• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    固體酸催化劑結(jié)構(gòu)與催化反應(yīng)機(jī)理的核磁共振研究

    2017-03-10 08:09:08李申慧鄭安民
    物理化學(xué)學(xué)報 2017年2期
    關(guān)鍵詞:安民波譜機(jī)理

    李申慧 李 靜 鄭安民 鄧 風(fēng)

    (中國科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國家重點實驗室,武漢磁共振中心,武漢 430071)

    固體酸催化劑結(jié)構(gòu)與催化反應(yīng)機(jī)理的核磁共振研究

    李申慧 李 靜 鄭安民 鄧 風(fēng)*

    (中國科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國家重點實驗室,武漢磁共振中心,武漢 430071)

    固體酸催化劑因具有環(huán)境友好、高產(chǎn)物選擇性和易于分離等優(yōu)點而廣泛應(yīng)用于現(xiàn)代石油化工領(lǐng)域的各種催化過程。固體核磁共振是一種研究功能材料結(jié)構(gòu)和動力學(xué)性質(zhì)的有力工具。本文將主要介紹固體核磁共振在表征固體酸催化劑的表面酸性以及多相催化反應(yīng)機(jī)理方面的應(yīng)用。具體來說,可以通過一系列探針分子(如吡啶、丙酮、三烷基氧磷和三甲基磷)的NMR化學(xué)位移實驗觀測值來定量測量酸強(qiáng)度;二維雙量子魔角旋轉(zhuǎn)(DQ MAS)固體核磁共振技術(shù)能夠揭示催化劑上酸中心的空間臨近性及協(xié)同效應(yīng)。另外,原位固體核磁共振可以揭示多相催化反應(yīng)過程中反應(yīng)物、中間體、反應(yīng)產(chǎn)物的演化,闡明催化反應(yīng)機(jī)理。

    固體核磁共振;酸表征;固體酸催化劑;催化反應(yīng)機(jī)理;主客體相互作用

    1 Introduction

    Solid acid catalysts such as zeolites,metal oxides and heterpoly acids are important in the catalytic cracking,alkylation,and isomerization reactions in the chemical and petrochemical industry.The widespread application of solid acid catalysts is attributed to their acid-base catalyzed activity1.The catalytic per-formance of solid acid catalysts is mainly attributed to their acidity property and topology structure.In order to better understand the structure-property relationship,the fundamental issues lie in the characterization of acidic property and elucidation of catalytic reaction mechanism.Various well-established spectroscopic techniques including infrared(IR),ultraviolet/visible(UV/Vis), and electron spin resonance(ESR)etc,have been widely utilized to study the solid acid catalysts and related catalytic reactions2. Over the past decades,solid-state NMR spectroscopy has demonstrated a high potential for the characterization of acid sites property and catalytic reactions over solid acid catalysts3-8.In this review,the recent progress on the development and application of solid-state NMR to solid acid catalysis is briefly introduced, which mainly includes(1)quantitative measurements of acid strength of solid acid catalysts by1H,13C and31P chemical shifts of various adsorbed probe molecules(such as pyridine,acetone, trialkylphosphine oxide and trimethylphosphine);(2)spatial proximity and synergetic interaction/effect of different acid sites in solid acid catalysts probed by two-dimensional(2D)1H-1H and27Al-27Al double-quantum magic angle spinning(DQ MAS) NMR spectroscopy;(3)activation and conversion of C1species (methane,CO and methanol)over solid acid catalysts studied by solid-state NMR and density functional theory(DFT)calculations.

    LI Shen-Hui,obtained his Ph.D.in 2008 from Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences.He was appointed as a postdoctoral research fellow at Iowa State University during 2008-2010 and joined WIPM as an associate research fellow since 2010.His current research interests are the development of solid-state NMR methodology for heterogeneous catalysts and materials sciences.

    LI Jing,received her B.S.degree from Liaocheng University in 2014.She is currently a joint graduate student under the supervision of Prof.YU Ning-Ya at Hunan Normal University and Dr.LI Shen-Hui at Wuhan Institute of Physics and Mathematics(WIPM), CAS.Her research focuses on solid state NMR studies of host-guest interaction in MOFs.

    ZHENG An-Min,obtained his Ph.D.(2005) from Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences under the supervision of Prof.DENG Feng and has been affiliated with the same institute afterwards.Then he joined Prof.DENG Feng′s group.In 2007,he was a visiting research fellow in Prof.LIU Shang-Bin′s lab at Institute of Atomic and Molecular Sciences,Academia Sinica, Taiwan.In 2012,he was promoted to a professor.His past and current research interest has been focusing on studies of structure and reaction mechanism of the solid acid catalysts by using experimental solid-state NMR and theoretical quantum chemical calculations.

    DENG Feng,obtained his Ph.D.(1996)from WIPM,CAS.After his postdoctoral research (1997-1998)at the Department of Chemistry,Texas A&M University(with Prof.James F.Haw),he has worked at WIPM,CAS as a professor(1999 - present).His research interests include solid-state NMR methodology and its application to heterogeneous catalysis.

    2 Solid state NMR characterization of acid property of solid acid catalysts

    2.1Quantitative measurement of the acid strengthof solid acid catalysts

    The acidity of solid acid catalysts dictates their catalytic activity and selectivity during various acid-catalysed reactions.The characterization of the acidic properties is crucial for the design, modification and application of solid acid catalysts.The most important features regarding the acidity characterization focus on the precise determination of the acid type,strength,concentration, distribution and interaction of acid sites.Probe molecules such as, trimethylphosphine(TMP),trimethylphosphine oxide(TMPO), acetone and pyridine were frequently employed to investigate the acidity of solid acid catalysts.13C MAS NMR of adsorbed 2-13C-acetone,31P MAS NMR of adsorbed TMPO and1H MAS NMR of adsorbed pyridine-d5were used to characterize the acidity of various solid acid catalysts9-12.Apart from the experimental observations,theoretical DFT calculations were recently employed to establish the relationship between the1H,13C and31P NMR chemical shifts of the probe molecules and the acid strength of solid acid catalysts13-18.

    Proton affinity(PA)or deprotonation energy(DPE)can serve as an indicator for the intrinsic acid strengths of Br?nsted acid sites.A smaller PA or DPE corresponds to an easy deprotonation of the acidic proton and thus a stronger Br?nsted acid strength.Inthe DFT calculations,proton affinities of Br?nsted acid sites varying from 246.7 to 310.8 kcal·mol-1(1 kcal·mol-1=4.187 kJ· mol-1)could be generated covering from weak,medium strong, strong,to super acid.Furthermore,the1H,13C,and31P NMR chemical shifts could be calculated after optimizing the complex structures of the probe molecules adsorbed on the Br?nsted acid sites.Thus,the correlations between the Br?nsted acid strength and NMR chemical shifts could be established.For pyridine-d5probe molecule,it was found that the1H chemical shift of pyridinium ions decreases linearly with the decrease of PA or the increase of Br?nsted acid strength,indicating that the1H chemical shift of adsorbed pyridine-d5can be used as a scale for quantitatively measuring the Br?nsted acid strength(Fig.1(a))16.The linear correlation between δ1Hand proton affinity based on the1H-pyridine-d5NMR approach affords quantitative assessment of Br?nsted acid strength in solid acid catalysts.Moreover,by taking a PA value of 250 kcal·mol-1as the threshold for superacidity (defined as an acid with strength stronger than 100%H2SO4),an observed1H chemical shift of δ=12.6 could be inferred as the corresponding1H chemical shift threshold for superacidity,which is in well agreement with the experimental value16.Similarly, the31P chemical shift of TMPO probe molecule also exhibits a linear correlation with the proton affinity of Br?nsted acid sites (Fig.1(b))17.Different from pyridine-d5,in this case,the31P chemical shift increases linearly with the decrease of PA or the increase of Br?nsted acid strength,a larger31P chemical shift corresponds a stronger acid strength,and a31Pchemical shift ofδ= 86 was obtained as the threshold for superacidity17.Extensive characterization of acid site distributions is desirable to understand the detailed reaction mechanism occurring in solid acid catalysts. In order to discern the acid sites located in the internal voids and on the external surfaces of solid acids,Liu et al.19proposed a solidstate31P NMR approach by using trialkylphosphine probe molecules with different sizes,such as trimethylphosphine oxide (TMPO),triethylphosphine oxide(TEPO),tributylphosphine oxide(TBPO),and trioctylphosphine oxides(TOPO).The size of TMPO(kinetic diameter ca 0.55 nm)is smaller than the typical pore aperture of the 10-membered ring(ca 0.60 nm)of zeolite ZSM-5.The small size of TMPO enables it diffuse into the intracrystalline channels and pores of the zeolite.Thus,both the internal and external acid sites are accessible to TMPO.Whereas the size of TBPO(ca 0.82 nm)is too large to penetrate into the channels and can only detect acid sites located on the external surface of the zeolite.Therefore,the concentration of the internal acid sites can be obtained from the difference between those determined from TMPO and TBPO19.Our recent work15further demonstrated that the31P chemical shifts of these trialkylphosphine oxide probe molecules with different sizes could be utilized as a scale for quantitatively measuring the Br?nsted acid strength,and a31Pchemical shift ofδ=92-94 corresponds to the chemical shift threshold for superacidity as shown in Fig.2.

    Fig.1 Correlations of the calculated1H chemical shift of adsorbed pyridine-d5(a),the31Pchemical shift of adsorbed TMPO(b)and the proton affinity of Br?nsted acid sites in solid acid catalysts16,17

    Fig.2 Correlations of the calculated31P chemical shift of adsorbed R3POH+complexes and the proton affinity of Br?nsted acid sites in solid acid catalysts15

    For 2-13C-acetone probe molecule,it was found that three adsorption conformations(hydrogen-bonded,proton-shared,and ionpair)exist,corresponding to different extents of proton transfer from the Br?nsted acid site to the adsorbed acetone14.A correlation of three-broken lines was obtained for the13C chemical shift of acetone versus DPE values.As shown in Fig.3,tri-folded correlation between δ13Cand DPE may be described as followed:Region I(DPE<270 kcal·mol-1)is associated with the formation of ionpair adsorption complexes,corresponding to the presence of strong Br?nsted acid sites.Region II(270 kcal·mol-1≤ DPE ≤276 kcal· mol-1)may be related to proton-shared adsorption scheme with medium acidic strength,whereas Region III(DPE >276 kcal·mol-1)belongs to hydrogen-bonded adsorption schemewith relatively weak acidity14.It should be noted that in each region,the13C chemical shift of acetone increases linearly with the decrease of deprotonation energy or the increase of acid strength, which indicates that it can be used as a scale as well for quantitatively measuring the Br?nsted acid strength of various solid acid catalysts.A13C chemical shift threshold ofδ=245 was obtained for superacidity in this case(Fig.3),which is in well agreement with the experimental data20.

    Fig.3 Correlation of the calculated13C chemical shift of adsorbed 2-13C-acetone with deprotonation energy of Br?nsted acid sites in solid acid catalysts14

    Fig.4 Correlations of the calculated31P chemical shift against binding energy(which characterizes the Lewis acid strength)of TMP adsorbed on acid sites with B-,Al-,and Ti-Lewis centers13

    Fig.5 31PMAS NMR spectra of bare HPMo and TMPO/HPMo samples with varied TMPO loading ranging from 0.5 to 3.3 TMPO/KU21

    Trimethylphosphine(TMP)probe molecule can be utilized to discriminate the acid type(Br?nstedvsLewis)and quantitatively measure their concentration on solid acid catalysts9.Our recent results indicate that the31P NMR chemical shift of TMP adsorbed on Br?nsted acid site is not sensitive to the acid strength,whereas the31P NMR chemical shift of adsorbed TMP on Lewis acid site can be used to determine acid strength of Lewis acids that comprise with the same metallic centers13.Fig.4 shows the computational31P chemical shifts of TMP adsorbed on the Lewis acid systems having different metallic centers,e.g.,BClnF3-n,AlClnF3-n, and TiClnF4-nand their mixed halides.For the TMP-Lewis acid complex,a linear correlation between the calculated31P chemical shifts and corresponding binding energies was observed for the B-, Al-,and Ti-containing Lewis acids,indicating the feasibility of using the31P chemical shift of adsorbed TMP as a scale for Lewis acid strength that comprise with the same metallic Lewis centers13.

    Solid-state NMR spectroscopies of adsorbed TMPO and acetone were employed to characterize the acid strength of phosphomolybdic acid(H3PMo12O40,HPMo)21and tungstophosphoric acid(H3PW12O40,HPW)20,22.Fig.5 shows the31PMAS NMR spectra of TMPO adsorbed on the phosphomolybdic acid with different loadings.With the assistance of DFT calculation,resonance peaks with chemical shifts greater thanδ=84 are assigned to the adsorption of one TMPO per Keggin unit(KU)and whereas those with chemical shifts in the range ofδ=80-84 are attributed to (TMPOH+)2/KU.It was conclusive that the acid strengths of Br?nsted acidic protons in HPMo,were much stronger than those in typical zeolites,representing solid acid catalysts with superacidic characteristics21.

    The above-mentioned acid strength scales have been employed to assess the acidity property of various solid acid catalysts such as AlPW12O4023,mesoporous Nb-W oxides24,flame-derived silica/ alumina25.The correlation between the31P chemical shifts of TMP and the acid strength facilitates the Lewis acidity characterization of mesoporous MoOx/ZrO226,sulfated TiO227,nano particles of zinc oxide28,and niobium oxide29.The established TMPO acid scale was also used to ascertain the acid strength of H-B-ZSM-530and mesoporous carbon-silica solid acid catalysts31.

    The influence of acid strength on solid acid-catalyzed protonation of olefins32and alkane activation33was investigated by theoretical calculations.According to the computational results, an increase in acid strength can result in the preferential formation of ion-pair intermediates with greater stability thanπcomplex and alkoxy species intermediates.Moreover,regardless of reactants, intermediates,or transition states,with the increase of acid strength the extent of energy reduction generally follows the order of ion pair > transition state > covalent counterparts(π-complex, alkoxy species).The rule that ionic species are more sensitive than covalent species to acid strength can be used to interpret the effects of acid strength on catalytic activity for other solid-acidcatalyzed reactions,such as alkane activation and isomerization where strongly acidic sites are required34,and Beckmann rear-rangement(BR)reaction over MFI-type zeolites where weakly acidic sites are preferred35.Comprehensive studies have been carried out on the product selectivity and reaction pathway during alkane activation(hydrogen exchange,dehydrogenation,and cracking)and alkene hydrogenation reactions over zeolite catalysts with varied acid characteristics.It is conclusive that catalysts with greater acidic strength are more favorable for enhanced alkane activation during propane cracking,but hydrogen exchange reactions are not sensitive to the acidic strength33.

    2.2 Spatial proximity and synergetic effect of acid sites in solid acid catalysts

    Zeolite is a kind of most important solid acid catalysts that have been widely used in chemical and petrochemical industry.In zeolites,the Br?nsted acid site is a bridging hydroxyl group (SiOHAl)which is associated with the tetrahedral framework Al. In practical applications,zeolites are usually partially dealuminated by a hydrothermal treatment to improve not only their thermal stability but also their catalytic activity.During the dealumination,Al is released from the zeolite framework and the extraframework Al is formed,which acts as the Lewis acid site. The activity enhancement was previously attributed to the Br?nsted/Lewis acid synergy effect.However,the existence of the synergy effect is still actively debated and its detailed mechanism is still unclear.

    Although one-dimensional(1D)1H and27Al MAS NMR techniques can be utilized to study the structure of both Br?nsted and Lewis acid sites,they are unable to provide information about the correlation or interaction between the different acid sites.Fortunately,2D1H-1H DQ MAS NMR spectroscopy36can be applied to investigate the spatial proximity/interaction of different acid sites in various zeolites.The possible synergy effect arising from different active centers,which plays essential role in heterogeneous catalytic reaction processes,can be correlated with their spatial interaction.

    Fig.6 shows the 1D1H MAS NMR and 2D1H-1H DQ MAS NMR spectra of dealuminated HY37.As shown in Fig.6(b),two signals atδ =5.0,4.3 are unambiguously assigned to bridging SiOHAl groups in the sodalite and the supercage of HY zeolite, respectively.The peak atδ=2.2 is due to nonacidic SiOH groups. The resonances at δ =2.8,1.0 are attributable to two different types of AlOH hydroxyl groups associated with extra-framework aluminum(EFAL)species that can act as a Lewis acid site37.As shown in Fig.6(c),several types of correlation peaks can be clearly discerned in the1H DQ MAS spectrum of dealuminated HY.The autocorrelation peaks atδ=(4.3,8.6)suggest the spatial proximity of Br?nsted acid sites in the supercage.The autocorrelation peak atδ=(2.2,4.4)results from the formation of silanol groups during the dealumination process.Another autocorrelation peak atδ = (2.8,5.6)is due to EFAL species containing more than one hydroxyl group such as Al(OH)3and Al(OH)2+.In addition,the offdiagonal peak pair atδ=(1.0,6.0)and δ=(5.0,6.0)corresponds to the correlation between the extra-framework AlOH group and the bridging hydroxyl group in the sodalite cage,suggesting the spatial proximity between Br?nsted and Lewis acid sites.The appearance of another off-diagonal peak pair atδ=(2.8,7.1)and δ=(4.3,7.1)confirms the spatial proximity between the Lewis and Br?nsted acid sites in the supercage.Meanwhile,the1H-1H DQ MAS NMR experiments were performed with varying DQ recoupling time to determine the average1H-1H distance between various hydroxyl groups38.Accordingly,the1H-1H distance between a Br?nsted acidic proton and an extra-framework AlOH species in the supercage was determined to be 0.43 nm,whereas the average distance between two nearby Br?nsted acidic protons in the supercages was measured to be 0.5 nm.The1H-1H DQ MAS NMR spectroscopy was also employed to investigate the spatial proximity of acid sites in H-Y zeolites modified with different calcination,steaming,and acid-leaching treatments,and highly siliceous zeolites,such as H-ZSM-5,H-mordenite,and H-MCM-2239,40.All these findings provide insights into the roles of Lewis acid and its synergy with the Br?nsted acid in zeolite-mediated hydrocarbon reactions.

    Fig.6 1H MAS NMR spectra of(a)HY,(b)dealuminated HY,(c)2D1H-1H DQ MAS NMR spectra of dealuminated HY37

    Apart from the 2D1H-1H DQ MAS NMR,the sensitivity-enhanced 2D27Al-27Al DQ MAS NMR spectroscopy42can also be employed to investigate the spatial interaction among various acid sites in dealuminated zeolites.Fig.7 shows 2D27Al-27Al DQ MAS NMR spectra of parent HY and calcined HY zeolites41.For the parent HY,the autocorrelation peak atδ=(61,122)indicates that four-coordinate framework aluminum(FAL)species are in close proximity to one another(Fig.7(a)).For the HY-500 zeolite as shown in Fig.4(b),the cross peak pair atδ=(61,61)and δ=(0,61)results from the spatial proximity between the four-coordinate FAL and the six-coordinate EFAL,confirming the existence of Br?nsted/Lewis acid synergy in the dealuminated HY zeolite.For the HY-600 zeolite,it is revealed that three kinds of aluminum species including four-coordinate FAL,five-coordinate EFAL and six-coordinate EFAL are in close proximity one another(Fig.7 (c))41.For the HY-700,the correlation peak pair atδ=(55,87)and δ =(32,87)is ascribed to the spatial proximity between four-coordinate EFALspecies and five-coordinate EFALspecies(Fig.7 (d)).According to the experimental observations,the detailed spatial correlations among various aluminum species in HY zeolite after dealumination treatment are clearly identified.With the assistance of DFT theoretical calculation,a new dealumination mechanism was proposed and three types of EFAL species,in close proximity to framework aluminum were identified in dealuminated HY zeolites.The spatial proximities of Br?nsted and Lewis acid sites in the highly siliceous zeolites,such as H-MOR, H-ZSM-5,and MCM-22 zeolites,were also investigated by the 2D27Al-27Al DQ MAS experiments39,40.It was found that the Br?nsted/Lewis acid synergy was present in these highly siliceous zeolites as well.

    Fig.7 2D27Al-27Al DQ MAS NMR spectra of(a)parent HY,(b)HY-500,(c)HY-600,and(d)HY-700 zeolites41

    As mentioned above,2-13C-acetone is well-established NMR probe molecule for measuring the relative Br?nsted acid strengths of solid acids,which was utilized to determine the Br?nsted acid strength of dealuminated HY zeolite compared with that of parent HY zeolite37.In the13C NMR spectrum of 2-13C-acetone adsorbed on HY(Fig.8(a)),only one sharp resonance at δ =220 due to unreacted acetone adsorbed on the Br?nsted acid site of HY was observed.For the dealuminated HY zeolite as shown in Fig.8(b), with the help of DFT calculations,the signals atδ=228,234 were attributed to acetone adsorbed on two Br?nsted acid sites in close proximity to Lewis acid sites with enhanced acid strength, whereas the weak shouldering peak atδ=242 was attributed to acetone adsorbed on Lewis acid sites,suggesting the existence ofBr?nsted/Lewis acid synergy in the dealuminated HY zeolite37. Fig.9 summarized the spatial proximities of FAL and EFAL species and Br?nsted/Lewis acid synergy in dealuminated H-Y zeolites6.

    To measure the Br?nsted acid densities in zeolites,Peng et al.43proposed a new approach by using diphenyldiphosphines, Ph2P(CH2)nPPh2,molecules having two basic sites and different chain lengths.2D31P-31P DQ MAS NMR experiments were employed to probe31P-31P inter-nuclear distances and distinguish the nonprotonated,singly protonated,or double protonated diphenyldiphosphines binding sites in the zeolite.Using these techniques,the density and distribution of Br?nsted acid sites in HY and H-ZMS-5 zeolites with different Si/Al ratios was comprehensively investigated44.

    3 Elucidation of catalytic reaction mechanisms of heterogeneous catalysis

    Understanding the reaction mechanisms involved in heterogeneously catalyzed reactions is helpful to refine zeolite catalysts and design new ones.In order to elucidate the catalytic reaction mechanisms,the nature of reactant,intermediate,and product formed on the catalysts during catalytic reaction process needs to be clearly identified45.The initial adsorption states of reactant, reaction intermediates and final product during reaction process can be clearly identified by in situ solid-state MAS NMR spectroscopy3,4,46.Meanwhile,the thermodynamic behavior and kinetic property,strongly related to the catalytic performance,could be theoretically described on the basis of activation barriers and reaction energies derived from the reaction pathway calculations. A combined in situ MAS NMR and theoretical DFT calculation study could provide deep insight into the structure- activity relationship of zeolites in heterogeneously catalyzed reactions

    3.1 Methane activation and conversion

    Methane,as the cheapest and most abundant natural resource, is the least reactive hydrocarbon molecule due to its strong C―H bond strength.The activation of light alkanes such as methane, ethane and propane at low temperature has attracted intensive experimental and computational studies.The room temperature activation of methane over a Zn modified H-ZSM-5 zeolite catalyst was investigated by solid-state NMR spectroscopy and DFT theoretical calculations47.Fig.10 showed in situ13C MAS NMR spectra of13CH4activation on ZnZSM-5 at the temperature in range of 273 - 333 K.Below 298 K,methane has not been activated and only physically adsorbed methane is visible atδ= -7 (Fig.10(a)).The activation of methane occurs when the temperature reached 298 K,leading to the appearance of a new signal at δ= -20 which was assigned to zinc methyl species(Zn―CH3). The signal atδ=58 was assigned to the surface-bound methoxy species47.The methoxy species is readily transformed into methanol(δ=54)when water is introduced into the sample with pre-activated methane at 298 K(Fig.10(b)).After heating to 523 K(Fig.10(c)),the methanol produced from methane is partially condensed into dimethyl ether(DME,δ=64).Upon consuming all the formed methanol molecules at 573 K,the methanol-to-gasoline(MTG)process finishes with the gasoline components being the major products(Fig.10(d))47.On the basis of the experimental observation,besides zinc methyl species,surface methoxy species attached to zeolite framework was observed at room temperature by in situ MAS NMR.This species plays an intermediate role in the formation of methanol and its further conversion to high-valued hydrocarbons,showing a similar nature to the methoxy species formed from methanol on the acidic zeolites.After a detailed structural characterization,three types of Zn species(isolated Zn2+ion,isolated Zn+ion and Zn+―O-―Zn2+cluster)were identified as the active sites.As shown in Fig.11,at room temperature,the isolated Zn2+ion is responsible for the formation of zinc methyl species via heterolytic dissociation of C―H bond,while the dizinc cluster in open shell is associated with the preferential formation of surface methoxy species through homolytic cleavage of a C―H bond47.The propsed mechanism was also confirmed by DFT calulations.The results may provide valuable insights into the activation mechanism of light alkanes under mild conditions.

    Fig.9 Experimentally observed spatial proximities of FAL and EFAL species and Br?nsted/Lewis acid synergy in dealuminated H-Y zeolites6

    As a clean energy resource and cheap feedstock,selective conversion of methane into useful chemicals attracts general interests from both industrial and academic fields.In situ13C NMRwas employed to monitor the carbonylation of methane with CO to produce acetic acid over a Zn modified ZSM-5 zeolite catalyst48. The13C CP/MAS NMR spectra of products formed from carbonylation reaction of13C-labeled methane with CO on ZnZSM-5 catalyst heated at different temperatures for 1 h were shown in Fig.12.

    At 523 K,the signal atδ= - 7 was assigned to unreacted methane and the signal atδ=173 was arising from formate species(Fig.12(a)).Two additional signals were observable atδ= 58,-20,which could be ascribed to surface methoxy species and zinc methyl species,respectively48.The signal of methyl(δ=21) and carbonyl groups(δ=187)indicated the formation of acetic acid resulted from carbonylation reaction at 623 K(see Fig.12(b)). When a trace of molecular oxygen was added,the amount of zinc methyl species(δ= -20)was increased at 523 K while the methoxy species(δ=58)disappeared and the formate(δ=173)and carbonate species(δ=164)was observable(Fig.12(c)).Further increasing the reaction temperature to 623 K resulted in formation of acetic acid(see Fig.12(d)).For comparison,when a trace of H2was adsorbed,the signals of the methoxy species and dimethyl ether(δ=65)and methanol(δ=53)were increased at 523 K, while no zinc methyl group is present(Fig.12(e)).Acetic acid was formed accompanying with the zinc methyl species and ethane (Fig.12(f)).It can be concluded that acetic acid could be generated under a mild reaction condition(573-623 K)through two distinct reaction pathways.In one reaction pathway,methane is activated into methoxy intermediate,which can further interact with CO to generate acetic acid.In another reaction pathway,methane is activated into zinc methyl intermediate that can be consequently transformed into the methyl group of acetic acid with CO2through a typical organometallic reaction48.

    Fig.10 (a)13C NMR spectra of13CH4activation on ZnZSM-5 at specified temperatures and(b)13CH4activation on ZnZSM-5 at 298 K for 2 h and adding water to the sample,(c)heating sample(b)at 523 K for 60 min,(d)heating sample(b)at 573 K for 60 min47

    Fig.11 Methane activation and consequent conversion pathway on ZnZSM-5 catalyst47

    Fig.12 13C CP/MAS NMR spectra of products formed from coadsorption of CH4and CO on ZnZSM-5 catalyst heated for 1 h48

    The direct conversion of methane and carbon dioxide on zincmodified H-ZSM-5 zeolite to produce acetic acid at a low temperature range of 523-773 K was also investigated by solid-state NMR.It was found that the zinc sites efficiently activated CH4to form zinc methyl species(―Zn―CH3),which is further subjected to the CO2insertion to produce surface acetate species(―Zn―OOCCH3)49.For methane activation over Zn-ZSM-5 zeolite,it was found that the oxygen-containing dizinc cluster center in an open shell(Zn+―O-

    ―Zn2+)was responsible for homolytic cleavage ofthe C―H bond of methane at room temperature47.The reactivity of zinc methyl species over zinc-modified H-ZSM-5 with diverse probe molecules,such as water,methanol,hydrochloride,oxygen, or carbon dioxide could be correlated with that of organozinc compounds in organometallic chemistry50.The alkylation of benzene with methane51and alkylation of benzene with carbon monoxide52to generate toluene over ZnZSM-5 zeolite were also investigated by in situ solid-state NMR.

    3.2 Methanol-to-olefins conversion

    Methanol-to-olefin(MTO)conversion is one of the most important reactions in C1 chemistry,which provides a chance for producing basic petrochemicals from nonoil resources such as coal and natural gas53.The MTO reaction to produce ethylene and propene over acidic zeolites such as SAPO-34 and ZSM-5 is becoming a promising alternative to the oil route.Mechanistic understanding of the MTO reaction is essential in the rational development of efficient catalysts and catalytic processes and achieving selectivity control of specific olefins54,55.In order to better understand the hydrocarbon-pool(HP)mechanism of methanol-to-olefins(MTO)reaction,the reaction intermediates should be captured and identified.Fig.13 shows13C CP/MAS NMR spectra of the products obtained from the reaction of13C enriched methanol over H-ZSM-5 for 30 min at different temperatures56.At 275 °C,a low methanol conversion was evidenced by the presence of dimethyl ether(δ=60)and methanol(δ=50) (Fig.13(a)).In addition,the formation of pentamethylbenzenium cation was confirmed by the appearance of the signals atδ=189, 205.As the reaction temperature increases to 300-325 °C,the methanol conversion was increased and apart from pentamethylbenzenium ion,1,3-dimethylcyclopentenyl cation,1,2,3-trimethylcyclopentenyl cation,and 1,3,4-trimethyl cyclopentenyl cation were also observable(Fig.13(b,c)).Thus,these carbocations are involved in the MTO reaction over zeolite H-ZSM-5 under working conditions.At higher reaction temperatures,these species were becoming instable reflected by the decrease of their concentration(Fig.13(d,f)).On the basis of the additional GC-MS experimental results and DFT calculations,it was concluded that the formation of propene through a paring mechanism,in which the ring contraction of the pentamethylbenzenium ions leads to the formation of the 1,3,4-trimethylcyclopentenyl cation and propene56.Using similar methods,it was found that the formation of ethene in the methanol to olefins reaction over the H-ZSM-5 zeolite through the aromatics-based paring route in which three types of ethylcyclopentenyl cations were experimentally identified as the key HP intermediates57.Moreover,it was concluded that dimethylbenzene(diMB)and triMB produce ethylcyclopentenyl cations followed by splitting off of ethene,while tetraMB and pentaMB generate propyl-attached intermediates,which eventually produce propene.These results provided new insight into the MBs hydrocarbon pool in MTO chemistry58.The proposed paring routes for the formation of ethene and propene in the MTO reaction over zeolite H-ZSM-5 are illustrated in Fig.14.

    The HP mechanism of MTO reaction has also been investigated over chabazite zeolites such as SAPO-34 and H-SSZ-13 by Liu and co-workers54,55,in which both heptamethylbenzenium and pentamethylcyclopentenyl cation intermediates could be identified.The difference for the observation of HP intermediates may be resulted from the pore size difference between chabazite and ZSM-5 zeolites,which play essential roles in formation and stabilization of the carbenium ions.

    Fig.13 13C CP/MAS NMR spectra of the products obtained from the reaction of methanol over H-ZSM-5 for 30 min at different temperatures56

    3.3 Host-guest interactions in heterogeneous catalysis

    The interactions between the reactants and the active sites of zeolites play essential roles in adsorption,desorption and the catalytic reaction process,which would strongly influence the catalytic performance.Investigation of the host-guest interactions may be helpful to explore the catalytic reaction mechanism.The detailed description of host-guest interaction can be extracted by13C-{27Al}symmetry-based rotational-echo saturation-pulse double-resonance(S-RESPDOR)experiments in which the heteronuclear dipolar coupling constant between neighboring13C-27Al spin pair can be quantitatively determined59.

    Fig.15 shows13C MAS spectra of 2-13C-acetone adsorbed on dealuminated HY zeolite acquired with and without13C-27Al dipolar dephasing60.The interaction strength between the guestmolecules and the acid sites is directly related to the ratio betweenS(the signal intensity with27Al irradiation)andS0(the signal intensity without27Al irradiation).It can be clearly observable that the signals in range ofδ=228-240 are subject to a strong13C-27Al dipolar dephasing,which could be ascribed to either the hydrogenbond interaction between the carbonyl oxygen of acetone and the Br?nsted acidic proton or to acetone directly bound to the Al atom of the Lewis acid site.The relatively smaller dephasing for the carbonyl group(δ=214)can probably be resulted from steric hindrance effects due to a relatively greater size of diacetone alcohol/mesityl oxide.The vinyl groups of mesityl oxide associated with signals in range ofδ=188 - 199 shows smaller13C-27Al dipolar dephasing.The resonance atδ=75 is submitted to an intense13C-27Al dipolar dephasing,which is possibly due to the strong hydrogen-bond interaction between the neighboring OH group in diacetone alcohol and the Br?nsted acid site.Therefore, the13C-27Al solid-state NMR technique provides experimental evidence of the interaction models between acetone and Br?nsted and Lewis acid sites in dealuminated HY zeolite.By utilizing the13C-{27Al}S-RESPDOR experiment,the13C-27Al internuclear distances between the adsorbed acetone and Br?nsted and Lewis acid sites can be quantitatively determined.For acetone adsorbed on Br?nsted acid site,the distance is 0.34 nm;for acetone directly bound to Lewis site,the distance is 0.29 nm,which is in good agreement with the DFT predictions.In addition,the spatial interaction between the adsorbed acetone with different active centers(Br?nsted and Lewis acids)was also clearly revealed from the 2D27Al-{13C}D-HMQC experiment60.Recently,the27Al-{13C} S-RESPDOR experiment was also empolyed to study the formation oftert-butyl cation confined inside H-ZSM-5 zeolite61.

    Fig.14 Proposed paring routes for the formation of ethene and propene

    Fig.15 13C MAS NMR spectra for 2-13C-acetone loaded on dealuminated HY zeolite60

    Fig.16 13C MAS NMR spectra of trapped products obtained from reactions of methanol over H-ZSM-5 at 300 and 350 °C for 15 min62

    It has been also demonstrated that the combination ofin situ13C MAS NMR and27Al-{13C}S-RESPDOR experiment could provide insights into the MTO chemistry62.Fig.16 shows13C RESPDOR NMR spectra of trapped products obtained from reactions of methanol over H-ZSM-5 at 300 and 350 °C for 15 min.At 300 °C, as shown in Fig.16(a),all the signals in the up-field fromδ=0 toδ=60 are subject to different degrees of13C-27Al dipolar dephasing,demonstrating the spatial interaction/proximity between different13C species and framework27Al sites.The signals atδ= 50,60 can be assigned to methanol and dimethyl ether(DME) reactants,respectively,while the signals atδ=59,48 are due to methoxy species typically formed in the MTO reaction and saturated carbon atoms in the rings of cyclopentenyl cations,respectively.With the assistance of two-dimensional1H-13C HETCOR NMR experiment,the signals atδ=17,18 are assigned to the methyl groups of aromatics(mainly pentaMBs and 1,2,3,5-tetraMBs),and the signal atδ=25 to the methyl groups of cyclopentenyl cations and pentamethylbenzenium ion.The27Al-{13C}S-RESPDOR experimental observations suggest the existence of spatial interaction/proximity between trapped HP species and zeolite framework(Br?nsted acid site),indicative of the formation of a supramolecular reaction center which was previously proposed by Haw and coworkers to describe the reaction center in MTO process63.By measuring the diploar dephasing fraction(ΔS/S0),it can be expected that MBs interact with theBr?nsted acid site(SiOHAl)by formingπ-complex,while the cyclic carbocations interact with the Br?nsted base site by forming an ion-pair complex.In combination with12C/13C isotope exchange experiments,it was found that the internuclear spatial interaction/ proximity between the13C nuclei(associated with HP species)and the27Al nuclei(associated with Br?nsted acid/base sites)determines the reactivity of the HP species.The closer the HP species to zeolite framework Al,the higher reactivity they possess in the MTO reaction.The formation of the supramolecular reaction center and its influence on the reactivity of the hydrocarbon-pool species provides new insights into the hydrocarbon-pool chemistry in the MTO reaction over zeolite H-ZSM-562.

    4 Summary and outlook

    Solid acid catalysts have been widely used in industrially important catalytic reactions due to their tunable structural and acidic properties.Solid-state NMR in conjunction with DFT theoretical calculations could be used to characterize the acidity property of solid acid catalysts.The acid strength can be quantitatively measured by the experimentally observed NMR chemical shifts of various probe molecules.The spatial proximity/interaction and synergetic effect of acid sites on zeolites can be manifested from the 2D1H-1H and27Al-27Al DQ MAS NMR spectroscopy.In situsolid-state NMR is able to explore the mechanism of acid-catalyzed reactions by monitoring the evolution of the reactants,intermediates and products,which is helpful to understand the structure-activity relationship of solid acid catalysts.

    The application of solid-state NMR to characterize acid sites and elucidate catalytic reaction mechanism on solid acid catalysts is still subject to the relatively lower sensitivity.The enhancement of NMR detection sensitivity can be achieved from the development of versatile NMR pulse techniques as well as high-field spectrometer and high-spinning speed apparatus.Dynamic nuclear polarization(DNP)technique64,65which can enhance NMR signal intensity by 2-3 orders has evolved to become one of the premier methods for structural characterization of heterogeneous catalytic systems,providing in-depth knowledge about catalyst supports, active sites,and their interactions.Para-hydrogen induced polarization(PHIP)technique66,67is favorably considered to be another very promising technique to remarkably enhance NMR signals,which has been successfully employed to clarify a series of industrially important chemical processes68.Additionally,the paramagnetic relaxation enhancement(PRE)solid-state NMR can facilitate the fast acquisition of NMR signals to monitor the heterogeneous catalytic reaction using natural abundance reactants69.

    (1) De Vos,D.E.;Dams,M.;Sels,B.F.;Jacobs,P.A.Chem.Rev.2002,102,3615.doi:10.1021/cr010368u

    (2) Lysova,A.A.;Koptyug,I.V.Chem.Soc.Rev.2010,39,4585. doi:10.1039/b919540h

    (3) Hunger,M.Prog.Nucl.Magn.Reson.Spectrosc.2008,53,105. doi:10.1016/j.pnmrs.2007.08.001

    (4)Wang,W.;Hunger,M.Acc.Chem.Res.2008,41,895. doi:10.1021/ar700210f

    (5) Li,S.H.;Deng,F.Ann.Rep.NMR Spectrosc.2013,78,1. doi:10.1016/B978-0-12-404716-7.00001-8

    (6) Zheng,A.M.;Li,S.H.;Liu,S.B.;Deng,F.Acc.Chem.Res.2016,49,655.doi:10.1021/acs.accounts.6b00007

    (7)Zhang,W.P.;Xu,S.T.;Han,X.W.;Bao,X.H.Chem.Soc.Rev.2012,41,192.doi:10.1039/c1cs15009j

    (8)Zhang,L.;Ren,Y.H.;Yue,B.;He,H.Y.Chem.Commun.2012,48,2370.doi:10.1039/c2cc16882k

    (9) Lunsford,J.H.;Rothwell,W.P.;Shen,W.J.Am.Chem.Soc.1985,107,1540.doi:10.1021/ja00292a015

    (10) Biaglow,A.I.;Gorte,R.J.;Kokotailo,G.T.;White,D.J.Catal.1994,148,779.doi:10.1006/jcat.1994.1264

    (11) Freude,D.;Hunger,M.;Pfeifer,H.Chem.Phys.Lett.1982,91, 307.doi:10.1016/0009-2614(82)80162-0

    (12)Zheng,A.M.;Deng,F.;Liu,S.B.Ann.Rep.NMR Spectrosc.2014,81,47.doi:10.1016/B978-0-12-800185-1.00002-4

    (13) Chu,Y.;Yu,Z.;Zheng,A.;Fang,H.;Zhang,H.;Huang,S.J.; Liu,S.B.;Deng,F.J.Phys.Chem.C2011,115,7660. doi:10.1021/jp200811b

    (14) Fang,H.;Zheng,A.;Chu,Y.;Deng,F.J.Phys.Chem.C2010,114,12711.doi:10.1021/jp1044749

    (15)Zheng,A.;Huang,S.J.;Chen,W.H.;Wu,P.H.;Zhang,H.; Lee,H.K.;de Menorval,L.C.;Deng,F.;Liu,S.B.J.Phys. Chem.A2008,112,7349.doi:10.1021/jp8027319

    (16) Zheng,A.;Zhang,H.;Chen,L.;Yue,Y.;Ye,C.;Deng,F.J.Phys.Chem.B2007,111,3085.doi:10.1021/jp067340c

    (17) Zheng,A.;Zhang,H.;Lu,X.;Liu,S.B.;Deng,F.J.Phys. Chem.B2008,112,4496.doi:10.1021/jp709739v

    (18) Zheng,A.M.;Huang,S.J.;Liu,S.B.;Deng,F.Phys.Chem. Chem.Phys.2011,13,14889.doi:10.1039/c1cp20417c

    (19)Zhao,Q.;Chen,W.H.;Huang,S.J.;Wu,Y.C.;Lee,H.K.;Liu, S.B.J.Phys.Chem.B2002,106,4462.doi:10.1021/jp015574k

    (20)Yang,J.;Janik,M.J.;Ma,D.;Zheng,A.M.;Zhang,M.J.; Neurock,M.;Davis,R.J.;Ye,C.H.;Deng,F.J.Am.Chem.Soc.2005,127,18274.doi:10.1021/ja055925z

    (21)Feng,N.D.;Zheng,A.M.;Huang,S.J.;Zhang,H.L.;Yu,N. Y.;Yang,C.Y.;Liu,S.B.;Deng,F.J.Phys.Chem.C2010,114, 15464.doi:10.1021/jp105683y

    (22)Huang,S.J.;Yang,C.Y.;Zheng,A.M.;Feng,N.D.;Yu,N.Y.; Wu,P.H.;Chang,Y.C.;Lin,Y.C.;Deng,F.;Liu,S.B.Chem.-Asian J.2011,6,137.doi:10.1002/asia.201000572

    (23) Filek,U.;Bressel,A.;Sulikowski,B.;Hunger,M.J.Phys. Chem.C2008,112,19470.doi:10.1021/jp807947v

    (24) Tagusagawa,C.;Takagaki,A.;Iguchi,A.;Takanabe,K.;Kondo, J.N.;Ebitani,K.;Hayashi,S.;Tatsumi,T.;Domen,K.Angew. Chem.Int.Edit.2010,49,1128.doi:10.1002/anie.200904791

    (25) Huang,J.;van Vegten,N.;Jiang,Y.J.;Hunger,M.;Baiker,A.Angew.Chem.Int.Edit.2010,49,7776.doi:10.1002/anie.201003391

    (26) Xu,J.;Zheng,A.M.;Yang,J.;Su,Y.C.;Wang,J.Q.;Zeng,D. L.;Zhang,M.J.;Ye,C.H.;Deng,F.J.Phys.Chem.B 2006, 110,10662.doi:10.1021/jp0614087

    (27)Zhang,H.;Yu,H.;Zheng,A.;Li,S.;Shen,W.;Deng,F. Environ.Sci.Technol.2008,42,5316.doi:10.1021/es800917e

    (28) Peng,Y.K.;Ye,L.;Qu,J.;Zhang,L.;Fu,Y.;Teixeira,I.F.; McPherson,I.J.;He,H.;Tsang,S.C.E.J.Am.Chem.Soc. 2016,138,2225.doi:10.1021/jacs.5b12080

    (29) Kreissl,H.T.;Nakagawa,K.;Peng,Y.K.;Koito,Y.;Zheng,J.; Tsang,S.C.E.J.Catal.2016,338,329.doi:10.1016/j. jcat.2016.03.007

    (30) Wiper,P.V.;Amelse,J.;Mafra,L.J.Catal.2014,316,240. doi:10.1016/j.jcat.2014.05.017

    (31) Russo,P.A.;Antunes,M.M.;Neves,P.;Wiper,P.V.;Fazio,E.; Neri,F.;Barreca,F.;Mafra,L.;Pillinger,M.;Pinna,N.;Valente, A.A.Green Chem.2014,16,4292.doi:10.1039/c4gc01037j

    (32) Fang,H.J.;Zheng,A.M.;Li,S.H.;Xu,J.;Chen,L.;Deng,F. J.Phys.Chem.C 2010,114,10254.doi:10.1021/jp103247f

    (33)Chu,Y.;Han,B.;Fang,H.;Zheng,A.;Deng,F.Microporous Mesoporous Mat.2012,151,241.doi:10.1016/j. micromeso.2011.10.030

    (34)Chu,Y.Y.;Han,B.;Zheng,A.M.;Deng,F.J.Phys.Chem.C 2012,116,12687.doi:10.1021/jp302960w

    (35)Chu,Y.Y.;Ji,P.;Yi,X.F.;Li,S.H.;Wu,P.;Zheng,A.M.; Deng,F.Catal.Sci.Technol.2015,5,3675.doi:10.1039/ c5cy00619h

    (36)Brown,S.P.;Spiess,H.W.Chem.Rev.2001,101,4125. doi:10.1021/cr990132e

    (37)Li,S.H.;Zheng,A.M.;Su,Y.C.;Zhang,H.L.;Chen,L.;Yang, J.;Ye,C.H.;Deng,F.J.Am.Chem.Soc.2007,129,11161. doi:10.1021/ja072767y

    (38)Li,S.H.;Huang,S.J.;Shen,W.L.;Zhang,H.L.;Fang,H.J.; Zheng,A.M.;Liu,S.B.;Deng,F.J.Phys.Chem.C 2008,112, 14486.doi:10.1021/jp803494n

    (39)Yu,Z.W.;Li,S.H.;Wang,Q.;Zheng,A.M.;Jun,X.;Chen,L.; Deng,F.J.Phys.Chem.C 2011,115,22320.doi:10.1021/ jp203923z

    (40)Yu,Z.W.;Wang,Q.;Chen,L.;Deng,F.Chin.J.Catal.2012.33, 129.doi:10.1016/s1872-2067(10)60287-2

    (41)Yu,Z.W.;Zheng,A.M.;Wang,Q.A.;Chen,L.;Xu,J.; Amoureux,J.P.;Deng,F.Angew.Chem.-Int.Edit.2010,49, 8657.doi:10.1002/anie.201004007

    (42)Wang,Q.;Hu,B.;Lafon,O.;Trébosc,J.;Deng,F.;Amoureux, J.P.J.Magn.Reson.2009,200,251.doi:10.1016/j. jmr.2009.07.009

    (43)Peng,L.M.;Chupas,P.J.;Grey,C.P.J.Am.Chem.Soc.2004, 126,12254.doi:10.1021/ja0467519

    (44)Peng,L.M.;Grey,C.P.Microporous Mesoporous Mat.2008, 116,277.doi:10.1016/j.micromeso.2008.04.014

    (45)Hunger,M.Prog.Nucl.Magn.Reson.Spectrosc.2008,53,105. doi:10.1016/j.pnmrs.2007.08.001

    (46)Zheng,A.;Huang,S.J.;Wang,Q.;Zhang,H.;Deng,F.;Liu,S. B.Chin.J.Catal.2013,34,436.doi:10.1016/s1872-2067(12) 60528-2

    (47)Xu,J.;Zheng,A.M.;Wang,X.M.;Qi,G.D.;Su,J.H.;Du,J. F.;Gan,Z.H.;Wu,J.F.;Wang,W.;Deng,F.Chem.Sci.2012,3, 2932.doi:10.1039/c2sc20434g

    (48)Wang,X.;Qi,G.;Xu,J.;Li,B.;Wang,C.;Deng,F.Angew. Chem.Int.Edit.2012,51,3850.doi:10.1002/anie.201108634

    (49)Wu,J.F.;Yu,S.M.;Wang,W.D.;Fan,Y.X.;Bai,S.;Zhang,C. W.;Gao,Q.;Huang,J.;Wang,W.J.Am.Chem.Soc.2013,135, 13567.doi:10.1021/ja406978q

    (50)Wu,J.F.;Wang,W.D.;Xu,J.;Deng,F.;Wang,W.Chem.-Eur. J.2010,16,14016.doi:10.1002/chem.201002258

    (51)Wang,X.M.;Xu,J.;Qi,G.D.;Li,B.J.;Wang,C.;Deng,F. J.Phys.Chem.C 2013,117,4018.doi:10.1021/jp310872a

    (52)Wang,X.M.;Xu,J.;Qi,G.D.;Wang,C.;Wang,Q.;Deng,F. Chem.Commun.2014,50,11382.doi:10.1039/c4cc03621b

    (53)Tian,P.;Wei,Y.;Ye,M.;Liu,Z.ACS Catal.2015,5,1922. doi:10.1021/acscatal.5b00007

    (54)Li,J.Z.;Wei,Y.X.;Chen,J.R.;Tian,P.;Su,X.;Xu,S.T.;Qi, Y.;Wang,Q.Y.;Zhou,Y.;He,Y.L.;Liu,Z.M.J.Am.Chem. Soc.2012,134,836.doi:10.1021/ja209950x

    (55)Xu,S.T.;Zheng,A.M.;Wei,Y.X.;Chen,J.R.;Li,J.Z.;Chu, Y.Y.;Zhang,M.Z.;Wang,Q.Y.;Zhou,Y.;Wang,J.B.;Deng, F.;Liu,Z.M.Angew.Chem.Int.Edit.2013,52,11564. doi:10.1002/anie.201303586

    (56)Wang,C.;Chu,Y.Y.;Zheng,A.M.;Xu,J.;Wang,Q.;Gao,P.; Qi,G.D.;Gong,Y.J.;Deng,F.Chem.-Eur.J.2014,20,12432. doi:10.1002/chem.201403972

    (57)Wang,C.;Yi,X.F.;Xu,J.;Qi,G.D.;Gao,P.;Wang,W.Y.; Chu,Y.Y.;Wang,Q.;Feng,N.D.;Liu,X.L.;Zheng,A.M.; Deng,F.Chem.-Eur.J.2015,21,12061.doi:10.1002/ chem.201501355

    (58)Wang,C.;Xu,J.;Qi,G.D.;Gong,Y.J.;Wang,W.Y.;Gao,P.; Wang,Q.;Feng,N.D.;Liu,X.L.;Deng,F.J.Catal.2015,332, 127.doi:10.1016/j.jcat.2015.10.001

    (59)Pourpoint,F.;Trebosc,J.;Gauvin,R.M.;Wang,Q.;Lafon,O.; Deng,F.;Amoureux,J.P.ChemPhysChem 2012,13,3605. doi:10.1002/cphc.201200490

    (60)Li,S.;Pourpoint,F.;Trebosc,J.;Zhou,L.;Lafon,O.;Shen,M.; Zheng,A.;Wang,Q.;Amoureux,J.P.;Deng,F.J.Phys.Chem. Lett.2014,5,3068.doi:10.1021/jz501389z

    (61)Huang,M.;Wang,Q.;Yi,X.;Chu,Y.;Dai,W.;Li,L.;Zheng, A.;Deng,F.Chem.Commun.2016,52,10606.doi:10.1039/ c6cc04943e

    (62)Wang,C.;Wang,Q.;Xu,J.;Qi,G.D.;Gao,P.;Wang,W.Y.; Zou,Y.Y.;Feng,N.D.;Liu,X.L.;Deng,F.Angew.Chem.Int. Edit.2016,55,2507.doi:10.1002/anie.201510920

    (63)Song,W.G.;Fu,H.;Haw,J.F.J.Am.Chem.Soc.2001,123, 4749.doi:10.1021/ja0041167

    (64) Gunther,W.R.;Michaelis,V.K.;Caporini,M.A.;Griffin,R. G.;Roman-Leshkov,Y.J.Am.Chem.Soc.2014,136,6219. doi:10.1021/ja502113d

    (65)Ong,T.C.;Liao,W.C.;Mougel,V.;Gajan,D.;Lesage,A.; Emsley,L.;Coperet,C.Angew.Chem.Int.Edit.2016,55,4743. doi:10.1002/anie.201510821

    (66)Duckett,S.B.;Mewis,R.E.Acc.Chem.Res.2012,45,1247. doi:10.1021/ar2003094

    (67)Giernoth,R.;Heinrich,H.;Adams,N.J.;Deeth,R.J.;Bargon, J.;Brown,J.M.J.Am.Chem.Soc.2000,122,12381. doi:10.1021/ja002516o

    (68)Kovtunov,K.V.;Zhivonitko,V.V.;Corma,A.;Koptyug,I.V. J.Phys.Chem.Lett.2010,1,1705.doi:10.1021/jz100391j

    (69)Zhou,L.;Li,S.;Su,Y.;Li,B.;Deng,F.Solid State Nucl.Magn. Reson.2015,66-67,29.doi:10.1016/j.ssnmr.2014.12.008

    Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts

    LI Shen-Hui LI Jing ZHENG An-Min DENG Feng*
    (State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,National Center for Magnetic Resonance in Wuhan,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,P.R.China)

    Solid acid catalysts have been widely used in advanced petrochemical processes because of their environmental friendliness,high product selectivity,and easy product separation.Solid-state nuclear magnetic resonance(NMR)spectroscopy is a well-established tool for structure determination and dynamic study of various functional materials.In this review,we focus mainly on our research using solid-state NMR to characterize the acid properties and elucidate the catalytic reaction mechanism of solid acid catalysts.The acid strength of solid acids can be quantitatively measured from the chemical shifts of adsorbed probe molecules such as pyridine,acetone,trialkylphosphine oxides,and trimethylphosphine.The spatial proximity and synergetic effect of various acid sites on solid acid catalysts can be ascertained by two-dimensional(2D)double-quantum magic angle spinning(DQ MAS)NMR spectroscopy.Additionally,in situsolid-state NMR spectroscopy can be used to explore heterogeneous catalytic reaction mechanisms by monitoring the evolution of the reactants, intermediates,and products.

    Solid-state NMR;Acidity characterization;Solid acid catalyst;Reaction mechanism; Host-guest interaction

    O643

    10.3866/PKU.WHXB201611022

    Received:September 23,2016;Revised:November 2,2016;Published online:November 2,2016.

    *Corresponding author.Email:dengf@wipm.ac.cn;Tel:+86-27-87198820.

    The project was supported by the National Natural Science Foundation of China(21210005,21221064,21373265).國家自然科學(xué)基金(21210005,21221064,21373265)資助項目? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    安民波譜機(jī)理
    THE EXISTENCE AND NON-EXISTENCE OFSIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN*
    隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
    煤層氣吸附-解吸機(jī)理再認(rèn)識
    中國煤層氣(2019年2期)2019-08-27 00:59:30
    易安民聲
    易安民聲
    琥珀酸美托洛爾的核磁共振波譜研究
    霧霾機(jī)理之問
    美國波譜通訊系統(tǒng)公司
    波譜法在覆銅板及印制電路板研究中的應(yīng)用
    精神分裂癥磁共振波譜分析研究進(jìn)展
    国产亚洲午夜精品一区二区久久| 国产亚洲av片在线观看秒播厂| 亚洲欧美一区二区三区久久| 午夜激情av网站| 国产精品一二三区在线看| 18禁动态无遮挡网站| 国产免费又黄又爽又色| 成人免费观看视频高清| 美女脱内裤让男人舔精品视频| 国产福利在线免费观看视频| 午夜日本视频在线| 中文字幕人妻熟女乱码| 日韩av免费高清视频| 色综合欧美亚洲国产小说| 欧美日韩视频高清一区二区三区二| 美国免费a级毛片| 亚洲欧美中文字幕日韩二区| 欧美日韩亚洲高清精品| 精品视频人人做人人爽| 国产在线视频一区二区| 成人亚洲欧美一区二区av| 亚洲成人av在线免费| 视频在线观看一区二区三区| 两性夫妻黄色片| 一区二区av电影网| 国产亚洲欧美精品永久| 国产精品三级大全| 天堂8中文在线网| 中国国产av一级| 亚洲,一卡二卡三卡| 欧美日韩视频高清一区二区三区二| 最近中文字幕高清免费大全6| 丁香六月欧美| 天美传媒精品一区二区| 91精品伊人久久大香线蕉| av电影中文网址| 黄色视频在线播放观看不卡| 老汉色∧v一级毛片| 黑人巨大精品欧美一区二区蜜桃| av在线老鸭窝| 国产午夜精品一二区理论片| 亚洲欧美成人精品一区二区| 女性生殖器流出的白浆| 在线看a的网站| 色婷婷av一区二区三区视频| 在线 av 中文字幕| 免费看不卡的av| 亚洲一区二区三区欧美精品| 日本av手机在线免费观看| 黄网站色视频无遮挡免费观看| 青春草视频在线免费观看| 高清黄色对白视频在线免费看| 在线观看三级黄色| 少妇 在线观看| 成人午夜精彩视频在线观看| 亚洲激情五月婷婷啪啪| 久久热在线av| 中文字幕制服av| 久久鲁丝午夜福利片| 亚洲色图 男人天堂 中文字幕| 丰满迷人的少妇在线观看| 秋霞在线观看毛片| 久久亚洲国产成人精品v| 丝袜人妻中文字幕| 成人18禁高潮啪啪吃奶动态图| 侵犯人妻中文字幕一二三四区| 久久精品aⅴ一区二区三区四区| a级毛片在线看网站| 国产亚洲午夜精品一区二区久久| 亚洲精品在线美女| 19禁男女啪啪无遮挡网站| 少妇被粗大猛烈的视频| 天天躁日日躁夜夜躁夜夜| 极品少妇高潮喷水抽搐| 久久99一区二区三区| 亚洲免费av在线视频| 精品一区在线观看国产| 国产男女内射视频| 精品国产乱码久久久久久男人| 天天操日日干夜夜撸| 日本vs欧美在线观看视频| 9色porny在线观看| 又黄又粗又硬又大视频| 国产乱来视频区| 精品亚洲成国产av| 成人亚洲欧美一区二区av| 久久这里只有精品19| 精品一区二区三区av网在线观看 | 只有这里有精品99| av网站在线播放免费| 日韩免费高清中文字幕av| 久久久久久久国产电影| kizo精华| 午夜福利视频精品| 欧美成人午夜精品| av视频免费观看在线观看| 亚洲av电影在线进入| 免费人妻精品一区二区三区视频| www.精华液| 欧美 亚洲 国产 日韩一| 精品亚洲成a人片在线观看| 伦理电影大哥的女人| 久久久久久久久久久久大奶| 伊人亚洲综合成人网| 成人黄色视频免费在线看| 哪个播放器可以免费观看大片| 亚洲av成人精品一二三区| 免费不卡黄色视频| 国产男人的电影天堂91| 国产日韩一区二区三区精品不卡| 女人爽到高潮嗷嗷叫在线视频| a 毛片基地| 在线亚洲精品国产二区图片欧美| 久热这里只有精品99| 精品国产露脸久久av麻豆| 免费高清在线观看视频在线观看| 中文字幕人妻丝袜制服| 十八禁人妻一区二区| 亚洲av日韩在线播放| 欧美人与性动交α欧美精品济南到| 日本一区二区免费在线视频| 美女扒开内裤让男人捅视频| 啦啦啦视频在线资源免费观看| 少妇 在线观看| 欧美变态另类bdsm刘玥| 日韩精品有码人妻一区| 亚洲一区中文字幕在线| 亚洲欧美成人精品一区二区| 视频区图区小说| 欧美 亚洲 国产 日韩一| av视频免费观看在线观看| 91aial.com中文字幕在线观看| 男男h啪啪无遮挡| 丁香六月天网| 日韩av在线免费看完整版不卡| 色综合欧美亚洲国产小说| 一级毛片我不卡| 欧美精品高潮呻吟av久久| 天天躁夜夜躁狠狠久久av| 亚洲情色 制服丝袜| www.自偷自拍.com| 国产成人精品久久二区二区91 | 国产一级毛片在线| 最近最新中文字幕大全免费视频 | 亚洲欧美日韩另类电影网站| 久久久国产精品麻豆| 一本色道久久久久久精品综合| 成年人午夜在线观看视频| 久久天堂一区二区三区四区| 日韩制服骚丝袜av| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 国产精品亚洲av一区麻豆 | 美女主播在线视频| 亚洲国产精品成人久久小说| 国产成人精品福利久久| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆乱淫一区二区| 香蕉丝袜av| 久久久精品94久久精品| 伊人久久大香线蕉亚洲五| 久久人妻熟女aⅴ| 伦理电影免费视频| 欧美成人精品欧美一级黄| 精品国产乱码久久久久久男人| 夫妻午夜视频| 伊人久久国产一区二区| 母亲3免费完整高清在线观看| 天堂8中文在线网| 久久久久久人妻| 51午夜福利影视在线观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲四区av| 国产精品国产av在线观看| 99精品久久久久人妻精品| 亚洲精品国产av成人精品| 国产精品国产av在线观看| 免费在线观看黄色视频的| 国产精品久久久久成人av| 人人澡人人妻人| 综合色丁香网| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 最近2019中文字幕mv第一页| 捣出白浆h1v1| 精品一区在线观看国产| 午夜福利视频在线观看免费| 男人操女人黄网站| 国产精品99久久99久久久不卡 | 欧美人与性动交α欧美软件| 国产在线视频一区二区| 可以免费在线观看a视频的电影网站 | 亚洲国产精品一区二区三区在线| 久久精品久久精品一区二区三区| 在线观看一区二区三区激情| 成人黄色视频免费在线看| 欧美人与性动交α欧美软件| 99国产精品免费福利视频| 亚洲av男天堂| 老汉色∧v一级毛片| 欧美激情高清一区二区三区 | 天天添夜夜摸| 亚洲国产中文字幕在线视频| 丝袜在线中文字幕| 亚洲av中文av极速乱| 毛片一级片免费看久久久久| 考比视频在线观看| av又黄又爽大尺度在线免费看| 亚洲三区欧美一区| 精品福利永久在线观看| 精品国产国语对白av| 国产精品国产av在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产老妇伦熟女老妇高清| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 色婷婷久久久亚洲欧美| 成年人免费黄色播放视频| av片东京热男人的天堂| 免费在线观看视频国产中文字幕亚洲 | 亚洲成国产人片在线观看| 韩国av在线不卡| 夫妻性生交免费视频一级片| 91老司机精品| 青春草视频在线免费观看| 99香蕉大伊视频| 下体分泌物呈黄色| 一级毛片黄色毛片免费观看视频| 亚洲精品av麻豆狂野| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 9热在线视频观看99| 国产在线视频一区二区| 中文字幕最新亚洲高清| 精品人妻一区二区三区麻豆| 看非洲黑人一级黄片| 国产精品嫩草影院av在线观看| 成年动漫av网址| 亚洲精品自拍成人| 日韩av免费高清视频| 老司机亚洲免费影院| 国产亚洲av片在线观看秒播厂| 亚洲成人av在线免费| 亚洲国产精品一区三区| 精品视频人人做人人爽| 国产成人欧美在线观看 | 欧美激情 高清一区二区三区| 色婷婷av一区二区三区视频| 欧美日韩亚洲高清精品| 十八禁人妻一区二区| 老司机深夜福利视频在线观看 | 男女无遮挡免费网站观看| bbb黄色大片| 一边摸一边做爽爽视频免费| 高清黄色对白视频在线免费看| 一级毛片电影观看| 亚洲精品中文字幕在线视频| avwww免费| 成人亚洲欧美一区二区av| 日本wwww免费看| av卡一久久| 精品一区二区三卡| 日韩熟女老妇一区二区性免费视频| 亚洲av欧美aⅴ国产| 日韩精品有码人妻一区| 啦啦啦在线免费观看视频4| 在线亚洲精品国产二区图片欧美| 亚洲精品自拍成人| 国产 精品1| 国产男女超爽视频在线观看| 91老司机精品| 18禁国产床啪视频网站| 精品午夜福利在线看| 飞空精品影院首页| 国产黄频视频在线观看| 最近的中文字幕免费完整| 国产伦人伦偷精品视频| 天天躁日日躁夜夜躁夜夜| 精品人妻熟女毛片av久久网站| 亚洲精品国产一区二区精华液| 亚洲图色成人| 国产一区二区三区av在线| 午夜激情av网站| 丝袜美腿诱惑在线| 99久久综合免费| 精品少妇黑人巨大在线播放| 久久久久久久久免费视频了| 宅男免费午夜| 国产人伦9x9x在线观看| 国产深夜福利视频在线观看| 国产成人精品久久久久久| 亚洲欧洲日产国产| 男人爽女人下面视频在线观看| 男人添女人高潮全过程视频| 亚洲人成电影观看| 丁香六月欧美| av在线app专区| 国产精品久久久久久人妻精品电影 | 老汉色∧v一级毛片| 日韩av不卡免费在线播放| 亚洲欧美清纯卡通| 欧美日韩亚洲综合一区二区三区_| 日本爱情动作片www.在线观看| 另类亚洲欧美激情| 国产精品三级大全| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 在线亚洲精品国产二区图片欧美| 国产黄频视频在线观看| 丰满饥渴人妻一区二区三| 亚洲精品aⅴ在线观看| netflix在线观看网站| 19禁男女啪啪无遮挡网站| 成人漫画全彩无遮挡| 久久精品aⅴ一区二区三区四区| 亚洲精品乱久久久久久| 精品亚洲成a人片在线观看| 日韩精品有码人妻一区| 久久久久久久国产电影| 最黄视频免费看| 日韩中文字幕欧美一区二区 | 亚洲精品国产色婷婷电影| 一级爰片在线观看| 精品久久蜜臀av无| 欧美在线黄色| 大片电影免费在线观看免费| 国产色婷婷99| 大片电影免费在线观看免费| 久久婷婷青草| 黑人猛操日本美女一级片| 午夜影院在线不卡| 一级片'在线观看视频| 午夜福利视频在线观看免费| 国产精品亚洲av一区麻豆 | 丰满乱子伦码专区| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 热99久久久久精品小说推荐| 久久午夜综合久久蜜桃| 亚洲国产精品999| 欧美另类一区| 国产午夜精品一二区理论片| 激情五月婷婷亚洲| 少妇被粗大的猛进出69影院| 搡老乐熟女国产| 久热这里只有精品99| 国产男女内射视频| 午夜福利一区二区在线看| 亚洲国产中文字幕在线视频| 赤兔流量卡办理| 多毛熟女@视频| 亚洲第一av免费看| 狂野欧美激情性xxxx| 亚洲熟女毛片儿| 香蕉丝袜av| av电影中文网址| 精品国产露脸久久av麻豆| 欧美日韩国产mv在线观看视频| 捣出白浆h1v1| 美女福利国产在线| 丝袜美腿诱惑在线| 免费日韩欧美在线观看| 永久免费av网站大全| 亚洲四区av| 亚洲欧美一区二区三区黑人| 在线 av 中文字幕| 久久免费观看电影| 狂野欧美激情性bbbbbb| av在线观看视频网站免费| 99热全是精品| 街头女战士在线观看网站| 精品国产超薄肉色丝袜足j| 欧美日韩成人在线一区二区| 国产一级毛片在线| 亚洲欧洲国产日韩| av线在线观看网站| 七月丁香在线播放| 在线观看一区二区三区激情| 国产成人啪精品午夜网站| 成年动漫av网址| 国产成人啪精品午夜网站| 两个人免费观看高清视频| 免费久久久久久久精品成人欧美视频| 久久久精品免费免费高清| 男女国产视频网站| 久久av网站| 我的亚洲天堂| 国产在线免费精品| 天天躁日日躁夜夜躁夜夜| 香蕉丝袜av| 色婷婷久久久亚洲欧美| 亚洲成人免费av在线播放| av片东京热男人的天堂| 日韩视频在线欧美| 多毛熟女@视频| 久久久欧美国产精品| 青春草亚洲视频在线观看| 亚洲,欧美,日韩| 啦啦啦中文免费视频观看日本| 欧美激情极品国产一区二区三区| 99久久综合免费| 精品国产露脸久久av麻豆| av不卡在线播放| 欧美在线一区亚洲| 免费黄色在线免费观看| 国产 一区精品| 黄色 视频免费看| 又大又黄又爽视频免费| av在线app专区| 国产一区亚洲一区在线观看| 午夜福利乱码中文字幕| 久久人人爽av亚洲精品天堂| 五月开心婷婷网| 99久久99久久久精品蜜桃| 精品国产一区二区三区久久久樱花| 国产精品久久久久成人av| 永久免费av网站大全| 最近的中文字幕免费完整| 免费高清在线观看视频在线观看| 久久久久久久大尺度免费视频| 欧美日韩福利视频一区二区| 精品亚洲成国产av| √禁漫天堂资源中文www| kizo精华| av国产精品久久久久影院| 亚洲成色77777| 高清欧美精品videossex| 大话2 男鬼变身卡| 国产日韩欧美视频二区| 精品国产乱码久久久久久小说| 日韩制服丝袜自拍偷拍| 国产一区亚洲一区在线观看| 久久天堂一区二区三区四区| 亚洲精品av麻豆狂野| 成人亚洲欧美一区二区av| 国产精品嫩草影院av在线观看| 久久免费观看电影| 老司机靠b影院| 亚洲欧洲国产日韩| 欧美在线黄色| 久久热在线av| 波野结衣二区三区在线| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 国产精品蜜桃在线观看| 日韩大片免费观看网站| 少妇被粗大的猛进出69影院| 亚洲,一卡二卡三卡| 99精国产麻豆久久婷婷| 欧美精品亚洲一区二区| 亚洲天堂av无毛| 精品亚洲乱码少妇综合久久| 国产激情久久老熟女| 免费在线观看完整版高清| 亚洲一区中文字幕在线| www.av在线官网国产| 成人国产av品久久久| 亚洲成人手机| 亚洲精品美女久久av网站| xxxhd国产人妻xxx| 99国产精品免费福利视频| xxxhd国产人妻xxx| 国产精品.久久久| 精品一区二区三区av网在线观看 | 国产成人午夜福利电影在线观看| 成人国产麻豆网| 秋霞在线观看毛片| 肉色欧美久久久久久久蜜桃| 亚洲成人手机| 色94色欧美一区二区| 综合色丁香网| a级片在线免费高清观看视频| 亚洲精品国产一区二区精华液| 少妇精品久久久久久久| 久久这里只有精品19| 国产爽快片一区二区三区| 美女主播在线视频| 飞空精品影院首页| 国产精品一国产av| 黄网站色视频无遮挡免费观看| 一级,二级,三级黄色视频| 男人爽女人下面视频在线观看| 亚洲av日韩在线播放| 不卡av一区二区三区| 不卡视频在线观看欧美| 国产日韩一区二区三区精品不卡| kizo精华| 欧美精品av麻豆av| kizo精华| 久久影院123| 亚洲成人国产一区在线观看 | 久久久久久久精品精品| 十八禁网站网址无遮挡| 久久久久久久久免费视频了| 久久av网站| 欧美久久黑人一区二区| 亚洲欧美成人精品一区二区| av天堂久久9| 欧美黄色片欧美黄色片| 青春草亚洲视频在线观看| kizo精华| 国产精品欧美亚洲77777| 波多野结衣av一区二区av| 最黄视频免费看| 九九爱精品视频在线观看| 最新在线观看一区二区三区 | 性色av一级| 母亲3免费完整高清在线观看| 日韩一区二区三区影片| 又大又爽又粗| 麻豆乱淫一区二区| 国产精品无大码| 一区二区三区乱码不卡18| 女性生殖器流出的白浆| 精品国产国语对白av| 欧美日韩亚洲综合一区二区三区_| 亚洲国产最新在线播放| 国产成人精品在线电影| 热re99久久国产66热| 久久女婷五月综合色啪小说| 色播在线永久视频| 黑丝袜美女国产一区| 咕卡用的链子| 欧美日韩一区二区视频在线观看视频在线| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| av不卡在线播放| 永久免费av网站大全| a 毛片基地| 国产黄色免费在线视频| 亚洲五月色婷婷综合| 18在线观看网站| 久久久久久免费高清国产稀缺| 两性夫妻黄色片| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 老熟女久久久| 久久久久视频综合| 日韩视频在线欧美| 男女高潮啪啪啪动态图| 国产一卡二卡三卡精品 | kizo精华| 日韩免费高清中文字幕av| 久久精品亚洲av国产电影网| 亚洲成人免费av在线播放| 久久人人爽av亚洲精品天堂| 天堂中文最新版在线下载| 欧美亚洲日本最大视频资源| 亚洲国产欧美在线一区| 不卡视频在线观看欧美| 久久久久精品性色| 日本wwww免费看| 18禁国产床啪视频网站| 夜夜骑夜夜射夜夜干| 电影成人av| 亚洲伊人色综图| 国产亚洲最大av| 欧美xxⅹ黑人| 飞空精品影院首页| 午夜久久久在线观看| 五月开心婷婷网| 免费黄色在线免费观看| 桃花免费在线播放| 99re6热这里在线精品视频| 超碰成人久久| 亚洲天堂av无毛| 久久婷婷青草| 国产免费一区二区三区四区乱码| 亚洲精品,欧美精品| 午夜福利视频在线观看免费| 看免费av毛片| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品中文字幕在线视频| 日韩av免费高清视频| 国产免费现黄频在线看| 精品少妇一区二区三区视频日本电影 | 黄色毛片三级朝国网站| 1024视频免费在线观看| 亚洲成人免费av在线播放| 久久99热这里只频精品6学生| 国产精品久久久久久人妻精品电影 | 久久99精品国语久久久| av在线老鸭窝| 久久青草综合色| 国产精品久久久久久人妻精品电影 | 黄片无遮挡物在线观看| 欧美97在线视频| 亚洲成人手机| 中文欧美无线码| avwww免费| 欧美日韩国产mv在线观看视频| 黄片无遮挡物在线观看| 国产淫语在线视频| 99九九在线精品视频| 91aial.com中文字幕在线观看| 日韩精品免费视频一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产一区二区三区av在线| 精品一品国产午夜福利视频| 亚洲国产最新在线播放| av免费观看日本| 久久毛片免费看一区二区三区| 无限看片的www在线观看| av免费观看日本| 热99久久久久精品小说推荐| 亚洲四区av| 一区二区av电影网| 亚洲,欧美精品.| 9热在线视频观看99| e午夜精品久久久久久久| 在线精品无人区一区二区三| 水蜜桃什么品种好| 99热网站在线观看| 国产在线视频一区二区| 亚洲精品成人av观看孕妇|