• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of water quality on tip vortex cavitation inception *

    2017-03-14 07:06:24LingxinZhang張凌新LinyaChen陳林婭XiaoxingPeng彭曉星XuemingShao邵雪明

    Ling-xin Zhang (張凌新), Lin-ya Chen (陳林婭), Xiao-xing Peng (彭曉星), Xue-ming Shao (邵雪明)

    1. State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Ζhejiang University, Hangzhou 310027, China, E-mail: zhanglingxin@zju.edu.cn

    2. Key Laboratory of Soft Machines and Smart Devices of Ζhejiang Province, Hangzhou 310027, China

    3. National Key Laboratory on Ship Vibration and Noise, China Ship Scientific Research Center,

    Wuxi 214082, China

    Introduction

    Tip vortex cavitation is one of important cavitation types on marine propeller and hydraulic machinery. Compared with the wet flow, tip vortex cavitation can cause significant noise and extra vibration[1-3].Trying to accurately predict the occurrence of tip vortex cavitation (TVC), many researchers studied the effects of flow parameters on the inception of TVC,and proposed a classic formula to predict the inception cavitation number. However, the inception of TVC is very sensitive to the water quality, leading to the big uncertainty in predicting the inception. Up to now, the quantitative effect of water quality on the inception of TVC is still unclear. Trying to avoid the occurrence of tip vortex cavitation, accurate prediction of tip vortex cavitaion inception is a pressing need in engineering.

    Previously, Ardnt et al.[4], Stinebring et al.[5]and Fruman and Dugue[6]studied the features of the flow field around the tips of 3-D hydrofoils. Flows of tip vortex cavitation were observed and measured including inception cavitation number at various angles of attack and Reynolds number. Before the appearance of cavitation, some kinds of ideal vortex models such as Rankine vortex can describe the vortical flows with two main parameters, vortex intensity and vortex core radius. They[7,8]found that strengths of tip vortex mainly depend on circulation and have a positive correlation with lift coefficient of foils. They also found vortex core radius of tip vortex is in connection with thickness of boundary layer of foils which is related to the Reynolds number. Tip vortex cavitation often occurs at vortex center firstly, so vortex model can provide lowest pressure at vortex center to determine whether it has reached the critical condition for cavitation. On the basis of these studies, a predicttion model of inception of tip vortex cavitation is established[9]

    whereiσ is tip vortex cavitation inception number,K is an empirical coefficient,LC is lift coefficient,Re is Reynolds number and =0.4m . Apparently this prediction model can judge theoretically whether tip vortex cavitation occurs, for which tip vortex cavitation inception index can be derived from flow parameters directly. On the other hand, this prediction model is also the theoretical basis to extrapolate results of model experiments to full-scale. However,this prediction model is found in many following studies[10,11]to be short of universality.

    Up to now, researchers agree that water quality also has an important effect on tip vortex cavitation inception[1,12]. In most cases, lowest pressure in water reaching the saturated vapor pressure will not immediately lead to cavitation. The critical pressure for tip vortex cavitation is always lower than saturated vapor pressure especially when the size of free stream nuclei is small. As we know, for cavitation experiments in tunnels the content must be depressurized and from which most gas be eliminated first, and the size of nuclei in water must be small. Actually hydrofoils work in natural water, such as sea, containing a great number of nuclei. Obviously, a significant difference of water quality exists between these two conditions.The effect of water quality should be evaluated accurately to avoid dilemma of extrapolation of model experiments to full-scale. But the effect of water quality has been expressed in the providing prediction model since this model considers the vortical flows only. Unfortunately there is a lack of appropriate methods to quantitatively evaluate the effect of water quality until today[13]. Even though macro cavitation model is widely used in the study of many cavitation phenomena, it is not suitable for tip vortex cavitation inception due to the effect of water quality had not been considered by all existing cavitation model[14-16].Therefore, it is urgent to develop a theory and model suitable for prediction of tip vortex cavitation inception.

    Presently experimental and numerical methods in addition to theory of bubble dynamics can be employed to study nuclei. In the experiments, to get nuclei population requires accurate measuring technology, such as holography, laser interferometric imaging[17]and a Venturi approach. In general, these methods enable us to count smallest nuclei in micron scale. Based on bubble dynamics, critical pressure below which a nucleus will grow explosively of every nucleus can be obtained. For water with nuclei in only one size, it means the effect of water quality can be quantified by tensile strength of a nucleus. According to nuclei spectrum, nuclei distribute in a large scale range with different population in real water. In recent years, Hsiao and Chahine[18,19], park et al.[20]numerically studied the movement of nuclei in vortical flows.Zhang et al.[21]summarized these researches. In order to promote further understanding of the characteristic of motion of nuclei, Zhang et al.[21], Oweis et al.[22],Cui et al.[23], have performed theoretical analysis and numerical simulation for trajectory and capture time of nuclei in ideal vortex models. Outside the vortex core, Oweis got the capture time of nuclei analytically ignoring radial acceleration. The results differ a lot from simulations. Inside the vortex core, Zhang et al.got the capture time of nuclei in the vortex core. Even though their results have a satisfying agreement compared with simulation, the form of solution is complicated. A complete and concise theory to describe the motion of nuclei in the whole vortex still lacks.

    In the present work, firstly we have a theoretical analysis of motion of nuclei in an ideal vortex-Rankine vortex. By simplification, a complete and concise solution for the positions of nuclei in the vortex changes over time is presented. In other words,capture time of every nucleus can be calculated from the solution directly. Numerical simulation is employed to validate the effectiveness. According to the experimental data[24]provided by our cooperator,China Ship Scientific Research Center, we can get vortex circulation Γ and vortex core sizecr to describe the vortical flow by Rankine vortex model.Nuclei are distributed in this flow based on nuclei spectrum measured in the experiment. Now we can get the capture time of these nuclei quickly with theoretical solution. The nucleus that will grow explosively first is selected according to certain filter condition. Further, tensile strength of this nucleus will be used to quantify the effect of water quality and correct the tip vortex cavitation inception number.Finally we compare this change of cavitation inception number with experimental results to validate the whole procedure.

    1. Mathematical model

    1.1 Rankine vortex model

    The ideal Rankine vortex model with vortex circulation Γ and vortex core sizecr describes the vortical flow, i.e., tangential velocity and pressure are as follows:

    where p∞is the infinity hydrostatic pressure, ρ is the fluid density.

    1.2 Spherical bubble dynamics model

    The dynamics of nuclei is modeled in a Lagrangian frame to trace the migration of nuclei in the ideal vortex flow. The position and momentum equations of nuclei are described as follows:

    where ρ is the nucleus density,bV is the nucleus volume,bu is the nucleus velocity, u is the undisturbed flow velocity at the nucleus center. The terms on the right side represent buoyancy, pressure gradient induced force, drag force, lift force, added mass force and force due to volume changes respectively.

    1.3 Analytical solution of motion of nucleus in the vortex

    In our last paper[21], we have mentioned that pressure gradient induced force, drag force and force due to volume changes play a leading role with regard to the motion of nuclei. So other terms of forces can be omitted first. When referring to the force due to volume changes, it has little impact on nuclei before it grows explosively. Since we care more about the capture time of nuclei before it is captured and grows explosively, the force due to volume changes also can be omitted. Ignoring radial acceleration of nuclei,pressure gradient induced force and drag force are in balance

    Pressure gradient ▽p can be obtained by taking the gradient of pressure (Eq.(3)) or Navier-Stokes in cylindrical coordinate system, ▽p = u(r) /r . The drag force acting in the direction opposite to the relative velocity is given by in which Ab=πR2is the area of nucleus’s cross-section with the nucleus radius R and drag coefficient CDgiven by Stokes formula CD=24/ R eb, where Reynolds number defined asReb=2ρ Ru-ub/μ with μ is the fluid dynamic viscosity. Decomposing Eq.(6) in radial direction, u has no component in this direction, we have Combining tangential velocity outside Rankine vortex core (Eq.(2)) and Eq.(8), velocity of nuclei outside vortex core is

    Capture time1t from release position0r of nuclei to a random position r outside vortex core can be got by

    Meanwhile radial positions of nuclei outside vortex core change over time as

    Similarly combining tangential velocity inside Rankine vortex core (Eq.(2)) and Eq.(8), velocity of nuclei inside vortex core is

    Capture time2t from release position1r of nuclei inside vortex core to a random position r near vortex center can be got by

    and meanwhile radial positions of nuclei inside vortex core change over time as

    Numerical simulations are executed to validate rationality of analytical solution with simplification.To describe a Rankine vortex, parameters are set as vortex circulation Γ =0.29 m2/s and vortex core size rc=5.6 mm. A nucleus with radius R = 56μ m is released in the vortex. Release positions of this nucleus are shown in Table 1. Results of analytical solutions outside and inside the vortex core are in red line (Eq.(11)) and green line(Eq.(14)) respectively,and results of simulations is in blue line as shown in Fig.1. Numerical simulation and analytical solutions are consistent, so capture time can be obtained from solutions directly. It will help to choose quickly the nucleus which is going to grow explosively first without miscellaneous simulations.

    Table 1 Release positions of nuclei entering into a Rankine vortex

    Fig.1 (Color online) Radial positions of the nucleus changes over time with analytical solutions outside the vortex core (red line), inside the vortex core (green line) and simulations (blue line)

    2. Analysis of experimental data

    In this section, the effect of water quality on tip vortex cavitation inception number will be studied quantitatively according to the analytical solution in Section 1 and experimental data provided by China Ship Scientific Research Center (CSSRC).

    The experiments were conducted in the cavitation mechanism2tunnel with a square test cross section of 225×225 mm. The maximum incoming velocity of this section can be up to 25 m/s. There is a large degassing tank installed downstream of the test section to control aircontentof water. Thealso equipped with a nucleiseeding to provide different water quality with different nuclei distributions. Meanwhile laser interferometric technique can measure nuclei distribution.

    A hydrofoil of elliptic planform in a modified NACA 662-415 airfoil section with an a=0.8 meanline was examined. The model has a root chord c of 94.2 mm and a half span b of 112.5 mm with an aspect ratio of 3. The foil was installed at horizontal center of the test section with the tip at the centreline of the test section with an attack angle 7o.Other details of the experimental setup can be found in Ref.[24].

    With uniform incoming flow velocity V0=5 m/s, experimental data include tangential velocity profiles(Fig.2) at different stations along the vortex path downstream the tip and nuclei spectra (Fig.3(a))in three nuclei-seeding pressures, i.e., 0.4 MPa, 0.6 MPa,0.8 MPa and the corresponding tip vortex cavitation inception number (Fig.3(b)). To describe a Rankine vortex, vortex circulation Γ and vortex core radius rcare obtained from the tangential velocity profiles as follows: rc=0.7 mm is the radial distance between zero and maximum tangential velocity and Γ=0.011m2/s is line integral of the maximum tangential velocity along the vortex core. Next nuclei are released into the Rankine vortex according to nuclei spectra.

    Specific to the first case with 0.4 MPa nucleiseeding pressure, measured nuclei size Dband corresponding number density N are listed in the first and second column of Table 2. For other columns in Table 2, radius of nuclei in the third column are half of Dbin the first column, and release positions r0of nuclei in the fourth column are obtained as follows

    Compared with the vortex core radius, we can see that nuclei are all released outside the vortex core in this case, so motion time of nuclei from release position tocr, namely1t in the fifth column, can be computed by Eq.(10). Besides, we find that motion time2t of nuclei fromcr to r inside the vortex core is much smaller than1t, thus capture time of nuclei t in the last column can be estimated as t≈t1.

    Fig.2 (Color online) Tangential velocity (non-dimensioned by incoming flow velocity) prof i les (red lines) at different stations along the vortex path downstream the tip

    Fig.3 Tip vortex cavitation inception numbers corresponding to the nuclei spectra in three nuclei-seeding pressures

    Then according to certain criteria, we will select the nucleus growing explosively first based on capture time. Fruman et al.[26]found out that the pressure on the vortex axis is minimum at about 5%-10% of the chord length along the vortex path, i.e., pressure drops from tip to around 5%-10% of the chord length, then rises downstream along the vortex. This conclusion is confirmed by the observations of cavitation inception by Maines et al.[27]. They discovered that nuclei are actually cavitated around this point. Based on these factors, we infer that the nuclei having an opportunity to grow explosively should be captured before they reach the lowest pressure point. So the criteria to select the nucleus growing explosively first is to choose the nucleus in maximum size with capture time t smaller than critical timect. Here,ct is the time to arrive at the lowest pressure point estimated as

    So tc=0.00094s . Afterward according to the criteria we select the nucleus with R = 15μ m in Table 2 as cavitated nuclei. Tensile strength T of this nucleus can be acquired from bubble dynamics as follows

    in whichvp is saturated vapor pressure,cp is critical pressure of a nucleus to cavitate, S is surface tension coefficient of water andcR is critical radius of a nucleus obtained by

    in which0gp is the initial partial pressure of the gas inside the nucleus, which is related to the initial state

    where0p∞is initial pressure in the flow which canbe deduced from

    Table 2 Case I of nuclei with 0.4 MPa nuclei-seeding pressure

    Table 3 Case II of nuclei with 0.6 MPa nuclei-seeding pressure.

    where σ0is the cavitation number when cavitation inception appears immediately at saturated vapor pressure in the flow. It is can be interpolated from Fig.3(b), i.e., σ0= 2.25 with nuclei-seeding pressure 1 MPa. Until now tensile strength can be easily got by reversing the procedures above. For this case, data are listed in second row of Table 5. With the same procedure to the second case and third case with 0.6 MPa and 0.8 MPa nuclei-seeding pressure, capture time are inspected in Table 3 and Table 4 respectively. Next select the cavitated nuclei of the two cases according to the criteria mentioned above. For these two cases,nuclei with R = 20μ m and R = 15μ m are picked out, and ins pec tion of ten sile strength of bo th nuclei correspondstothethirdand fourth row ofTable 5.Dimensionless tensile strength of nuclei for the three nuclei spectra are given in the last column of this table.

    Table 4 Case III of nuclei with 0.8 MPa nuclei-seeding pressure

    Table 5 Parameters for tensile strength of nuclei cavitated first

    Table 6 Differences of cavitation number between cases in experimental data and analytical solutions respec- tively

    At last, an important hypothesis is that the effect of water quality, i.e., tensile strength of water, is the tensile strength of nucleus cavitated first. Until now,the effect of water quality on tip vortex cavitation inception number can be quantified. We inspect the difference of cavitation number between cases in experiment data and analytical solutions respectively shown in Table 6. The experimental data are obtained by results presented in Fig.3(b), while analytical solutions are substituted by difference of tensile strength presented in Table 6. We can see that experimental data agree with experiment within an order of magnitude. Since there are other factors that influence the inception cavitation number in the experiment, we are excited at the accordance of results between experimental data and analytical solution.

    3. Conclusions

    In our work, we quantitatively study the effect of water quality on the tip vortex cavitation inception.Firstly, for non-growing nuclei, the dynamics of nuclei is governed by the spherical bubble dynamics model. In our last paper[21], we investigate the motion of nuclei inside Rankine vortex core with theoretical solution and simulation. The theoretical result is an exact solution only valid in the vortex core. Due to the complicated form, this result can only be used as verification of numerical simulation. In this paper,motion of nuclei in Rankine vortex can be analytically solved by ignoring the acceleration of nuclei and simplifying the drag coefficient. Due to the different profiles of tangential velocity outside and inside the vortex core, radial velocities of nuclei are expressed with different solutions. Based on these solutions,radial position of nuclei changed over time are given,which is consistent with numerical simulation.Meanwhile capture time of every nucleus can be obtained concisely. It can help to select cavitated nucleus quickly.

    Next we apply the analytical solution to get capture time of nuclei released in the experiment.According to the criteria of capture, i.e., nucleus going to grow explosively first is the largest one with capture time smaller than the critical time. The tensile strength of this nucleus is considered to quantify the effect of water quality.

    [1] Arndt R. E. A. Cavitation in vortical fl ows [J]. Annual Review of Fluid Mechanics, 2002, 34(1): 143-175.

    [2] Choi J. K., Chahine G. L. Noise due to extreme bubble deformation near inception of tip vortex cavitation [J].Physics of Fluids, 2003, 16(7): 2411-2418.

    [3] Luo X. W., Ji B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016,28(3): 335-358.

    [4] Arndt R. E. A., Arakeri V. H., Higuchi H. Some observations of tip-vortex cavitation [J]. Journal of Fluid Mechanics, 1991, 229: 269-289.

    [5] Stinebring D. R., Farrell K. J., Billet M. L. The structure of a three-dimensional tip vortex at high Reynolds numbers [J]. Journal of Fluids Engineering, 1991, 113(3):496-503.

    [6] Fruman D., Dugue C. Tip vortex roll-up and cavitation [J].Experiments, 1994, 6: 633-655.

    [7] Arndt R. E. A., Maines B. H. Viscous effects in tip vortex cavitation and nucleation [C]. 20th Symposium on Naval Hydrodynamics. CA, USA, 1994.

    [8] Fruman D. H. Recent progress in the understanding and prediction of tip vortex on a rectangular hydrofoil [C].Proceedings of the 2th International Symposium on Cavitation. Tokyo, Japan, 1994.

    [9] Maines B. H., Arndt R. E. A. Tip vortex formation and cavitation [J]. Journal of Fluids Engineering, 1997, 119(2):413-419.

    [10] Amromin E. Two-range scaling for tip vortex cavitation inception [J]. Ocean Engineering, 2006, 33(3-4): 530-534.

    [11] Shen Y. T., Gowing S., Jessup S. Tip vortex cavitation inception scaling for high Reynolds number applications[J]. Journal of Fluids Engineering, 2009, 131(7): 233-239.

    [12] Arndt R. E. A., Keller A. P. Water quality effects on cavitation inception in a trailing vortex [J]. Journal of Fluids Engineering, 1992, 114(3): 430-438.

    [13] Shen Y., Chahine G., Hsiao C. T. et al. Effects of model size and free stream nuclei on tip vortex cavitation inception scaling [C]. Proceedings of the 4th International Symposium on Cavitation. Pasadena, USA, 2001.

    [14] Coutier-Delgosha, J. O., Pouffary B. and Fortes R. Numerical simulation of unsteady cavitating fl ows [J]. Interna- tional Journal for Numerical Methods in Fluid, 2003,42(5): 527-548.

    [15] Singhal A. K., Athavale M. M., Li H. et al. Mathematical basis and validation of the full cavitation model [J].Journal of Fluids Engineering, 2002, 124(3): 617-624.

    [16] Kunz R. F., Boger D. A., Stinebring D. R. et al. A preconditioned naviercstokes method for two-phase fl ows with application to cavitation prediction [J]. Computers and Fluids, 2000, 29(8): 849-875.

    [17] Mees L., Lebrun D., Allano D. et al. Development of interferometric techniques for nuclei size measurement in cavitation tunnel [C]. Proceedings of the 28th Symposium on Naval Hydrodynamics. Pasadena, USA, 2010.

    [18] Hsiao C. T., Chahine G. L. Effect of vortex/vortex interaction on bubble dynamics and cavitation noise [C].Proceedings of the 5th International Symposium on Cavitation. Osaka, Japan, 2003.

    [19] Hsiao C. T., Chahine G. L. Scaling of tip vortex cavitation inception noise with a bubble dynamics model accounting for nuclei size distribution [J]. Journal of Fluids Engineering, 2005, 127(1): 55-65.

    [20] Park K., Seol H., Choi W. et al. Numerical prediction of tip vortex cavitation behavior and noise considering nuclei size and distribution [J]. Applied Acoustics, 2009, 70(5):674-680.

    [21] Zhang L., Chen L., Shao X. The migration and growth of nuclei in an ideal vortex fl ow [J]. Physics of Fluids, 2016,28(12): 123305.

    [22] Oweis G. F., Van der Hout I. E., Iyer C. et al. Capture and inception of bubbles near line vortices [J]. Physics of Fluids, 2005, 17(2): 022105.

    [23] Cui B., Ni B., Wu Q. Bubble-bubble interaction effects on dynamics of multiple bubbles in a vortical fl ow fi eld [J].Advances in Mechanical Engineering, 2016, 8(2): 1-12.

    [24] Song M., Xu L., Peng X. et al. An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding [J]. International Journal of Multiphase Flow, 2016, 90: 79-87.

    [25] Peng X., Xu L., Song M. Vortex singing in tip vortex cavitation under the effect of water quality [J]. Journal of Physics: Conference Series, 2015, 656(1): 012185.

    [26] Fruman D. H., Cerrutti P., Pichon T. et al. Effect of hydrofoil planform on tip vortex roll-up and cavitation [J].International Journal of Multiphase Flow, 1993, 117(1):162-169.

    [27] Maines B. H., Arndt R. E. A. Bubble dynamics of cavitation inception in a wing tip vortex [J]. Fluids Engineering Division Summer Meeting, 1993, 153: 86-91.

    丰满少妇做爰视频| 国产av精品麻豆| 久久久亚洲精品成人影院| 亚洲伊人久久精品综合| 啦啦啦中文免费视频观看日本| www日本在线高清视频| 久久精品国产亚洲av天美| 久久毛片免费看一区二区三区| 亚洲欧美精品自产自拍| 日日撸夜夜添| 性色avwww在线观看| 在线亚洲精品国产二区图片欧美| 大香蕉久久网| 亚洲欧洲国产日韩| 欧美精品av麻豆av| 国产乱来视频区| 精品人妻在线不人妻| 九九在线视频观看精品| 亚洲成国产人片在线观看| 卡戴珊不雅视频在线播放| 热re99久久精品国产66热6| 人妻 亚洲 视频| 在线看a的网站| 一级毛片 在线播放| 在线观看免费高清a一片| 亚洲成人一二三区av| 久久毛片免费看一区二区三区| 成人毛片a级毛片在线播放| 成人国语在线视频| 国语对白做爰xxxⅹ性视频网站| 天天躁夜夜躁狠狠躁躁| 免费av不卡在线播放| 久久精品国产自在天天线| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区国产| a级片在线免费高清观看视频| 国产免费一级a男人的天堂| 我的女老师完整版在线观看| 亚洲av免费高清在线观看| 97在线人人人人妻| 大话2 男鬼变身卡| 精品一区在线观看国产| 黄网站色视频无遮挡免费观看| 久久这里有精品视频免费| 免费观看av网站的网址| 亚洲av.av天堂| 9191精品国产免费久久| 少妇精品久久久久久久| av网站免费在线观看视频| 五月玫瑰六月丁香| 久久久久精品性色| 亚洲丝袜综合中文字幕| 日韩av在线免费看完整版不卡| 有码 亚洲区| 精品一区二区三区视频在线| 免费看不卡的av| 18在线观看网站| 又粗又硬又长又爽又黄的视频| 又黄又粗又硬又大视频| 久久精品熟女亚洲av麻豆精品| 久久人妻熟女aⅴ| 一级毛片 在线播放| 美国免费a级毛片| 日日啪夜夜爽| 日本免费在线观看一区| 男女边吃奶边做爰视频| 天堂俺去俺来也www色官网| 日韩在线高清观看一区二区三区| 男人操女人黄网站| 亚洲高清免费不卡视频| 天天影视国产精品| 亚洲av中文av极速乱| 久久影院123| 成人影院久久| 侵犯人妻中文字幕一二三四区| 两个人免费观看高清视频| 久久久久久久久久久久大奶| 两个人看的免费小视频| 最近的中文字幕免费完整| 三上悠亚av全集在线观看| 精品亚洲成国产av| av在线app专区| h视频一区二区三区| 国产白丝娇喘喷水9色精品| 91aial.com中文字幕在线观看| 亚洲国产欧美在线一区| 午夜久久久在线观看| 色视频在线一区二区三区| 视频中文字幕在线观看| 丝袜美足系列| 亚洲成人手机| 国产成人a∨麻豆精品| 欧美 亚洲 国产 日韩一| 国产 精品1| 欧美3d第一页| 欧美成人午夜免费资源| 国产日韩欧美在线精品| 人人妻人人爽人人添夜夜欢视频| 90打野战视频偷拍视频| av播播在线观看一区| 久久青草综合色| 在线亚洲精品国产二区图片欧美| 寂寞人妻少妇视频99o| 亚洲综合色网址| av女优亚洲男人天堂| 久久这里有精品视频免费| 日产精品乱码卡一卡2卡三| 精品第一国产精品| 欧美成人精品欧美一级黄| 欧美激情极品国产一区二区三区 | 国产爽快片一区二区三区| 久久久国产精品麻豆| 亚洲国产av新网站| 9热在线视频观看99| av视频免费观看在线观看| 国产黄色免费在线视频| 亚洲婷婷狠狠爱综合网| videos熟女内射| 久久人妻熟女aⅴ| 国产精品三级大全| 妹子高潮喷水视频| 在线天堂中文资源库| 亚洲国产精品专区欧美| 在线免费观看不下载黄p国产| 熟女av电影| 亚洲天堂av无毛| 久久韩国三级中文字幕| 青春草视频在线免费观看| 男的添女的下面高潮视频| 亚洲av电影在线观看一区二区三区| 女人被躁到高潮嗷嗷叫费观| 日本-黄色视频高清免费观看| 中国三级夫妇交换| 水蜜桃什么品种好| 女人久久www免费人成看片| 久久久久久伊人网av| 成年人午夜在线观看视频| 一区二区日韩欧美中文字幕 | 春色校园在线视频观看| 日韩视频在线欧美| 日韩一本色道免费dvd| 9色porny在线观看| 女的被弄到高潮叫床怎么办| 在线看a的网站| 成人漫画全彩无遮挡| 香蕉精品网在线| 免费av不卡在线播放| 国产成人精品婷婷| 建设人人有责人人尽责人人享有的| 精品少妇黑人巨大在线播放| 各种免费的搞黄视频| a 毛片基地| 色5月婷婷丁香| 精品国产乱码久久久久久小说| 99九九在线精品视频| 日本91视频免费播放| 成人毛片a级毛片在线播放| 久久人人爽av亚洲精品天堂| 国产亚洲av片在线观看秒播厂| 亚洲精品aⅴ在线观看| 在线观看国产h片| 黑人巨大精品欧美一区二区蜜桃 | 黄网站色视频无遮挡免费观看| 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 久久久久国产精品人妻一区二区| 欧美最新免费一区二区三区| 国产精品一区二区在线不卡| 欧美精品高潮呻吟av久久| 亚洲精品乱码久久久久久按摩| 免费观看无遮挡的男女| 午夜福利视频在线观看免费| 国产精品成人在线| av卡一久久| 巨乳人妻的诱惑在线观看| 丝袜人妻中文字幕| 国产成人免费无遮挡视频| 久久国产精品男人的天堂亚洲 | 亚洲精品国产av蜜桃| 你懂的网址亚洲精品在线观看| 国产国拍精品亚洲av在线观看| 天堂俺去俺来也www色官网| 免费av不卡在线播放| 国国产精品蜜臀av免费| 久久久久久久国产电影| 制服丝袜香蕉在线| 成人漫画全彩无遮挡| av在线app专区| 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 国产色婷婷99| 国产国语露脸激情在线看| 大香蕉97超碰在线| 亚洲欧美成人精品一区二区| 18禁裸乳无遮挡动漫免费视频| 国产精品国产三级国产专区5o| 亚洲av电影在线进入| 亚洲内射少妇av| 晚上一个人看的免费电影| 插逼视频在线观看| 亚洲精品国产色婷婷电影| 日韩制服丝袜自拍偷拍| 中文天堂在线官网| 亚洲精品av麻豆狂野| 精品国产一区二区三区四区第35| 最新中文字幕久久久久| 成年人午夜在线观看视频| 欧美日本中文国产一区发布| 精品久久国产蜜桃| 如何舔出高潮| 丝袜人妻中文字幕| 一区二区三区乱码不卡18| 中文字幕人妻熟女乱码| av国产精品久久久久影院| 夜夜爽夜夜爽视频| 五月伊人婷婷丁香| 9热在线视频观看99| 女人久久www免费人成看片| 亚洲av福利一区| 超碰97精品在线观看| 天堂中文最新版在线下载| 两个人看的免费小视频| 国产高清三级在线| 黄片无遮挡物在线观看| 国产在视频线精品| 欧美激情国产日韩精品一区| 黑人猛操日本美女一级片| 在线亚洲精品国产二区图片欧美| 免费高清在线观看视频在线观看| 国产精品嫩草影院av在线观看| 亚洲性久久影院| 各种免费的搞黄视频| 国产精品久久久久久久久免| 亚洲精品自拍成人| 一级毛片我不卡| 亚洲丝袜综合中文字幕| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区国产| 日本黄大片高清| 91在线精品国自产拍蜜月| 欧美97在线视频| 国产黄频视频在线观看| 在现免费观看毛片| 亚洲国产日韩一区二区| 亚洲内射少妇av| 国产在线一区二区三区精| 日本与韩国留学比较| 国产精品熟女久久久久浪| 日本黄色日本黄色录像| 一级片'在线观看视频| 丝瓜视频免费看黄片| 只有这里有精品99| 我要看黄色一级片免费的| 看免费成人av毛片| 色哟哟·www| 高清在线视频一区二区三区| 看非洲黑人一级黄片| 国产 精品1| 人体艺术视频欧美日本| 黄片播放在线免费| 免费少妇av软件| 一区二区av电影网| 欧美3d第一页| 久久99精品国语久久久| 亚洲色图综合在线观看| 精品人妻一区二区三区麻豆| 伦精品一区二区三区| 男女边摸边吃奶| 色哟哟·www| 欧美xxxx性猛交bbbb| 国产日韩欧美亚洲二区| 狠狠婷婷综合久久久久久88av| 精品一区二区免费观看| 亚洲精品国产av成人精品| 国产又爽黄色视频| 欧美精品人与动牲交sv欧美| 国产亚洲最大av| 婷婷成人精品国产| 欧美日韩综合久久久久久| 久久久国产一区二区| 亚洲人与动物交配视频| 久久亚洲国产成人精品v| 成人毛片60女人毛片免费| 国产男女内射视频| videossex国产| 亚洲欧美色中文字幕在线| 亚洲欧美精品自产自拍| 欧美精品av麻豆av| 亚洲国产欧美日韩在线播放| 久久久久久久久久人人人人人人| 又粗又硬又长又爽又黄的视频| 国产乱来视频区| www.av在线官网国产| 少妇人妻久久综合中文| 99久国产av精品国产电影| 考比视频在线观看| 一级,二级,三级黄色视频| 高清欧美精品videossex| 女性生殖器流出的白浆| 视频中文字幕在线观看| 国产精品国产av在线观看| 亚洲综合色网址| videos熟女内射| 久久久久精品久久久久真实原创| 如何舔出高潮| 99香蕉大伊视频| 性色av一级| 欧美xxⅹ黑人| 亚洲av免费高清在线观看| 老司机影院毛片| 日日摸夜夜添夜夜爱| 亚洲,欧美,日韩| 一级毛片电影观看| 国产成人精品一,二区| 国产精品秋霞免费鲁丝片| 美女视频免费永久观看网站| av播播在线观看一区| 一二三四在线观看免费中文在 | 91在线精品国自产拍蜜月| 亚洲国产精品999| 日本猛色少妇xxxxx猛交久久| videos熟女内射| 搡女人真爽免费视频火全软件| 另类精品久久| 日本与韩国留学比较| 97精品久久久久久久久久精品| 国产福利在线免费观看视频| 日本欧美国产在线视频| 老司机影院毛片| 热re99久久国产66热| 国产探花极品一区二区| 黑人欧美特级aaaaaa片| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| videos熟女内射| 国产成人91sexporn| 天天躁夜夜躁狠狠躁躁| 69精品国产乱码久久久| 性色av一级| 国产极品天堂在线| 欧美精品亚洲一区二区| 中文天堂在线官网| 男人爽女人下面视频在线观看| 国产av码专区亚洲av| 丰满迷人的少妇在线观看| 中文字幕免费在线视频6| 日产精品乱码卡一卡2卡三| 大香蕉97超碰在线| 免费在线观看完整版高清| 一边亲一边摸免费视频| 天天影视国产精品| 精品久久蜜臀av无| 涩涩av久久男人的天堂| 亚洲国产av新网站| 久久精品国产亚洲av天美| 成人国产麻豆网| 狠狠精品人妻久久久久久综合| 中文字幕人妻熟女乱码| 欧美 日韩 精品 国产| 日本色播在线视频| 丰满饥渴人妻一区二区三| 免费人妻精品一区二区三区视频| 天堂俺去俺来也www色官网| 午夜福利网站1000一区二区三区| 大片免费播放器 马上看| 赤兔流量卡办理| av在线观看视频网站免费| 性色avwww在线观看| 成年女人在线观看亚洲视频| 观看av在线不卡| 精品国产国语对白av| av视频免费观看在线观看| 国产麻豆69| 妹子高潮喷水视频| 久久人妻熟女aⅴ| 久久综合国产亚洲精品| 久久久国产欧美日韩av| 两性夫妻黄色片 | 在线精品无人区一区二区三| 一本—道久久a久久精品蜜桃钙片| a级毛色黄片| 免费女性裸体啪啪无遮挡网站| 亚洲情色 制服丝袜| av黄色大香蕉| 亚洲精品aⅴ在线观看| 18禁在线无遮挡免费观看视频| 国产不卡av网站在线观看| 国产精品一区二区在线不卡| 99re6热这里在线精品视频| 日本av手机在线免费观看| 亚洲精品美女久久av网站| 免费观看无遮挡的男女| 亚洲成色77777| 咕卡用的链子| 午夜福利在线观看免费完整高清在| 美国免费a级毛片| 午夜福利在线观看免费完整高清在| 在现免费观看毛片| 伊人亚洲综合成人网| a 毛片基地| 亚洲一区二区三区欧美精品| 蜜桃国产av成人99| 99热国产这里只有精品6| 高清毛片免费看| av片东京热男人的天堂| 老女人水多毛片| 一本色道久久久久久精品综合| 在线观看一区二区三区激情| 国产男女内射视频| 国产又色又爽无遮挡免| 亚洲情色 制服丝袜| 日本黄色日本黄色录像| 毛片一级片免费看久久久久| 免费观看av网站的网址| 久久久久精品性色| 丝袜人妻中文字幕| 蜜桃国产av成人99| 亚洲欧美成人综合另类久久久| 亚洲美女搞黄在线观看| 99久久中文字幕三级久久日本| 少妇精品久久久久久久| 日本猛色少妇xxxxx猛交久久| 热99久久久久精品小说推荐| 久久青草综合色| 亚洲成色77777| 最近手机中文字幕大全| 欧美精品一区二区大全| 少妇人妻精品综合一区二区| 亚洲美女黄色视频免费看| 蜜桃国产av成人99| 亚洲国产av新网站| 国产日韩欧美在线精品| www.熟女人妻精品国产 | 热re99久久国产66热| 在线天堂最新版资源| 色婷婷久久久亚洲欧美| 亚洲精品视频女| 激情视频va一区二区三区| 精品国产乱码久久久久久小说| av黄色大香蕉| 国产亚洲欧美精品永久| 久久毛片免费看一区二区三区| 免费大片18禁| 久久久久久久久久人人人人人人| av女优亚洲男人天堂| 日产精品乱码卡一卡2卡三| 晚上一个人看的免费电影| 精品久久久久久电影网| 亚洲国产毛片av蜜桃av| 激情五月婷婷亚洲| 欧美激情国产日韩精品一区| 亚洲婷婷狠狠爱综合网| 满18在线观看网站| 黄网站色视频无遮挡免费观看| 欧美bdsm另类| 国产又爽黄色视频| 中文字幕最新亚洲高清| 欧美激情极品国产一区二区三区 | freevideosex欧美| 亚洲av综合色区一区| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区| 国产欧美亚洲国产| 国产在视频线精品| freevideosex欧美| 免费黄网站久久成人精品| 日韩三级伦理在线观看| 亚洲精品一二三| 久久国产亚洲av麻豆专区| 日本-黄色视频高清免费观看| 一二三四在线观看免费中文在 | 少妇熟女欧美另类| 国产国语露脸激情在线看| 久久久久久久亚洲中文字幕| 久久午夜综合久久蜜桃| 女人久久www免费人成看片| 欧美 亚洲 国产 日韩一| 一级片免费观看大全| 成人二区视频| 亚洲成国产人片在线观看| 国产精品国产av在线观看| 亚洲精品av麻豆狂野| 肉色欧美久久久久久久蜜桃| 国产精品国产三级国产专区5o| 成人国产麻豆网| 亚洲三级黄色毛片| 久久人人爽av亚洲精品天堂| 人体艺术视频欧美日本| 99热6这里只有精品| 久久精品久久久久久噜噜老黄| 一级爰片在线观看| 亚洲国产精品一区三区| 色网站视频免费| 曰老女人黄片| 成人黄色视频免费在线看| 久久久a久久爽久久v久久| 搡老乐熟女国产| 少妇高潮的动态图| 五月天丁香电影| 如日韩欧美国产精品一区二区三区| 极品少妇高潮喷水抽搐| av天堂久久9| 国产精品一区二区在线观看99| 亚洲国产精品成人久久小说| 香蕉国产在线看| 在线观看人妻少妇| 黑人欧美特级aaaaaa片| 中文字幕另类日韩欧美亚洲嫩草| 青春草国产在线视频| 国产精品秋霞免费鲁丝片| 国产色婷婷99| 国产精品三级大全| 少妇的逼水好多| 亚洲情色 制服丝袜| 日本黄色日本黄色录像| 国产1区2区3区精品| 女人久久www免费人成看片| 毛片一级片免费看久久久久| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频 | 日本欧美国产在线视频| 国产女主播在线喷水免费视频网站| 熟女人妻精品中文字幕| freevideosex欧美| 丰满饥渴人妻一区二区三| av播播在线观看一区| 国产69精品久久久久777片| 香蕉国产在线看| 国产精品蜜桃在线观看| 欧美人与性动交α欧美精品济南到 | 美女大奶头黄色视频| 水蜜桃什么品种好| 亚洲激情五月婷婷啪啪| 国产日韩欧美视频二区| 免费人妻精品一区二区三区视频| 建设人人有责人人尽责人人享有的| 91aial.com中文字幕在线观看| 飞空精品影院首页| 日韩不卡一区二区三区视频在线| 黑人巨大精品欧美一区二区蜜桃 | 午夜福利视频在线观看免费| 我的女老师完整版在线观看| 久久久a久久爽久久v久久| av一本久久久久| 人人妻人人爽人人添夜夜欢视频| 91在线精品国自产拍蜜月| 亚洲成色77777| 99久国产av精品国产电影| 亚洲精品乱码久久久久久按摩| 亚洲av综合色区一区| 精品一区二区免费观看| 国产色婷婷99| 欧美性感艳星| 欧美最新免费一区二区三区| a级毛片黄视频| 中文欧美无线码| 亚洲精品一区蜜桃| 国产成人精品婷婷| 亚洲欧美成人精品一区二区| 一区二区三区四区激情视频| 插逼视频在线观看| 午夜激情av网站| 亚洲天堂av无毛| 丝袜喷水一区| 男女高潮啪啪啪动态图| 捣出白浆h1v1| 王馨瑶露胸无遮挡在线观看| 在线看a的网站| 亚洲av综合色区一区| av片东京热男人的天堂| 国产av一区二区精品久久| 狂野欧美激情性xxxx在线观看| 在线精品无人区一区二区三| xxxhd国产人妻xxx| 成人亚洲欧美一区二区av| 欧美日韩av久久| 欧美精品一区二区免费开放| 丝瓜视频免费看黄片| 亚洲av福利一区| 人人妻人人爽人人添夜夜欢视频| 成人无遮挡网站| 亚洲国产色片| 蜜臀久久99精品久久宅男| 韩国精品一区二区三区 | 免费少妇av软件| 在线观看国产h片| 波野结衣二区三区在线| 久久久久网色| 久久99精品国语久久久| 成年av动漫网址| 国产精品国产三级国产av玫瑰| 亚洲第一av免费看| 丰满乱子伦码专区| 日韩,欧美,国产一区二区三区| 精品少妇内射三级| 久久人妻熟女aⅴ| 99热6这里只有精品| 69精品国产乱码久久久| 高清在线视频一区二区三区| 国产亚洲欧美精品永久| 欧美老熟妇乱子伦牲交| 毛片一级片免费看久久久久| 亚洲av日韩在线播放| 黄网站色视频无遮挡免费观看| 成人国产麻豆网| 国产色婷婷99| 久久综合国产亚洲精品| 夫妻性生交免费视频一级片| 热99国产精品久久久久久7| 蜜臀久久99精品久久宅男| 久久人人97超碰香蕉20202| 少妇的丰满在线观看| 免费看不卡的av| 热re99久久国产66热| 亚洲精品aⅴ在线观看|