彭康龍,梁顯榮,曹建國(guó),,黃美歡,戰(zhàn)玉軍
腦性癱瘓是一組持續(xù)存在的中樞性和姿勢(shì)發(fā)育障礙、活動(dòng)受限癥候群,這種癥候群是由于發(fā)育中的胎兒或嬰幼兒腦部非進(jìn)行性損傷所致[1-3]。學(xué)齡期的腦性癱瘓患者的運(yùn)動(dòng)障礙常伴有感覺(jué)、知覺(jué)障礙,以及繼發(fā)性肌肉、骨骼問(wèn)題,導(dǎo)致早期的步行能力受到影響[4]。因此,對(duì)于這些患者,步行能力訓(xùn)練是一項(xiàng)十分重要的訓(xùn)練項(xiàng)目[5-6]。全身振動(dòng)療法(Whole Body Vibration,WBV)的研究在近期逐漸受到了廣泛的關(guān)注,以往關(guān)于WBV的文獻(xiàn)報(bào)道均認(rèn)為這一類訓(xùn)練的方式在提高一般健康人群的骨骼狀況、平衡能力、本體感覺(jué)以及生活質(zhì)量上均有顯著的效果[7-9]。我們運(yùn)用Meta分析方法對(duì)以往發(fā)表的關(guān)于WBV對(duì)腦癱患者的步行能力的影響的隨機(jī)對(duì)照試驗(yàn)(Random Control Trails,RCTs)進(jìn)行探究,為WBV在腦癱患者下肢步行功能恢復(fù)提供進(jìn)一步的證據(jù)支持,分析WBV對(duì)于腦癱患者的步行能力的療效以及相關(guān)的作用機(jī)理。
1.1 研究對(duì)象 國(guó)內(nèi)外生物醫(yī)學(xué)期刊已公開(kāi)發(fā)表的探究WBV對(duì)腦癱患者步行能力的影響的RCTs。年齡2~18歲,種族、國(guó)籍、性別不限,英文文獻(xiàn)所選患者符合2015年腦性癱瘓康復(fù)指南上的診斷標(biāo)準(zhǔn)[3]。
1.2 方法 ①文獻(xiàn)選擇:a.文獻(xiàn)納入標(biāo)準(zhǔn):所有納入的RTCs均以研究WBV對(duì)于腦癱患者步行能力的相關(guān)作用的研究目的。b.研究設(shè)計(jì):RCTs,無(wú)論是否采用盲法。c.干預(yù)措施:WBV組干預(yù)措施為全身振動(dòng)療法,其他臨床治療與康復(fù)治療與對(duì)照組相同;對(duì)照組采用常規(guī)腦癱患者康復(fù)治療技術(shù)。d.結(jié)局指標(biāo):步行速度,測(cè)量方法可以是步態(tài)分析、10m步行試驗(yàn)及6min步行試驗(yàn);肌張力,測(cè)量方法為改良Ashworth肌肉張力評(píng)估量表(Modified Ashworth Scale,MAS);肌力,測(cè)量方法為動(dòng)態(tài)肌力測(cè)量?jī)x。e.文獻(xiàn)排除標(biāo)準(zhǔn):重復(fù)發(fā)表,未提供充分原始數(shù)據(jù)且索取無(wú)果,原始文獻(xiàn)實(shí)驗(yàn)設(shè)計(jì)不嚴(yán)謹(jǐn),動(dòng)物實(shí)驗(yàn),無(wú)法獲得全文。②文獻(xiàn)檢索方法:本文檢索的文獻(xiàn)均來(lái)源于PUBMED、Google Scholar、EMBASE以及The Cochrane Library近十年來(lái)的文獻(xiàn)報(bào)道,截至2016年12月。我們選擇英文檢索詞為"Whole Body Vibration"、"WBV"、"Cerebral Palsy"、"Children"、"Adolescent"等,同時(shí)運(yùn)用布爾運(yùn)算法則進(jìn)行關(guān)鍵詞的組合,提高對(duì)于文獻(xiàn)檢索的準(zhǔn)確性以及完整性[10]。中文相關(guān)文獻(xiàn)數(shù)量欠缺,因此不進(jìn)行中文文獻(xiàn)的檢索。對(duì)所有納入文獻(xiàn)的參考文獻(xiàn)進(jìn)行二次檢索,以確保文獻(xiàn)檢索的完整性;對(duì)于沒(méi)有提供原始數(shù)據(jù)的研究或者需要進(jìn)一步研究后的實(shí)驗(yàn)結(jié)果的研究,均以郵件聯(lián)系相關(guān)的作者了解本文所需的相關(guān)信息以及實(shí)驗(yàn)數(shù)據(jù)。③數(shù)據(jù)收集與分析:前文提及的檢索方法僅僅用于獲取與本系統(tǒng)回顧相關(guān)的文獻(xiàn)的題目與摘要,兩位作者相互不干擾下,依據(jù)相關(guān)標(biāo)準(zhǔn)的準(zhǔn)入準(zhǔn)則與排除準(zhǔn)則評(píng)價(jià)全文文獻(xiàn)。所有的決議的通過(guò)均經(jīng)過(guò)作者間協(xié)商。所納入的文獻(xiàn)數(shù)據(jù)均用the Cochrane Collaboration模式進(jìn)行數(shù)據(jù)的收集與提取[10],主要考慮以下方面:a.受試者的基本資料,例如平均年齡、性別;b.處理方法的設(shè)計(jì),例如樣本量、振動(dòng)頻率、振動(dòng)時(shí)長(zhǎng);c.隨訪記錄;d.失訪;e.結(jié)果的評(píng)估與量化;f.成果的展示。薈萃分析的相關(guān)文獻(xiàn)質(zhì)量分析均通過(guò)PEDro量表進(jìn)行評(píng)價(jià)[11-12],共11個(gè)項(xiàng)目,其中一項(xiàng)PEDro量表的評(píng)估標(biāo)準(zhǔn)與外在效度相關(guān),通常不作為評(píng)價(jià)方法的考慮范圍,因此納入文獻(xiàn)的分?jǐn)?shù)在0~10,任何產(chǎn)生的異議均由其他的作者協(xié)商解決[13-14]。④數(shù)據(jù)分析:進(jìn)行Meta分析時(shí),我們對(duì)度量衡單位相同的連續(xù)性變量采用加權(quán)均數(shù)差值,對(duì)度量衡單位不相同的連續(xù)性變量采用標(biāo)準(zhǔn)化均數(shù)差值,所有的數(shù)據(jù)分析均運(yùn)用隨機(jī)效應(yīng)模型。其中,WBV組與對(duì)照組作為基本的對(duì)比組合。以alpha值0.05為具有統(tǒng)計(jì)學(xué)意義。統(tǒng)計(jì)學(xué)異質(zhì)性檢驗(yàn)則運(yùn)用Cochran's Q檢驗(yàn)以及值,當(dāng)P<0.1,I2>50%考慮具有明顯的異質(zhì)性,所有的分析均運(yùn)用Review Manager Version 5.0(Cochrane Collaboration)[12,15]。發(fā)表偏倚采用倒漏斗圖顯示。
2.1 文獻(xiàn)的納入 圖1展示本系統(tǒng)回顧的納入文獻(xiàn)的篩選流程圖。表1展示了經(jīng)過(guò)PEDro量表評(píng)價(jià)后的文獻(xiàn)相關(guān)方法的質(zhì)量狀況。
圖1 根據(jù)PRISMA準(zhǔn)則進(jìn)行文獻(xiàn)的檢索與篩查
文獻(xiàn)1234567891011總分Ruck[42]√√√√√√5Wren[43]√√√√√√√√7Lee[44]√√√√√√√√7Ko[45]√√√√√√√6Ibrahim[29]√√ √√√4El?Shamy[46]√√√√√√√√√8Cheng[24]√√√√√√√√√8
注:1.受試者納入標(biāo)準(zhǔn);2.隨機(jī)分配;3.隱藏分配;4.基線一致性;5.受試者盲性;6.治療師盲性;7.評(píng)估者盲性;8.隨訪;9.主觀性治療; 11.個(gè)體多異性。項(xiàng)目1的分?jǐn)?shù)不計(jì)入總分
2.2 實(shí)驗(yàn)相關(guān)情況 表2展示了所有納入文獻(xiàn)的隨機(jī)對(duì)照實(shí)驗(yàn)的基本相關(guān)情況。
2.3 異質(zhì)性檢驗(yàn)(齊性檢驗(yàn)) 所納入的RCTs均符合相對(duì)應(yīng)的納入和排除標(biāo)準(zhǔn),且所有研究都對(duì)治療前性別、年齡等因素進(jìn)行了基線一致性分析,結(jié)果說(shuō)明無(wú)臨床異質(zhì)性,即試驗(yàn)組與對(duì)照組具有可比性。異質(zhì)性檢驗(yàn)結(jié)果顯示,納入的RCTs同質(zhì)性較差,均采用隨機(jī)效應(yīng)模型進(jìn)行Meta分析。
2.4 發(fā)表偏倚分析 本研究納入的文獻(xiàn)的偏倚較小??烧J(rèn)為倒漏斗圖是對(duì)稱的,納入的文獻(xiàn)可以進(jìn)行Meta分析。見(jiàn)圖2。
圖2 Meta分析發(fā)表偏倚漏斗圖
文獻(xiàn)患者(診斷,例數(shù),年齡,性別,功能狀況)干預(yù)方法WBV組對(duì)照組評(píng)估工具結(jié)果Ruck[42]腦癱;入組18人;年齡6.2~12.3歲;70%男性;GMFCS=2~4常規(guī)康復(fù)治療結(jié)合WBV常規(guī)康復(fù)治療10米步行試驗(yàn);粗大運(yùn)動(dòng)功能;骨密度運(yùn)動(dòng)功能提高;骨密度無(wú)變化Wren[43]腦癱;入組36人;年齡9.4歲;42%男性;GMFCS=1~4WBV站立 骨密度;肌力肌力并無(wú)變化;骨密度無(wú)變化Lee[44]腦癱;入組30;年齡10歲;50%男性常規(guī)康復(fù)治療結(jié)合WBV常規(guī)康復(fù)治療粗大運(yùn)動(dòng)功能;肌肉圍度;步態(tài)分析運(yùn)動(dòng)功能提高;肌肉圍度增加Ko[45]腦癱;入組24人;年齡7~13歲;GMFCS=1~3常規(guī)康復(fù)治療結(jié)合WBV常規(guī)康復(fù)治療膝關(guān)節(jié)本體感覺(jué);姿勢(shì)平衡;步態(tài)分析膝關(guān)節(jié)本體感覺(jué)提高;步態(tài)有改善Ibrahim[29]痙攣型偏癱;入組30人;年齡9.3歲常規(guī)康復(fù)治療結(jié)合WBV常規(guī)康復(fù)治療伸膝肌肌力;步速;步行平衡;粗大運(yùn)動(dòng)功能伸膝肌肌力、粗大運(yùn)動(dòng)功能、步行功能均有提高El?Shamy[46]痙攣型偏癱;入組30人;年齡9.93歲;76.6%男性常規(guī)康復(fù)治療結(jié)合WBV常規(guī)康復(fù)治療伸膝肌肌力;平衡與姿勢(shì)穩(wěn)定肌力與姿勢(shì)平衡有改善Cheng[24]腦癱;入組16人;年齡9.2歲WBV常規(guī)康復(fù)治療關(guān)節(jié)活動(dòng)度;MAS;TUG;6MWT關(guān)節(jié)活動(dòng)度改善;活動(dòng)功能提高
圖3 WBV組與對(duì)照組:步速
圖4 WBV組與對(duì)照組:MAS
圖5 WBV組與對(duì)照組:肌力
2.5 WBV組處理情況 WBV的療程持續(xù)范圍在8~24周,且一次WBV的治療時(shí)間范圍在10~60min,振動(dòng)療法的治療頻率范圍在3~7次/周。
2.6 步態(tài)參數(shù)變化 4篇文獻(xiàn)以步行速度作為闡述結(jié)果的數(shù)據(jù)。WBV組與對(duì)照組相比下,WBV組內(nèi)受試者的步行速度顯著性提高。見(jiàn)圖3。
2.7 肌肉張力變化情況 2篇文獻(xiàn)以MAS作為闡述結(jié)果的數(shù)據(jù),且均以伸膝肌為評(píng)估肌肉,WBV組與對(duì)照組相比,差異不具有顯著性。見(jiàn)圖4。
2.8 肌力變化情況 3篇文獻(xiàn)以肌力作為闡述結(jié)果的數(shù)據(jù)。WBV組與對(duì)照組比較,差異并不具有統(tǒng)計(jì)學(xué)意義。見(jiàn)圖5。
3.1 全身振動(dòng)療法(Whole body vibration WBV) WBV是康復(fù)治療中新興的治療工具以及手段[16],目前,并沒(méi)有大量高質(zhì)量的RCTs報(bào)道關(guān)于WBV在腦癱患者康復(fù)中的運(yùn)用,而且對(duì)于WBV的作用效果結(jié)論并不一致。
3.2 WBV組內(nèi)受試者的步行能力的改善機(jī)理探究 WBV能顯著提高腦癱患者的步行速度[17]。步行速度是患者日常步行能力的重要的相關(guān)因素,步行速度的改善與腦癱患者的日常步行能力息息相關(guān),提高腦癱患者的步行能力通常是其康復(fù)治療的主要目標(biāo)[18-19]。WBV可以增加下肢肌肉體積以及改善骨骼骨質(zhì),提高下肢生物結(jié)構(gòu)的負(fù)重能力,從而改善患者的步行能力[17]。足底的機(jī)械性感受機(jī)理學(xué)說(shuō)認(rèn)為,WBV也可以改善足底感覺(jué),提高患者的平衡控制能力,從而改善患者的步態(tài)[20-22]。
3.3 WBV組內(nèi)受試者的肌張力變化 WBV對(duì)肌張力的作用目前仍存在爭(zhēng)議[23]。WBV的振動(dòng)刺激直接作用于受試者痙攣肌肉,以此達(dá)到最大的治療效果,主要表現(xiàn)于肌肉張力、肌電信號(hào)以及運(yùn)動(dòng)能力(主動(dòng)關(guān)節(jié)活動(dòng)度、被動(dòng)關(guān)節(jié)活動(dòng)度、手功能)的改善,從而改善了受試者的步行能力,表現(xiàn)在步行速度、步寬的改善上[24-25]。抑制假說(shuō)認(rèn)為一個(gè)WBV的振動(dòng)刺激信號(hào)通過(guò)增強(qiáng)Ia突觸前抑制效應(yīng),以此減少Ia神經(jīng)沖動(dòng)的釋放,因此抑制了單個(gè)神經(jīng)突觸的興奮性[26-27]。占線假說(shuō)認(rèn)為振動(dòng)刺激信號(hào)引起的占線現(xiàn)象也減少了牽伸相關(guān)的神經(jīng)沖動(dòng)輸入,Ia類神經(jīng)集中于振動(dòng)刺激信號(hào)的處理,而不能很好地處理高頻振動(dòng)信號(hào)引起的反射性牽伸相關(guān)的神經(jīng)沖動(dòng)以及自身的動(dòng)作電位信號(hào)[28]。
3.4 WBV組中受試者肌力提高的作用機(jī)理探究 WBV對(duì)肌力的作用上也具有爭(zhēng)議[16,23,29-30]。反射通路處理機(jī)制認(rèn)為WBV振動(dòng)產(chǎn)生直接刺激通過(guò)軀干傳遞至各個(gè)肌肉成分,包括肌腹、肌腱甚至延伸至肌纖維[20,31-32]。同時(shí)機(jī)械振動(dòng)也刺激了運(yùn)動(dòng)相關(guān)的ALPHA神經(jīng)元,從而產(chǎn)生肌肉的收縮,從而提高相對(duì)應(yīng)的收縮肌肉的肌力[32-33]。此反射回路也作用于本體感覺(jué)傳導(dǎo)通路,對(duì)于自身本體感覺(jué)能力也有相對(duì)應(yīng)的增強(qiáng)作用,這些反射性傳導(dǎo)通路將神經(jīng)纖維沖動(dòng)傳導(dǎo)至脊髓背側(cè)核群,相對(duì)應(yīng)的反射性沖動(dòng)則傳導(dǎo)至相關(guān)的肌肉群,形成相對(duì)應(yīng)的肌肉活動(dòng)[34-37]。
3.5 WBV的安全性分析 在Semleretc、Ward etc的研究?jī)?nèi),均沒(méi)有報(bào)道患者出現(xiàn)不適以及后續(xù)的副作用[38-39]。
3.6 WBV的治療方案探討 對(duì)于WBV相關(guān)的一些治療方案,WBV的強(qiáng)度取決于振動(dòng)的頻率與振幅,不同的參數(shù)組合對(duì)骨骼肌肉神經(jīng)系統(tǒng)產(chǎn)生的作用均不同,因此,建立一系列有效的參數(shù)組合以及其療效是一項(xiàng)十分具有挑戰(zhàn)性的研究工作[37]。進(jìn)一步的研究需針對(duì)如何在保證有效的治療效果下,規(guī)范或提出與治療參數(shù)(模式、頻率、強(qiáng)度以及時(shí)長(zhǎng))相關(guān)的參考意見(jiàn)[40]。
WBV能有效提高腦癱患者的步行能力,由于納入文獻(xiàn)的局限性以及樣本量的限制,仍需要更高質(zhì)量的RCTs進(jìn)行進(jìn)一步的研究。同時(shí),關(guān)于WBV對(duì)于腦癱患者的肌張力、肌力、關(guān)節(jié)活動(dòng)度的影響,目前的文獻(xiàn)仍不具有代表性,不能很好地闡述WBV在這些方面上的作用,也需要更多高質(zhì)量的RCT文獻(xiàn)進(jìn)行探究[41]。
[1] Duquette SA, Guiliano AM, Starmer DJ. Whole body vibration and cerebral palsy: a systematic review[J]. The Journal of the Canadian Chiropractic Association, 2015, 59(3): 245-252.
[2] Gusso S, Munns CF, Colle P, et al. Effects of whole-body vibration training on physical function, bone and muscle mass in adolescents and young adults with cerebral palsy[J]. Scientific reports, 2016, 6(1): 22518-22532.
[3] 唐久來(lái), 秦炯, 鄒麗萍, 等. 中國(guó)腦性癱瘓康復(fù)指南(2015): 第一部分[J]. 中國(guó)康復(fù)醫(yī)學(xué)雜志, 2015, 30(7): 747-754.
[4] Yabumoto T, Shin S, Watanabe T, et al. Whole-body vibration training improves the walking ability of a moderately impaired child with cerebral palsy: a case study[J]. Journal of physical therapy science, 2015, 27(9): 3023-3025.
[5] Damiano DL. Activity, Activity, Activity: Rethinking Our Physical Therapy Approach to Cerebral Palsy[J]. Physical Therapy, 2006, 86(11): 1534-1540.
[6] Scholtes VA, Becher JG, Comuth A, et al. Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial[J]. Developmental medicine and child neurology, 2010, 52(6): 107-113.
[7] Diloreto C, Ranchelli A, Lucidi P, et al. Effects of whole-body vibration exercise on the endocrine system of healthy men[J]. Journal of endocrinological investigation, 2004, 27(1): 323-327.
[8] Rehn B, Lidstr MJ, Skoglund J, et al. Effects on leg muscular performance from whole body vibration exercise: a systematic review[J]. Scandinavian journal of medicine & science in sports, 2007, 17(1): 2-11.
[9] Gerodimos V, ZafeIridis A, Karatrantou K, et al. The acute effects of different whole-body vibration amplitudes and frequencies on flexibility and vertical jumping performance[J]. Journal of Science and Medicine in Sport, 2010, 13(4): 438-443.
[10] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement[J]. Annals of internal medicine, 2009, 151(4): 264-269.
[11] Sherrington C, Herbert R, Maher C, et al. PEDro. A database of randomized trials and systematic reviews in physiotherapy[J]. Manual therapy, 2000, 5(4): 223-226.
[12] Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials[J]. Physical therapy, 2003, 83(8): 713-721.
[13] Olivo SA, Macedo G, Gadotti IC, et al. Scales to assess the quality of randomized controlled trials: a systematic review[J]. Physical therapy, 2008, 88(2): 156-175.
[14] Verhagen AP, Vet HC, Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus[J]. Journal of clinical epidemiology, 1998, 51(12): 1235-1241.
[15] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses[J]. Bmj, 2003, 327(7414): 557-560.
[16] Saquetto M, Carvalho V, Silva C, et al. The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis[J]. Journal of musculoskeletal & neuronal interactions, 2015, 15(2): 137-144.
[17] Gusso S, Munns CF, Colle P, et al. Effects of whole-body vibration training on physical function, bone and muscle mass in adolescents and young adults with cerebral palsy[J]. Scientific reports, 2016, 6(1): 22518-22532.
[18] Smith DW, Gorter JW, Ketelaar M, et al. Relationship between gross motor capacity and daily‐life mobility in children with cerebral palsy[J]. Developmental Medicine & Child Neurology, 2010, 52(3): 60-66.
[19] An S, Lee Y, Shin H, et al. Gait velocity and walking distance to predict community walking after stroke[J]. Nursing & health sciences, 2015, 17(4): 533-538.
[20] Fallon JB, Morgan DL. Fully tuneable stochastic resonance in cutaneous receptors[J]. Journal of neurophysiology, 2005, 94(2): 928-933.
[21] Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application[J]. Clinical neurophysiology, 2004, 115(2): 267-281.
[22] Schlee G, Reckmann D, Milani TL. Whole body vibration training reduces plantar foot sensitivity but improves balance control of healthy subjects[J]. Neuroscience letters, 2012, 506(1): 70-73.
[23] Chanou K, Gerodimos V, Karatrantou K, et al. Whole-body vibration and rehabilitation of chronic diseases: a review of the literature[J]. J Sports Sci Med, 2012, 11(2): 187-200.
[24] Cheng HY, Yu YC, Wong AM, et al. Effects of an eight-week whole body vibration on lower extremity muscle tone and function in children with cerebral palsy[J]. Research in developmental disabilities, 2015, 38(1): 256-261.
[25] Miyara K, Matsumoto S, Uema T, et al. Feasibility of using whole body vibration as a means for controlling spasticity in post-stroke patients: a pilot study[J]. Complement Ther Clin Pract, 2014, 20(1): 70-73.
[26] Katz R. Presynaptic inhibition in humans: a comparison between normal and spastic patients[J]. Journal of Physiology-Paris, 1999, 93(4): 379-385.
[27] Schieppati M. The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man[J]. Progress in neurobiology, 1987, 28(4): 345-376.
[28] Hagbarth K, Wallin G, Lfstedt L. Muscle spindle responses to stretch in normal and spastic subjects[J]. Scandinavian journal of rehabilitation medicine, 1972, 5(4): 156-159.
[29] Ibrahim MM, Eid MA, Moawd SA. Effect of whole-body vibration on muscle strength, spasticity, and motor performance in spastic diplegic cerebral palsy children[J]. Egyptian Journal of Medical Human Genetics, 2014, 15(2): 173-179.
[30] 楊建玲, 周文芳, 畢勝, 等. 機(jī)械振動(dòng)在神經(jīng)康復(fù)訓(xùn)練中的作用[J]. 中國(guó)康復(fù)醫(yī)學(xué)雜志, 2016, 31(7): 825-828.
[31] Bosco C, Colli R, Introini E, et al. Adaptive respsonses of human skeletal muscle to vibration exposure[J]. Clinical Physiology-Oxford-, 1999, 19(1): 183-187.
[32] Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training[J]. Medicine and science in sports and exercise, 2003, 35(6): 1033-1041.
[33] Delecluse C, Roelants M, Diels R, et al. Effects of whole body vibration training on muscle strength and sprint performance in sprint-trained athletes[J]. International journal of sports medicine, 2005, 26(8): 662-668.
[34] Burke D, Schiller HH. Discharge pattern of single motor units in the tonic vibration reflex of human triceps surae[J]. Journal of Neurology, Neurosurgery & Psychiatry, 1976, 39(8): 729-741.
[35] Hagbarth KE, EKLUND G. Tonic vibration reflexes (TVR) in spasticity[J]. Brain research, 1966, 2(2): 201-203.
[36] 張國(guó)興, 劉四文. 全身振動(dòng)訓(xùn)練對(duì)腦卒中患者平衡及步行能力的影響[J]. 中國(guó)康復(fù), 2011, 26(6): 418-420.
[37] 朱娟, 許光旭, 張文通, 等. 全身振動(dòng)刺激對(duì)腦卒中偏癱患者步行效率的影響[J]. 中國(guó)康復(fù), 2014, 29(6): 430-432.
[38] Ding M, Dalstra M, Danielsen CC, et al. Age variations in the properties of human tibial trabecular bone[J]. Bone & Joint Journal, 1997, 79(6): 995-1002.
[39] Wakeling JM, Nigg BM. Modification of soft tissue vibrations in the leg by muscular activity[J]. Journal of applied physiology, 2001, 90(2): 412-420.
[40] Faust KA. The acute effect of whole-body vibration on gait parameters in adults with cerebral palsy[J]. Journal of musculoskeletal & neuronal interactions, 2013, 13(1): 19-26.
[41] S -caputo DC, Costa-cavalcanti R, Carvalho-Lima RP, et al. Systematic review of whole body vibration exercises in the treatment of cerebral palsy: Brief report[J]. Developmental neurorehabilitation, 2016, 19(5): 327-333.
[42] Ruck J, Chabot G, Rauch F. Vibration treatment in cerebral palsy: A randomized controlled pilot study[J]. Journal of musculoskeletal & neuronal interactions, 2010, 10(1): 77-83.
[43] Wren TA, Lee DC, Hara R, et al. Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy[J]. J Pediatr Orthop, 2010, 30(7): 732-738.
[44] Lee BK, Chon SC. Effect of whole body vibration training on mobility in children with cerebral palsy: a randomized controlled experimenter-blinded study[J]. Clinical rehabilitation, 2013, 27(7): 599-607.
[45] Ko MS, Sim YJ, Kim DH, et al. Effects of Three Weeks of Whole-Body Vibration Training on Joint-Position Sense, Balance, and Gait in Children with Cerebral Palsy: A Randomized Controlled Study[J]. Physiotherapy Canada, 2016, 68(2): 99-105.
[46] El-shamy SM. Effect of whole-body vibration on muscle strength and balance in diplegic cerebral palsy: a randomized controlled trial[J]. American journal of physical medicine & rehabilitation/Association of Academic Physiatrists, 2014, 93(2): 114-121.