• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of cavitation induced by water hammer *

    2017-03-14 07:06:28JieGeng耿介XiuleYuan苑修樂DongLi李冬GuangshengDu杜廣生SchoolofEnergyandPowerEngineeringShandongUniversityJinan250061Chinamailgj8944163com
    水動力學研究與進展 B輯 2017年6期

    Jie Geng (耿介), Xiu-le Yuan (苑修樂), Dong Li (李冬), Guang-sheng Du (杜廣生)School of Energy and Power Engineering, Shandong University, Jinan 250061, China,E-mail: gj_8944@163.com

    Introduction

    The cavitation might happen when the local pressure is lower than the working fluid’s saturated vapor pressure, which is a discontinuous process. The cavitation widely exists in nature, such as, behind blades of the rotor propeller, under the waterfall and on the surface of rocks in high-speed rivers[1,2].

    In the hydraulic system, the cavitation generally consists of four processes, the gas nuclear generation,the expansion, the compression, and the collapse process. The noise and the vibration, caused by the pressure pulsation with bubble collapsing, are harmful in most cases. The cavitation will seriously affect the reliability and durability[1]. Therefore, the prevention of the cavitation is an important issue in the industrial designs. The water hammer can create a pressure transient in the pipeline, which may lead to the cavitation[3]. The phenomenon is often induced by an instantaneous closure of the valve. Nowadays, with the increasing demands for the precise flow control, a high speed valve is very common. Consequently, the water hammer prevention becomes more and more important. Since the nineteenth century when Russian scientist Joukowski (1898) firstly introduced the theory of water hammer, the water hammer has been a research focus for more than a hundred years. The main numerical methods include: the MOC, the wave front method, the finite difference (FD) method, and the finite volume method (FVM). The MOC is the most popular technique for solving partial differential equations for the water hammer, with a high computational efficiency, and a programming simplicity.Acrivos[4]developed the method of characteristic(MOC) for heat and mass transfer problems.Tijsseling and Bergant[5]removed the need of grid development by introducing the meshless method. An Implicit Method of Characteristics is proposed by Afshar and Rohani[6]and any arbitrary combination of devices can be allowed with implicit method. Zhao and Ghidaoui[7]compared the application of FVM schemes and MOC schemes with space line interpolation and found that MOC produces the same results with first-order FV Godunov-scheme. Meniconi et al.[8]studied the interaction between valve action and an in-line devices using MOC. The predictions with the MOC are relatively reliable, widely used in energy plants, environment industry, agriculture automation,chemical industry, urban water supply and other fields.

    The water hammer is a complex process, and the simulation is mostly limited to one-dimensional cases[9].The industrial design is restricted by an unreal dimension. With the progress of computer science and hardware, the computational cost is greatly reduced.Many approaches of three-dimensional cavitation simulation with the FVM were proposed in recent years. A general cavitation prediction method was developed by Singhal et al.[10]and introduced to improve the performance of turbo-machinery. Bakir et al.[11]investigated the cavitating behavior of an Inducer. Shang et al.[12]studied the cavitation around a high speed submarine. To the best of the authors’knowledge, the related references mainly focused on the cases of pumps and high speed airfoils[13-18], the cavitation induced by the water hammer has not yet been studied by using three-dimensional numerical methods.

    In the following, joint simulation by one-dimensional water hammer software “Hammer” and open source FVM software “OpenFOAM” is introduced.Firstly, pressure changes on the boundary will be calculated by MOC with Hammer. Then, the threedimensional prediction of cavitation will be achieved and three-dimensional visualization will be realized with the help of FVM. By analysis of the causes of cavitation from a three-dimensional perspective, it can provide new ideas for the industrial design of the fluid equipment.

    1. Model description

    1.1 Equations of water hammer

    The propagation velocity of the wave that would induce the water hammer[4]

    wherevE is the bulk modulus of liquid, E is the elastic modulus of tube’s wall, D is the pipe diameter, and T is the wall thickness.

    The basic differential equations of the water hammer[19,20]:

    where H is the static pressure head, α is the inclined angle of the pipeline, λ is the resistance coefficient and s is the axial length.

    1.2 Equations of turbulence and cavitation

    The --kωSST model[21]is used to model the turbulence, which enjoys a robust convergence rate and a relatively accurate inverse pressure gradient and separated vortex. The cavitation model is based on the volume of fluid model (VOF), the interPhaseChangeFoam in OpenFOAM.

    The k and ω equations in the - -kω SST model:

    The phase transition is described by the Merkle mass transformation equation:

    where m˙-is the transition rate from the liquid phase to the gas phase, and m ˙+is the transition rate from the gas phase to the liquid phase, Cc, Cv, t∞, U∞are constants depending on the mean velocity, and psatis the saturated vapor pressure.

    1.3 Boundary condition and grid settings

    The physical model, initially designed by Nicolaus Bernoulli, is a flow measurement system operated in the Fluid Dynamics Laboratory of Shandong University[13,22,23], as shown in Fig.1.

    Fig.1 Physical model

    Table 1 The material properties

    High speed valves are used to ensure the accuracy of the flow control (the valve closing process involves nonlinear changes of the flow rate. Improving Note: d is the pipe diameter of the simulation, l is the length between the water tank and the valve, h stands for the pressure head, tΔ is the closing time for the valve,wavec is the velocity of the water hammer wave, andpipeλ is the resistance loss of the pipe.

    the speed of the valve can reduce the impact of the nonlinear part of the measurement). In the actual process, the test bench will witness undesirable vibrations. The water hammer effect is significant. On the other hand, the ultrasonic flowmeter is very sensitive to the bubbles when there is cavitation. The potential damage caused by the pressure pulsation with bubble collapsing should also be considered. The cavitation control is the key in the design. The basic parameters of the structure are shown in Table 1.

    In the OpenFOAM, the x plane at =0 mx is set as the total pressure for the fluid inlet. The x plane at =0.2 mx is set as the total pressure for the fluid outlet. Other boundaries are the wall.

    In normal cases, the cavitation would happen at the valve end of the pipeline. However, this paper would specifically study the cavitation when the water hammer wave interacts with the flow resistance piece.The fluid delivering devices often connect the parts with the rubber gasket to strengthen the sealing. In some cases, the rubber gasket will extend into the pipe and generate disturbance in the flow, as shown in Fig.1. The stability of the equipment will be influenced in some extreme situation, such as that with cavitation. The boundary condition of the VOF is introduced based on the result of the MOC, and the grid setting is shown in Fig.2.

    Fig.2 Normal section mesh of pipeline

    The calculation region consists of a circular tube and a rubber gasket. Because the accuracy in the boundary layer will dramatically affect the simulation result around the gasket, the first layer of the boundary grid is set to 3×10-6m, and y+is 5. The direct solution is used instead of wall functions. The total grid number is 1.7×106, as shown in Fig.2. The calculation tolerance for P is 1×10-5, tolerances for U and k are 1×10-4.

    1.4 Model verification

    The flow rate fluctuation calculated by the FVM is verified by the counterpart based on the MOC. The method of characteristics, which has been applied for the water hammer simulation for years, is developed and tested[5,6]. The cost of the computing resource is small, and the accuracy of the calculation for the extreme pressure is reliable. Therefore, the MOC for the water hammer calculation is regarded as the verification basis.

    The boundary conditions of the FVM simulation are based on the pressure transient calculated by the MOC, and the flow rates of the same section downstream obtained from the two simulation methods, on a normal section 0.5 m before the valve, are compared.The simulation results are shown in Fig.3.

    Fig.3 Flow rate fluctuation based on MOC and FVM

    Due to the introduction of the no slip wall and the cavitation in the FVM, different scale vortexes are generated. The results are slightly different from the counterpart in the MOC simulation, and the correlation between the data from the two methods is 0.87. If the two curves are time averaged over 5 ms, they will be perfectly overlapped and the difference will be within 1%. The results of the FVM are relatively smoother. Overally, the trend is consistent. Therefore,the joint simulation is reliable.

    2. Results and discussions

    The simulation is carried out by using jointly the one-dimensional MOC and the three-dimensional FVM. Firstly, the pressure transient of the water hammer is calculated by the MOC. Then, the cavitation process is predicted by the FVM simulation.

    Based on the boundary conditions as shown in Table 1, an indirect water hammer is induced. The pressure fluctuation curve calculated by the Hammer is shown in Fig.4, with the highest pressure of 2.75×105Pa at 0.106 s and the lowest pressure of 3.30×103Pa at 0.115 s. The cycle length of the water hammer pulsation at about 0.1s is equal to the ratio of the pipe length to the wave propagation velocity. In a normal situation, the temperature is approximately, the saturated pressure is 2.30×103Pa, which is lower than the lowest point in the simulation. Theoretically, there will be no cavitation. However, the structure of the fluid segments is also an important factor,which can be considered by the three-dimensional FVM.

    Fig.4 Boundary pressure calculated by MOC ( 0.5 m beforethe valve)

    The boundary conditions in the OpenFOAM are set according to the results of the Hammer’s simulation. The FVM segment is 0.202 m long and the start point is 2 m before the valve. The gasket is 2 mm wide and the extending section is 2 mm long. For the pressure boundary, the information on the related nodes of the MOC is used, which covers the whole pipe of 5 m long. The averaged pressure of the entire fluid region over time is shown in Fig.5, with the highest point at 0.105 s and the lowest point at 0.109 s.It is reasonable that the pressure difference is greatly reduced due to the space averaging. However, it is hard to explain why the lowest pressure comes a half cycle earlier than that on the boundary. At the same time, the cavitation is observed (In Fig.5, the solid line represents the volume percentage of the liquid).

    Fig.5 Spatial averaged pressure fluctuation and volume fraction of water ( αwater )

    Due to the cavitation, the pressure rebounds a little. At the same time, the pressure declines on the boundary. The cavitation is induced by the local extremely low pressure, and the generation of bubbles would compensate for the low pressure. The cavitation is an indicator of the extreme situation.

    When the pressure is lower than the saturation vapor pressure, the cavitation is induced. On one hand,the pressure is constrained by the boundary conditions.On the other hand, the cavitation can be influenced by the pressure drop caused by the flow field structure.The pressure drop caused by the local resistant part is proportional to the velocity squared. The averaged space velocity over time is shown in Fig.6.

    Fig.6 Spatial mean velocity

    When t < 0 .100 s, the average velocity is about 2.5 m/s, which is the maximum over the time span.

    The cavitation appears when the inverse velocity reaches the maximum at 0.109 s. The flow fluctuates regularly and changes directions every half cycle, and the fluctuation energy is gradually dissipated. The interaction between the high-speed motion and the flow resistance is an important factor for the pressure drop. The transient flow field is used to study the localized situation.

    Figure 7(a), a combination of the pressure field and the velocity vector field, illustrates the flow around the gasket. Initially, the flow is in the positive direction of the -xaxis. At the moment of 0.109 s,the flow reverses its direction and a strong vortex is formed at the front edge of the gasket, as shown in the figure. The local pressure declines remarkably around the core of the vortex. Bubbles are generated at the same time, as shown in Fig.7(b). In this practical case of the water hammer, where the minimum boundary pressure is higher than the saturated vapor pressure condition, the cavitation only happens at this specified time in this specified area.

    Fig.7 Cavitation at t =0.109 s

    The cavitation is localized in time and space. To a certain extent, the temporal analysis of the velocity and the pressure can explain the localization. The inverse velocity comes to the maximum and the boundary pressure is relatively low at 0.109 s. However,the cavitation usually happens at the back edge of the resistance and the absolute velocity before the water hammer is even higher than that at 0.109 s. Comparison is needed to illustrate the more significant pressure drop at 0.109 s.

    A pressure and velocity vector field at =t 0.900s is shown in Fig.8(a). It is obvious that vortexes are generated behind the gasket and propagate along the flow direction, which is remarkably different from the standing vortexes in Fig.7(a). The squared vorticity shown in Fig.8(b) can be expressed as

    Fig.8 Flow information at t=0.900 s

    Fig.9 Squared vorticity at t =0.109 s

    Before t = 0.100s, the flow is relatively stable.The squared vorticity in Fig.8(b) is time-averaged over 0.05 s.

    The surface integral of the squared vorticity fluctuates at the downstream of the gasket at t = 0.900s . By contrast, the same parameter concentrates locally at t = 0.109s demonstrated in Fig.9(a), and the concentration synchronizes with the cavitation shown in Fig.7(b). As illustrated in Fig.9(b),the surface integral of the squared vorticity reaches the maximum around x = 0.09 m and remains low in the range of x< 0 .09 m (the flow is along the negative direction of the x-axis). Therefore, the vorticity can be used to characterize the possibility of the cavitation. The transfer equation of the vorticity is

    The cycle of the pressure transient in our case is relatively short due to the short length of the operating pipeline. The effects of the convection, the diffusion and the viscous loss are negligible in this process.Consequently, the pressure gradient would be dramatically influenced by the vorticity changes.Therefore, we may conclude that the standing vortexes and the cavitation are locally generated in Fig.7(a).

    3. Conclusions

    The MOC has been widely adopted over decades,since it was developed. However, it is limited to onedimension, and the variables of internal structures in the flow field cannot be adequately considered. The simulation is carried out by using jointly the one dimensional MOC and the three-dimensional FVM.The three-dimensional FVM enjoys advantages of three-dimensional visualization. A practical case of the water hammer, with the minimum boundary pressure higher than the saturated vapor pressure condition, is simulated. Based on the temporal and spatial analyses, the possible cavitation area around a gasket is predicted, at the front edge of the gasket0.09 m and at the moment of t = 0.109s. The boundary pressure is relatively low, not reaching the minimum. The reverse speed is the highest0.109=v

    2.0 m/s. Due to the short cycle of the pressure transient caused by the water hammer, vortexes cannot be developed downstream. When the standing vortexes are triggered, a remarkable pressure drop induces the cavitation.

    In conclusion, there are three causes of the cavitation in pipes, the low boundary pressure, the strong vorticity, and the fast pressure transient. This theory provides some insight for further studies of the cavitation induced by the water hammer. Secondly,the joint simulation is a good way to realize the visualization, which could help the industrial design.Thirdly, in the case of a pipe of 5 m long with an indirect water hammer, the structure has to be reinforced at the front edge of the gasket to compensate for the potential harm due to the cavitation.

    [1] Washio S. Recent developments in cavitation mechanisms:A guide for scientists and engineers [M]. Sawston, UK:Woodhead Publishing, 2014.

    [2] Brennen C. E. Cavitation and bubble dynamics [M].Cambridge, UK: Cambridge University Press, 2013.

    [3] Ghidaoui M. S., Zhao M., Mcinnis D. A. et al. A review of water hammer theory and practice [J]. Applied Mechanics Reviews, 2005, 58(1): 49-76.

    [4] Acrivos A. Method of characteristics technique: Application to heat and mass transfer problems [J]. Industrial and Engineering Chemistry, 1956, 48(4): 703-710.

    [5] Tijssenling A. S., Bergant A. Meshless computation of water hammer [C]. Proceedings of the 2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems.Timisoara, Romania, 2007, 65-76.

    [6] Afshar M. H., Rohani M. Water hammer simulation by implicit method of characteristic [J]. International Journal of Pressure Vessels and Piping, 2008, 85(12): 851-859.

    [7] Zhao M., Ghidaoui M. S. Godunov-type solutions for water hammer flows [J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(4): 341-348.

    [8] Meniconi S., Brunone B., Ferrante M. In-line pipe device checking by short-period analysis of transient tests [J].Journal of Hydraulic Engineering, ASCE, 2010, 137(7):713-722.

    [9] Zeng Q., Ma G. Y., Jiang D. F. et al. A review of calculation methods for pipeline water hammer [J]. Contemporary Chemical Industry, 2013, 42(8): 1189-1193.

    [10] Singhal A. K., Athavale M., Li H. et al. Mathematical basis and validation of the full cavitation model [J].Journal of Fluids Engineering, 2002, 124(3): 617-624.

    [11] Bakir F., Rey R., Gerber A. G. et al. Numerical and experimental investigations of the cavitating behavior of an inducer [J]. International Journal of Rotating Machinery, 2004, 10(1): 15-25.

    [12] Shang Z., Emerson D. R., Gu X. Numerical investigation of cavitation around a high speed submarine using OpenFOAM with LES [J]. International Journal of Computational Methods, 2012, 9(9): 1-14.

    [13] Zheng Y. Research on current rush to interception airmass with delivery pipeline system and water hammer with gas [D]. Doctoral Thesis, Nanjing, China: Hohai University, 2004(in Chinese).

    [14] Li J., Chen H. S. Numerical simulation of micro bubble collapse near solid wall in Fluent environment [J].Tribology, 2008, 28(4): 311-5.

    [15] Ding H., Visser F., Jiang Y. et al. Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications [J].Journal of Fluids Engineering, 2011, 133(1): 011101.

    [16] Luo X., Jin B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016,28(3): 335-358.

    [17] Zhang H. M. Studies on numerical simulation of weakly compressible coupling water hammer and cavitation flow in hydroturbine [D]. Doctoral Thesis, Kunming, China:Kunming University of Science and Technology, 2013(in Chinese).

    [18] Li W. F., Feng J. J., Luo X. J. et al. Numerical simulation of transient flows in Francis turbine runner based on dynamic mesh method [J]. Journal of Hydroelectric Engineering, 2015, 34(7): 64-73.

    [19] Bergant A., Simpson A. R., Tijssenling A. S. Water hammer with column separation: A historical review [J].Journal of Fluids and Structures, 2006, 22(2): 135-171.

    [20] Mambretti S. Water hammer simulations [M]. Southampton, UK: Wit Press, 2013.

    [21] Menter F. R. Improved two-equation -kω turbulence models for aerodynamic flows [R]. NASA STI/Recon Technical Report N, 1992, 93.

    [22] GUO L. L. Research on the key questions of the influence on the performance of a water flowrate calibration facility[D]. Doctoral Thesis, Shandong, China: Shandong University, 2014(in Chinese).

    [23] Guo L. L., Geng J., Shi S. et al. Computing research of the water hammer pressure in the process of the variable speed closure of valve based on UDF method [J]. Journal of Shandong University (Natural Edition), 2014, 49(3):27-30(in Chinese).

    久久99精品国语久久久| 韩国av在线不卡| 亚洲精品国产一区二区精华液| 最新的欧美精品一区二区| 美女高潮到喷水免费观看| 丁香六月天网| 天堂俺去俺来也www色官网| 亚洲综合精品二区| 国产精品女同一区二区软件| 桃花免费在线播放| av免费观看日本| 欧美在线一区亚洲| 黑丝袜美女国产一区| 久久久欧美国产精品| 亚洲伊人色综图| 美女视频免费永久观看网站| 亚洲精品日本国产第一区| 日日爽夜夜爽网站| 青春草亚洲视频在线观看| 亚洲综合色网址| 久久久久精品久久久久真实原创| 欧美在线一区亚洲| 捣出白浆h1v1| 两个人免费观看高清视频| 亚洲精品国产av蜜桃| www日本在线高清视频| 免费看av在线观看网站| 亚洲国产最新在线播放| 国产男女内射视频| 成人国语在线视频| 看非洲黑人一级黄片| 国产黄色免费在线视频| 中文字幕人妻丝袜制服| 久久鲁丝午夜福利片| 亚洲人成网站在线观看播放| 男女午夜视频在线观看| 婷婷成人精品国产| 日韩 亚洲 欧美在线| 好男人视频免费观看在线| 精品少妇久久久久久888优播| 亚洲精品日本国产第一区| 久久久久国产精品人妻一区二区| 国产在线一区二区三区精| 欧美 日韩 精品 国产| 一区福利在线观看| 国产毛片在线视频| 制服丝袜香蕉在线| 国产精品成人在线| 十八禁人妻一区二区| 69精品国产乱码久久久| 大片电影免费在线观看免费| 啦啦啦在线免费观看视频4| 中文精品一卡2卡3卡4更新| 一级毛片电影观看| 黄片播放在线免费| 国产在视频线精品| 亚洲情色 制服丝袜| 久久久久视频综合| 中国国产av一级| 丝袜美足系列| 美女国产高潮福利片在线看| 亚洲欧美中文字幕日韩二区| 国产 精品1| 大片免费播放器 马上看| 国产日韩一区二区三区精品不卡| 狂野欧美激情性xxxx| 日韩伦理黄色片| 日韩av不卡免费在线播放| 国产av码专区亚洲av| 亚洲欧美成人精品一区二区| 涩涩av久久男人的天堂| 丰满饥渴人妻一区二区三| 在现免费观看毛片| 一区二区三区四区激情视频| 一级毛片电影观看| 中文字幕色久视频| 日本一区二区免费在线视频| 久久免费观看电影| 精品国产乱码久久久久久男人| 高清视频免费观看一区二区| 亚洲精品一区蜜桃| 在线免费观看不下载黄p国产| 天天躁日日躁夜夜躁夜夜| 黄色怎么调成土黄色| av一本久久久久| 亚洲av男天堂| 香蕉国产在线看| 欧美日韩一区二区视频在线观看视频在线| 尾随美女入室| 精品国产一区二区三区四区第35| 麻豆乱淫一区二区| 一本久久精品| 亚洲欧美一区二区三区久久| av国产精品久久久久影院| 又粗又硬又长又爽又黄的视频| 少妇被粗大猛烈的视频| 视频在线观看一区二区三区| 免费观看人在逋| 久久久久精品人妻al黑| 男女午夜视频在线观看| 熟妇人妻不卡中文字幕| 亚洲熟女毛片儿| 一级a爱视频在线免费观看| 精品久久久精品久久久| 久久青草综合色| www.熟女人妻精品国产| 桃花免费在线播放| 国产精品一国产av| 亚洲av中文av极速乱| 在线天堂最新版资源| 女人久久www免费人成看片| 国产一卡二卡三卡精品 | 欧美成人午夜精品| 免费在线观看视频国产中文字幕亚洲 | 又大又黄又爽视频免费| 午夜福利网站1000一区二区三区| 成人免费观看视频高清| 国产精品偷伦视频观看了| 久久女婷五月综合色啪小说| 国产色婷婷99| 午夜影院在线不卡| 九九爱精品视频在线观看| 国产日韩欧美视频二区| 在线 av 中文字幕| 国产精品蜜桃在线观看| 久久狼人影院| 久久精品人人爽人人爽视色| 51午夜福利影视在线观看| 日韩,欧美,国产一区二区三区| 午夜免费男女啪啪视频观看| av在线老鸭窝| 高清在线视频一区二区三区| 国产爽快片一区二区三区| 韩国高清视频一区二区三区| a 毛片基地| 国产精品熟女久久久久浪| av国产久精品久网站免费入址| av国产精品久久久久影院| 久久99热这里只频精品6学生| 欧美人与性动交α欧美软件| 亚洲欧美激情在线| 精品亚洲成a人片在线观看| 在线观看免费视频网站a站| 十八禁高潮呻吟视频| 乱人伦中国视频| 国产爽快片一区二区三区| 久久精品久久久久久久性| 亚洲一区中文字幕在线| 大片免费播放器 马上看| 久久 成人 亚洲| 亚洲,一卡二卡三卡| 午夜免费鲁丝| 丰满迷人的少妇在线观看| 欧美国产精品一级二级三级| 高清av免费在线| www.精华液| 国产一区亚洲一区在线观看| 成人国语在线视频| 女人精品久久久久毛片| 久久久久视频综合| 亚洲综合色网址| 国产亚洲午夜精品一区二区久久| 国产男人的电影天堂91| 啦啦啦在线观看免费高清www| 狂野欧美激情性xxxx| 免费不卡黄色视频| 99久久精品国产亚洲精品| 视频区图区小说| 午夜老司机福利片| 精品国产一区二区久久| 看非洲黑人一级黄片| 男人操女人黄网站| 观看av在线不卡| 国产熟女午夜一区二区三区| 91aial.com中文字幕在线观看| 十八禁人妻一区二区| 18在线观看网站| 亚洲激情五月婷婷啪啪| 男女边摸边吃奶| 一区二区三区精品91| 国产黄频视频在线观看| 两性夫妻黄色片| 欧美精品一区二区免费开放| 日本色播在线视频| 香蕉国产在线看| 欧美日韩福利视频一区二区| av福利片在线| 操美女的视频在线观看| 看非洲黑人一级黄片| 视频区图区小说| 国产成人91sexporn| 性少妇av在线| 国产精品亚洲av一区麻豆 | 少妇 在线观看| 亚洲精品在线美女| 999精品在线视频| 自线自在国产av| 丁香六月天网| 欧美在线黄色| 两个人免费观看高清视频| 尾随美女入室| 啦啦啦 在线观看视频| 精品国产一区二区三区久久久樱花| 国产熟女欧美一区二区| 男女之事视频高清在线观看 | 老汉色∧v一级毛片| 国产爽快片一区二区三区| 新久久久久国产一级毛片| 久久久久久久国产电影| 中文乱码字字幕精品一区二区三区| 2021少妇久久久久久久久久久| 咕卡用的链子| 亚洲精品国产一区二区精华液| 国产精品亚洲av一区麻豆 | 久久久精品免费免费高清| 精品人妻在线不人妻| 欧美黄色片欧美黄色片| 亚洲久久久国产精品| 日韩熟女老妇一区二区性免费视频| 欧美日韩综合久久久久久| 国产伦人伦偷精品视频| a级毛片在线看网站| 亚洲精品久久久久久婷婷小说| 黄片无遮挡物在线观看| 日韩不卡一区二区三区视频在线| 最新在线观看一区二区三区 | 国产精品二区激情视频| 精品酒店卫生间| 欧美日韩综合久久久久久| 男女下面插进去视频免费观看| 日韩av在线免费看完整版不卡| 欧美日韩成人在线一区二区| 少妇被粗大猛烈的视频| 最新在线观看一区二区三区 | 看十八女毛片水多多多| 亚洲av日韩在线播放| 欧美亚洲 丝袜 人妻 在线| 欧美人与性动交α欧美精品济南到| 少妇人妻 视频| 久久久国产一区二区| 人人妻人人添人人爽欧美一区卜| 中文字幕高清在线视频| 中文字幕精品免费在线观看视频| 在线免费观看不下载黄p国产| 老汉色∧v一级毛片| 精品亚洲成国产av| 一区福利在线观看| 亚洲国产日韩一区二区| 成年美女黄网站色视频大全免费| 国产极品天堂在线| bbb黄色大片| 在线观看免费高清a一片| 秋霞在线观看毛片| 免费黄频网站在线观看国产| 亚洲,欧美,日韩| 欧美激情高清一区二区三区 | 黄网站色视频无遮挡免费观看| 亚洲精品一二三| 亚洲精品自拍成人| √禁漫天堂资源中文www| 丰满饥渴人妻一区二区三| 一个人免费看片子| 91精品三级在线观看| 亚洲欧美一区二区三区黑人| 日韩一卡2卡3卡4卡2021年| 最近中文字幕高清免费大全6| 丝袜脚勾引网站| 国产亚洲精品第一综合不卡| 日本黄色日本黄色录像| 最近最新中文字幕大全免费视频 | 一区二区三区精品91| 中文精品一卡2卡3卡4更新| 91精品国产国语对白视频| 免费黄色在线免费观看| tube8黄色片| 日韩,欧美,国产一区二区三区| 日韩人妻精品一区2区三区| 桃花免费在线播放| 丰满迷人的少妇在线观看| av女优亚洲男人天堂| 97在线人人人人妻| 国产欧美亚洲国产| 亚洲精品日韩在线中文字幕| 国产国语露脸激情在线看| 亚洲精品国产色婷婷电影| 夜夜骑夜夜射夜夜干| 欧美 日韩 精品 国产| 人人妻,人人澡人人爽秒播 | 国语对白做爰xxxⅹ性视频网站| 国产精品嫩草影院av在线观看| 久久久久久久国产电影| 久久av网站| 女人久久www免费人成看片| 国产精品久久久久久人妻精品电影 | 亚洲精品国产区一区二| tube8黄色片| 国产在线免费精品| 国产极品天堂在线| 亚洲国产中文字幕在线视频| 日韩免费高清中文字幕av| 熟妇人妻不卡中文字幕| 欧美97在线视频| 岛国毛片在线播放| 久久99精品国语久久久| 精品一区二区免费观看| 日韩成人av中文字幕在线观看| 秋霞在线观看毛片| 亚洲第一av免费看| 午夜福利免费观看在线| 国产精品一国产av| 欧美另类一区| 亚洲一区中文字幕在线| 日本91视频免费播放| 99re6热这里在线精品视频| 男的添女的下面高潮视频| 久久这里只有精品19| 亚洲精品久久午夜乱码| 一区二区三区激情视频| avwww免费| 黄频高清免费视频| 悠悠久久av| 欧美最新免费一区二区三区| 色综合欧美亚洲国产小说| 国产亚洲av高清不卡| 啦啦啦 在线观看视频| 少妇人妻久久综合中文| 老司机在亚洲福利影院| avwww免费| 久久国产精品大桥未久av| 久久久精品国产亚洲av高清涩受| 国产成人av激情在线播放| 水蜜桃什么品种好| 精品一品国产午夜福利视频| 国产成人精品久久久久久| 精品久久蜜臀av无| 热99国产精品久久久久久7| 亚洲成人免费av在线播放| 91精品三级在线观看| 人人妻人人澡人人看| 黄色毛片三级朝国网站| 亚洲精品国产区一区二| 亚洲国产精品999| 最新的欧美精品一区二区| 久久久精品94久久精品| 中文乱码字字幕精品一区二区三区| 国产精品久久久av美女十八| 免费观看av网站的网址| 少妇人妻久久综合中文| 精品久久久精品久久久| 乱人伦中国视频| 精品酒店卫生间| 成人国产麻豆网| 国产成人免费无遮挡视频| 女的被弄到高潮叫床怎么办| 精品少妇黑人巨大在线播放| 国产极品天堂在线| av一本久久久久| 国产精品国产三级国产专区5o| 久久久欧美国产精品| 中文天堂在线官网| 日韩av免费高清视频| 中文乱码字字幕精品一区二区三区| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 成人国产av品久久久| 肉色欧美久久久久久久蜜桃| bbb黄色大片| 久久国产亚洲av麻豆专区| 久久久久久久国产电影| 国产在线免费精品| 久久精品久久久久久噜噜老黄| 久久国产亚洲av麻豆专区| 18禁动态无遮挡网站| 国产成人精品在线电影| 亚洲成国产人片在线观看| 久久久久国产精品人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 精品亚洲乱码少妇综合久久| 高清黄色对白视频在线免费看| 欧美精品av麻豆av| 亚洲成人一二三区av| 欧美精品人与动牲交sv欧美| 国产一区亚洲一区在线观看| 纯流量卡能插随身wifi吗| 亚洲av中文av极速乱| 99久久综合免费| 丰满饥渴人妻一区二区三| 满18在线观看网站| 日日爽夜夜爽网站| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久| 亚洲国产精品成人久久小说| 亚洲国产日韩一区二区| 少妇被粗大猛烈的视频| 无限看片的www在线观看| 国产一区二区三区综合在线观看| 777米奇影视久久| 久久久久久久国产电影| 亚洲av国产av综合av卡| 一本大道久久a久久精品| 亚洲国产日韩一区二区| 黑人猛操日本美女一级片| 精品人妻一区二区三区麻豆| 两性夫妻黄色片| 国产精品久久久久久精品电影小说| 国产免费现黄频在线看| 久久热在线av| 日本欧美视频一区| 少妇人妻 视频| 青春草国产在线视频| 免费观看av网站的网址| 啦啦啦在线免费观看视频4| 少妇被粗大的猛进出69影院| 女人精品久久久久毛片| 飞空精品影院首页| 麻豆av在线久日| 老司机深夜福利视频在线观看 | 黄频高清免费视频| 国产精品国产三级专区第一集| 久久热在线av| 欧美在线黄色| 色精品久久人妻99蜜桃| 成人手机av| 777久久人妻少妇嫩草av网站| 色网站视频免费| 国产成人免费无遮挡视频| 午夜福利一区二区在线看| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 亚洲精品久久久久久婷婷小说| 国产精品久久久久成人av| 亚洲专区中文字幕在线 | 欧美日韩一区二区视频在线观看视频在线| 久久久精品94久久精品| 久久久久久久国产电影| 亚洲欧美一区二区三区黑人| 一边亲一边摸免费视频| 18禁动态无遮挡网站| 亚洲国产精品一区二区三区在线| 人人妻人人添人人爽欧美一区卜| 日本91视频免费播放| 亚洲精品久久久久久婷婷小说| 午夜福利视频精品| 久久狼人影院| 99热国产这里只有精品6| 中文乱码字字幕精品一区二区三区| 熟女av电影| 一本色道久久久久久精品综合| 国产亚洲av高清不卡| 亚洲成人av在线免费| 一边亲一边摸免费视频| 一个人免费看片子| 精品人妻一区二区三区麻豆| 国产精品 国内视频| 综合色丁香网| 麻豆精品久久久久久蜜桃| 日韩,欧美,国产一区二区三区| 最近最新中文字幕免费大全7| 国产日韩欧美视频二区| 成年人免费黄色播放视频| 免费人妻精品一区二区三区视频| av卡一久久| 少妇精品久久久久久久| 亚洲精品aⅴ在线观看| 黄色怎么调成土黄色| 亚洲第一av免费看| 国产精品成人在线| 我要看黄色一级片免费的| 精品少妇黑人巨大在线播放| 色综合欧美亚洲国产小说| 久久久国产欧美日韩av| 久久久久视频综合| 少妇精品久久久久久久| 美女主播在线视频| 国产精品久久久久久精品古装| 丝袜人妻中文字幕| 国产日韩欧美视频二区| av在线观看视频网站免费| 老司机影院成人| 国产成人精品久久久久久| 一二三四中文在线观看免费高清| 精品国产一区二区三区四区第35| 日本色播在线视频| 秋霞在线观看毛片| 又大又爽又粗| 亚洲欧美日韩另类电影网站| 美女大奶头黄色视频| 婷婷色综合www| 国产av精品麻豆| 亚洲婷婷狠狠爱综合网| 精品人妻熟女毛片av久久网站| 国产精品欧美亚洲77777| 男人舔女人的私密视频| a级毛片在线看网站| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 热re99久久精品国产66热6| 中文天堂在线官网| 一区二区三区乱码不卡18| 中文字幕人妻丝袜一区二区 | 韩国av在线不卡| 在线天堂最新版资源| 人人妻人人添人人爽欧美一区卜| 搡老岳熟女国产| 99精品久久久久人妻精品| 久久久久精品性色| 黄色一级大片看看| 男女国产视频网站| 午夜福利视频在线观看免费| 哪个播放器可以免费观看大片| 欧美精品亚洲一区二区| 国产在线视频一区二区| 一级片'在线观看视频| 超碰97精品在线观看| 国产成人精品久久久久久| 国产av国产精品国产| 亚洲人成网站在线观看播放| 99久久精品国产亚洲精品| 欧美成人精品欧美一级黄| av网站免费在线观看视频| 国产免费一区二区三区四区乱码| 尾随美女入室| av网站在线播放免费| 女人高潮潮喷娇喘18禁视频| av在线观看视频网站免费| 色婷婷久久久亚洲欧美| 性高湖久久久久久久久免费观看| 成人影院久久| 天天影视国产精品| 亚洲国产av影院在线观看| 亚洲精品国产区一区二| av网站免费在线观看视频| 精品国产国语对白av| 久久精品国产亚洲av涩爱| 国产精品 欧美亚洲| 亚洲成人免费av在线播放| 69精品国产乱码久久久| 亚洲五月色婷婷综合| 亚洲欧美精品自产自拍| 久久韩国三级中文字幕| 高清视频免费观看一区二区| 9色porny在线观看| 国产在线视频一区二区| 久久 成人 亚洲| 最近中文字幕2019免费版| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人| 丝袜脚勾引网站| 久久人妻熟女aⅴ| 丝袜美足系列| 国产探花极品一区二区| 丰满乱子伦码专区| 久久国产精品男人的天堂亚洲| 午夜老司机福利片| 亚洲av综合色区一区| 亚洲精品自拍成人| 亚洲欧美中文字幕日韩二区| 欧美日韩亚洲综合一区二区三区_| 国产免费视频播放在线视频| 亚洲男人天堂网一区| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 国产精品秋霞免费鲁丝片| 悠悠久久av| 青草久久国产| 久热爱精品视频在线9| 交换朋友夫妻互换小说| 超碰成人久久| 免费观看人在逋| 天天躁日日躁夜夜躁夜夜| 成人免费观看视频高清| 黄色怎么调成土黄色| 国产伦理片在线播放av一区| 国产视频首页在线观看| 两个人免费观看高清视频| 777米奇影视久久| 在线观看人妻少妇| 性少妇av在线| 国产在线一区二区三区精| 操出白浆在线播放| 亚洲精品国产区一区二| 91国产中文字幕| 一边摸一边做爽爽视频免费| 纵有疾风起免费观看全集完整版| 中文字幕精品免费在线观看视频| 久久女婷五月综合色啪小说| 日日爽夜夜爽网站| 不卡视频在线观看欧美| 精品第一国产精品| a级片在线免费高清观看视频| 亚洲欧洲日产国产| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看| 精品一区二区三区四区五区乱码 | 中文精品一卡2卡3卡4更新| 巨乳人妻的诱惑在线观看| 亚洲成国产人片在线观看| 精品亚洲成a人片在线观看| 色吧在线观看| 亚洲少妇的诱惑av| 国产一区亚洲一区在线观看| 一个人免费看片子| 成年女人毛片免费观看观看9 | 国产不卡av网站在线观看| 精品一区在线观看国产| 精品人妻熟女毛片av久久网站| 99久久99久久久精品蜜桃| 99国产综合亚洲精品| 久久久久网色| 久久人人爽av亚洲精品天堂| 国产伦理片在线播放av一区| 亚洲精品av麻豆狂野| 国产av精品麻豆|