爽av亚洲精品天堂| 亚洲av不卡在线观看| 久久女婷五月综合色啪小说| 精品一区二区免费观看| 夜夜骑夜夜射夜夜干| 成人综合一区亚洲| 亚洲一区二区三区欧美精品| 久久人人爽av亚洲精品天堂| 纯流量卡能插随身wifi吗| 老司机影院毛片| 大码成人一级视频| 国产精品一区www在线观看| 久久毛片免费看一区二区三区| 欧美精品一区二区免费开放| 日日摸夜夜添夜夜爱| 老女人水多毛片| 伊人亚洲综合成人网| 久久综合国产亚洲精品| 亚洲不卡免费看| 国产成人精品久久久久久| 精品一区在线观看国产| 国产精品伦人一区二区| 国产男女超爽视频在线观看| 午夜激情久久久久久久| 国产亚洲一区二区精品| 岛国毛片在线播放| 十分钟在线观看高清视频www | 新久久久久国产一级毛片| 国产免费一级a男人的天堂| 亚洲精品国产成人久久av| 国产精品久久久久久精品古装| .国产精品久久| 久久久国产一区二区| 欧美丝袜亚洲另类| 国产精品.久久久| 久久人人爽人人爽人人片va| 国产亚洲一区二区精品| 色94色欧美一区二区| 久久久国产一区二区| 在线观看www视频免费| 日韩,欧美,国产一区二区三区| 99热网站在线观看| 精品人妻熟女av久视频| 国产在线视频一区二区| 国产精品国产三级国产av玫瑰| 97精品久久久久久久久久精品| 十八禁网站网址无遮挡 | 欧美xxxx性猛交bbbb| 国产精品99久久久久久久久| 色婷婷av一区二区三区视频| 狂野欧美激情性bbbbbb| 五月开心婷婷网| 国产男女内射视频| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜制服| 男女国产视频网站| 国产欧美日韩一区二区三区在线 | 九九在线视频观看精品| 亚洲欧洲精品一区二区精品久久久 | 中文乱码字字幕精品一区二区三区| 成人二区视频| 成年美女黄网站色视频大全免费 | 国产精品欧美亚洲77777| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 精品少妇久久久久久888优播| 一级爰片在线观看| 深夜a级毛片| 日韩一区二区三区影片| 成人毛片a级毛片在线播放| 在线观看美女被高潮喷水网站| 国产亚洲av片在线观看秒播厂| 日韩一本色道免费dvd| 日日爽夜夜爽网站| 黄色欧美视频在线观看| 成人黄色视频免费在线看| 春色校园在线视频观看| 日韩成人伦理影院| 国产精品国产三级国产av玫瑰| 天堂俺去俺来也www色官网| 亚洲电影在线观看av| 亚洲情色 制服丝袜| 在线观看一区二区三区激情| 亚洲熟女精品中文字幕| 成年人午夜在线观看视频| 大香蕉久久网| 激情五月婷婷亚洲| 国产日韩欧美亚洲二区| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 女人久久www免费人成看片| 欧美少妇被猛烈插入视频| 久久精品国产鲁丝片午夜精品| 免费高清在线观看视频在线观看| 国产在视频线精品| 伊人久久精品亚洲午夜| 有码 亚洲区| 日本91视频免费播放| 国产熟女午夜一区二区三区 | 少妇猛男粗大的猛烈进出视频| 国产午夜精品一二区理论片| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 永久免费av网站大全| 18禁在线无遮挡免费观看视频| 日韩成人伦理影院| 又粗又硬又长又爽又黄的视频| 久久久久久人妻| 亚洲一区二区三区欧美精品| 久久国内精品自在自线图片| 人妻一区二区av| 日韩成人av中文字幕在线观看| 内射极品少妇av片p| 免费观看性生交大片5| 99re6热这里在线精品视频| 久久6这里有精品| 少妇高潮的动态图| 高清不卡的av网站| 十八禁网站网址无遮挡 | 欧美最新免费一区二区三区| 丰满少妇做爰视频| 亚洲av日韩在线播放| 最近2019中文字幕mv第一页| 亚洲精品视频女| 热re99久久精品国产66热6| 热re99久久精品国产66热6| 久久国产乱子免费精品| 黑人巨大精品欧美一区二区蜜桃 | 欧美变态另类bdsm刘玥| 日韩强制内射视频| 午夜免费男女啪啪视频观看| 免费大片18禁| 免费看光身美女| 男男h啪啪无遮挡| 插逼视频在线观看| 亚洲va在线va天堂va国产| 欧美三级亚洲精品| 亚洲四区av| 男女免费视频国产| 夜夜骑夜夜射夜夜干| 欧美最新免费一区二区三区| 啦啦啦中文免费视频观看日本| 久久亚洲国产成人精品v| 精品久久久久久久久av| 国产高清三级在线| 极品人妻少妇av视频| 纯流量卡能插随身wifi吗| 亚洲欧美精品专区久久| 国产中年淑女户外野战色| av网站免费在线观看视频| 亚洲四区av| 免费观看在线日韩| 国模一区二区三区四区视频| 亚洲中文av在线| 免费观看性生交大片5| 国产毛片在线视频| 久久久久人妻精品一区果冻| 国产伦精品一区二区三区四那| 日韩中文字幕视频在线看片| 久久精品国产鲁丝片午夜精品| 少妇被粗大猛烈的视频| 极品教师在线视频| 午夜av观看不卡| 少妇熟女欧美另类| 亚洲一区二区三区欧美精品| 亚洲欧美一区二区三区国产| 伊人亚洲综合成人网| 国产 精品1| 22中文网久久字幕| 欧美日韩av久久| 日本黄大片高清| 中文字幕精品免费在线观看视频 | 99热6这里只有精品| 91午夜精品亚洲一区二区三区| 精品人妻熟女av久视频| av网站免费在线观看视频| 国产精品久久久久久精品电影小说| av.在线天堂| 国内精品宾馆在线| 欧美xxⅹ黑人| 国产老妇伦熟女老妇高清| 欧美xxⅹ黑人| 色婷婷久久久亚洲欧美| 精品熟女少妇av免费看| 国内精品宾馆在线| 国产精品一区二区性色av| 亚洲精品日本国产第一区| 国产成人精品无人区| 亚洲欧美中文字幕日韩二区| 国产免费一级a男人的天堂| 在线 av 中文字幕| 高清午夜精品一区二区三区| 婷婷色综合www| 在线看a的网站| 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 国产 精品1| 亚洲av国产av综合av卡| 国产精品一二三区在线看| 国产精品无大码| 18禁动态无遮挡网站| 亚洲欧洲国产日韩| av线在线观看网站| 一级毛片 在线播放| 免费少妇av软件|