• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lattice Boltzmann simulations of oscillating-grid turbulence*

    2017-03-09 09:09:30JinfengZhang張金鳳QingheZhang張慶河JeromeMaaGuangquanQiao喬光全
    水動力學研究與進展 B輯 2017年1期

    Jin-feng Zhang (張金鳳), Qing-he Zhang (張慶河), Jerome P.-Y. Maa, Guang-quan Qiao (喬光全)

    1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China, E-mail: jfzhang@tju.edu.cn

    2.Department of Physical Sciences, Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA

    3.Fourth Harbor Engineering Investigation and Design Institute, Co., Ltd., China Communications Construction Company, Guangzhou 510230, China

    (Received January 7, 2015, Revised August 17, 2015)

    Lattice Boltzmann simulations of oscillating-grid turbulence*

    Jin-feng Zhang (張金鳳)1, Qing-he Zhang (張慶河)1, Jerome P.-Y. Maa2, Guang-quan Qiao (喬光全)3

    1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China, E-mail: jfzhang@tju.edu.cn

    2.Department of Physical Sciences, Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA

    3.Fourth Harbor Engineering Investigation and Design Institute, Co., Ltd., China Communications Construction Company, Guangzhou 510230, China

    (Received January 7, 2015, Revised August 17, 2015)

    The lattice Boltzmann method is used to simulate the oscillating-grid turbulence directly with the aim to reproduce the experimental results obtained in laboratory. The numerical results compare relatively well with the experimental data through determining the spatial variation of the turbulence characteristics at a distance from the grid. It is shown that the turbulence produced is homogenous quasi-isotropic in case of the negligible mean flow and the absence of secondary circulations near the grid. The direct numerical simulation of the oscillating-grid turbulence based on the lattice Boltzmann method is validated and serves as the foundation for the direct simulation of particle-turbulence interactions.

    Oscillating grid, quasi-isotropic homogenous turbulence, mean flow, lattice Boltzmann method

    Introduction

    The turbulence generated from the oscillatinggrid is characterized by its zero-mean flow, yielding an approximate homogeneity at some distance away from the grid. The intensity of this homogeneous turbulence can be easily controlled, and thus, it is suitable to use it for investigating some phenomena encountered in hydraulic and environmental engineering[1], such as, the free surface fluctuation[2], the particle suspensions and sedimentation[3], and the sediment transport[4].

    Many experiments on the oscillating-grid turbulence were conducted for various research purposes.The approximately homogeneous, zero-mean turbulence can be produced by oscillating a symmetrical grid in a water tank[5,6]. The grid is characterized by the diameter of the grid barsdg, the mesh sizeM(defined as the spacing between bars), and the grid solidityσ(defined as the ratio of the area of bars to the total area of the grid). The intensity of the turbulence generated by the oscillating-grid depends on the mesh (dg,Mandσ) as well as the strokeS(the maximum distance of the oscillation) and the frequencyfg. As a rule, to generate a nearly homogenous turbulence of zero-mean flow, the solidity of gridσshould be less than 40%[7], the oscillating frequency[8]should be less than 7 Hz and the measurements should be taken at places 2-3 mesh sizes away[5].

    Numerical models were also established for more profound investigations of how to produce homogeneous turbulence by using the oscillating-grid. The direct numerical simulation (DNS)[9], to solve the Navier-Stokes equation numerically, was used to examine the homogeneous turbulence through adding energy continuously and locally into the flow. More models such as those solving the Reynolds Equationsby using thek-εmodels were also used for the oscillating-grid turbulence. However, there was a long debate in the past as to whether it is appropriate to use ak-εmodel to describe the zero-mean-shear turbulence[10]. Therefore, further numerical investigations of the oscillating-grid turbulence are desirable.

    The lattice Boltzmann (LB) method[11-13], as a new and effective numerical technique of solving the Navier-Stokes Equation, has been successfully employed in the field of computational fluid dynamics to simulate the turbulent flows, such as the decaying turbulence generated with an initial spectrum and the forced turbulence with a random forcing term[14,15]. For this reason, the LB method can be considered as an alternative of the DNS, if the selected lattice size is small enough. Using the LB method, Djenidi[15]simulated the grid-generated turbulence for a steady mean flow passing through a fixed grid. Although in his study, the turbulence generated by grids is simulated, the use of the mean flow is very different from the use of the oscillating-grid to generate turbulence. This is because the mean flow itself can be a turbulent flow, if the Reynolds number is large. In this study, we simulate the turbulence generated from an oscillating flow through a fixed grid by using the LB method.

    1. Numerical methodology

    1.1Lattice Boltzmann method

    This is a relatively new numerical technique for modeling a physical system response in terms of the dynamics of fictitious particles. In the LB approximation, the fluid is described by the density distribution functionfi(x,t), which describes the number of particles at a lattice sitex, at the timet, with the discrete particle velocityci. The hydrodynamic parameters, such as the mass densityρ, the momentum densityj, and the momentum fluxΠ, can be obtained from this particle distribution as follows[16]

    The LB equation describes the time evolution of the particle density distribution functionfi(x,t), and can be expressed as

    where?i(f)is the collision operator, including the lattice Bhatnagar-Gross-Krook (BGK) model, proposed by Ladd[16]and the multiple-relaxation-time (MRT) model[11]. We use the Ladd’s model,?i(f)can be constructed by linearizing the local equilibriumfeq

    Here we use the so-called D3Q19 topology, a three-dimensional cubic lattice with 19 particle velocity vectors. A suitable form for the equilibrium distribution of the 19 particle distribution model is

    The macro-dynamical behavior can be obtained from the lattice-Boltzmann equation by a multi-scale analysis, i.e., the Chapman-Enskog expansion[18], using an expansion parameterε, defined as the ratio of the lattice spacing to a characteristic macroscopic length, the hydrodynamic limit corresponds toε≤1. It is shown that the lattice-Boltzmann equation reproduces the Navier-Stokes equations with corrections that are of the ordersu2andε2[17].

    1.2Model implementation

    The computational domain with two grids (Grid 1 and Grid 2) can generate turbulence. Free slip boundary conditions are applied on bothx-andy-boundaries. A bounce-back boundary is imposed at the grid elements to simulate the no-slip conditions. At the inlet and the outlet, an oscillating flow is specified. Ifz-direction is the streamwise direction, the velocity can be expressed asu=0,v=0andw=w0sin(ωt), in whichω=2πfgis the angular frequency and is the characteristic velocity. The oscillating flow is implemented as

    This is done by introducing an additional termFi(x,t)[18]in the Boltzmann Eq.(2)

    This implementation of a body force is shown to satisfy the continuity and Navier-Stokes equations up to the second order[19].

    The motion of the oscillating-grid can be expressed as

    whereAis the amplitude,A=S/2andtis the time.

    The velocity of the grid is

    where the characteristic velocityw0=2πfgAand the angular frequencyω=2πfg.

    The characteristic velocityw0and the angular velocityωare specified in Eqs.(5) and (6). Then the oscillating-grid turbulence generated in the lab can be modeled using the LB method. The oscillating-grid turbulence is numerically simulated between the Grid 1 and the Grid 2 (Fig.1).

    Fig.1 Sketch (not to scale) of the computational domain with the grid

    2. Validation of numerical model by experimental measurement

    The homogenous turbulence generated by two oscillating grids is used to validate the numerical model presented in Section 2. The parameters of the numerical model are based on the laboratory experiments conducted by Srdic et al.[8]. In their experiment, a glass box of 0.58 m×0.36 m×0.36 m with grids fitting vertically at either end of the tank (Fig.2) is used. The stainless steel grid is made of square crosssection bars of 0.01 m in size with a mesh sizeMof 0.05 m and a solidityσof 38%. The distance between a grid plane and the closest end wall is 7 cm, and the half-distance between grids (H/2)is 0.22 m. The strokeSis 0.02 m and the oscillation frequency is 3 Hz. Flow velocities are recorded with an acoustic Doppler velocimeter (ADV). The data sampling frequency is 200 Hz and the sampling time is 100 s.

    Fig.2 A schematic diagram of the experimental apparatus[8]

    In the LB model, the computational domain is 580×360×360 with the grid of a mesh sizeMof 50 and a solidityσof 38%. The characteristic velocity of the oscillating flowu0=0.0188, and the viscosity coefficientν=0.001. The mesh Reynolds numberReM=Mu0/ν=942. The comparison between the numerical results of the normalized root mean squared (rms) velocities(urms,wrms)and the experimental data at the strokeS=0.02 mand the frequencyfg=3Hz shows a quite good agreement (Fig.3).

    Fig.3 Comparison of the normalized rms velocitiesurmsand

    wrmsbetween the numerical results and the experimental data[8]under the grid condition (S=0.02 m,fg=3Hz)

    3. Numerical results and discussions

    The computational domain consists of560×400× 400 mesh points (Fig.1). The grids (Grid 1 and Grid 2) to generate turbulence, with a mesh sizeMof 75 and a solidityσof 33%, are placed atz=?200andz=200, respectively. The characteristic velocity of the oscillating flowu0=0.0754, and the viscosity coefficientν=0.001. The mesh Reynolds numberReM=Mu0/ν=5.63× 103. The time and space steps are 10?5s and 10?4m. The Komogrov length scaleη=(ν3/ε)1/4=1.2× 10?4m.

    3.1Quasi-isotropic homogenous turbulence

    The rms velocities remain nearly constant along the radial directions. The vertical rms velocity is larger than the horizontal rms velocity (Fig.4), which suggests that the effects of the oscillating-grid on the turbulence is significant along the oscillated direction (z-direction).

    Fig.4 The rms velocities under the grid condition (S=0.04 m,fg=6 Hz)

    Fig.5 The mean horizontal velocities under the grid condition (S=0.04 m,fg=6 Hz)

    To determine whether the mean flow is weak in the oscillating-grid turbulence, the time-averaged mean velocity observed is also shown in Fig.5. The mean horizontal velocityuis defined by

    F ig.6 (Color online) Model calculated instantaneous 2-D velocity (uandv) fields forReM=5.×103between grids in the(x-y)-plane

    In the numerical results, the mean horizontal velocity is close to zero alongz-direction, excluding locations near the lower grid. In the region?0.7<z/ (H/2)<0.7, it is apparent that there is no secondary flow and a quasi-isotropic homogenous turbulence occurs. It is difficult to eliminate the secondary flow in the oscillating-grid turbulent system especially near the gird elements, because each bar will generate vorticity due to viscous forces at the edge of the grid.

    The velocity vector generated between the grid pair in the(x,y)-plane atz/(H/2)=±0.25and ±0.50is shown in Fig.6. The turbulence has the same structure qualitatively in all parts of the flow field. The figure clearly shows that theuandvvelocity fields are statistically self-similar to validate the usual assumptionu′2=w′2, at least for symmmetrical grids such as used in this study.

    Fig.7 Spatial variability of degree of isotropy based on the numerical model, represented by

    The coherence of the structures on the (x-z)-plane and the (y-z)-plane remains essentially unchanged and the decay of the turbulence is not significant (Fig.8), which is different from the grid-generated turbulence of the uniform flow with the rapid decay far away from the grid[15]. The oscillating flow passing over the grids, which can generate the isotropic homogenous turbulence based on the LB model, can simulate the oscillating-grid turbulence in the lab and can be used for further studies of the particle-turbulence interactions.

    Fig.8 (Color online) Vorticity fields with the dashed vertical white lines indicating the extent of penetration of the grids into the flow field. Blue-green contour indicates negative vorticity and red-yellow contour indicates positive vorticity

    3.2Mean flow

    A two-dimensional snapshot of the mean velocity fields with the mean vorticity background based on the numerical results is shown in Fig.9. The vorticity scaleωycan be expressed as

    The high vorticity distribution near the grid (z/(H/2)=±1.0)shows the existence of the shear stress due to the wake and the jet produced by the grid. The interaction between the jet and the wakes creates a high turbulence near grid. Particularly at the distancez/(H/2)=1.0, the vorticities and the fluid motions are strong due to the secondary flow. It is impossible to completely eliminate the secondary flow in the oscillating-grid turbulent system. However, the time averaging velocity and vorticity fields also indicate a substantial central flow region (between the two grids and away from the column sidewalls), where the mean velocities and the vorticity values are relatively small. It can be seen that for most of the time the secondary mean circulation in the computational domain is weak but not completely absent.

    Fig.9 (Color online) Mean velocity fields and vorticity visualization inxzplane

    3.3Spectral distribution of velocity fluctuations

    For the strokeS=0.04 mand the frequencyfg=6 Hz, the model is used to simulateuandwvelocity time series atz/(H/2)=0 and 0.4 at the center. The energy spectra,Eu(f)andEw(f), are calculated (Fig.10). The inertial subrange exists atz/(H/2)=0within the frequency range of 6-100 for the horizontal component and at the frequency range of 2-8 for the vertical component. There is a wider inertial subrange for the horizontal component than that for the vertical one. The inertial subrange atz/(H/2)=0.4exists within the frequency range of 6-20 for the horizontal component and is not guaranteed to exist for the vertical component, which shows a reasonable large inertial subrange foruvelocity component, but not forwvelocity component.

    3.4Integral length scale

    The computed integral length scalelis plotted as a function ofzin Fig.11. The integral length scale increases with the increase ofz[20]. A linearl= 0.114zrelationship is obtained by a fitting method. This coefficient 0.114 is within the range reported in previous oscillating-grid turbulence studies[4].

    Fig.10 (Color online) Spectrum of energy distributions (S= 0.04 m,fg=6 Hz), respectively at the distance ofz/(H/2)=0andz/(H/2)=0.4

    Fig.11 Variation of integral length scalelagainst the distancez

    4. Summary and final remarks

    A direct numerical simulation of the oscillatinggrid turbulence is carried out. A lattice Boltzmann model for the oscillating-grid turbulence is built with the oscillating flow passing over fixed grids to generate homogenous turbulent flows. The simulation reproduces quite well the experimental results generated by the oscillating-grid mechanism. The quasi-isotropic homogenous turbulence, the spatial variation of the turbulence with distance, the mean flow and the integral length scale are analyzed.

    In the range of ?0.7<z/(H/2)<0.7, the mean velocity is close to zero and no secondary flow occurs. The turbulence produced is quasi-isotropic and homogenous in the range of?0.7<z/(H/2)<0.7. The high vorticity distribution near the grid shows that the interaction between the jet and the wakes has created a high turbulence near grid. Furthermore, the inertial subrange exists atz/(H/2)=0within the frequency range of 6-100 for the horizontal component and at the frequency range of 2-8 for the vertical component based on the spectral distribution of the velocity fluctuations. It is also found that the integral length scale increases with the increase of the distancez.

    The two-grid configuration where the turbulence in the core region can be considered nearly isotropic is important for many studies, such as the particle suspension and the pollution dispersion in the turbulence. This numerical model can serve as a foundation for the study of the particle-turbulence interactions.

    [1] Yan J., Cheng N. S., Tang H. W. et al. Oscillating-grid turbulence and its applications: A review [J].Journal of Hydraulic Research, 2007, 45(1): 26-32.

    [2]Chiapponi L., Longo S., Tonelli M. Experimental study on oscillating grid turbulence and free surface fluctuation [J].Experiments in Fluids, 2012, 53(5): 1515-1531.

    [3]BelinskyM.,RubinH., Agnon Y. et al. Characteristics of resuspension, settling and diffusion of particulate matter in a water column [J].Environmental Fluid Mechanics, 2005, 5(5): 415-441.

    [4] Wan Mohtar W. H. M., Munro R. J. Threshold criteria for incipient sediment motion on an inclined bedform in the presence of oscillating-grid turbulence [J].Physics of Fluids, 2013, 25(1): 015103.

    [5] De Silva I., Fernando H. Oscillating grids as a source of nearly isotropic turbulence [J].Physics of Fluids, 1994, 6(7): 2455-2464.

    [6] Cuthbertson A. J., Dong P., Davies P. A. Non-equilibrium flocculation characteristics of fine-grained sediments in grid-generated turbulent flow [J].Coastal Engineering, 2010, 57(4): 447-460.

    [7] Isaza J. C., Salazar R., Warhaft Z. On grid-generated turbulence in the near-and far field regions [J].Journal of Fluid Mechanics, 2014, 753: 402-426.

    [8]SrdicA.,Fernando H. J. S.,MontenegroL. Generation of nearly isotropic turbulence using two oscillating grids [J].Experiments in Fluids, 1996, 20(5): 395-397.

    [9] Li X. L., Fu D. X., Ma Y. W. et al. Direct numerical simulation of compressible turbulent flows [J].Acta Me-chanica Sinica, 2010, 26(6): 795-806.

    [10]Michallet H., Mory M. Modelling of sediment suspensions in oscillating grid turbulence [J].Fluid Dynamics Research, 2004, 35(2): 87-106.

    [11] Lallemand P., Luo L. S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability [J].Physical Review E, 2000, 61(6): 6546-6562.

    [12] Zhang J. F., Zhang Q. H. Hydrodynamics of fractal flocs during settling [J].Journal of Hydrodynamics, 2009, 21(3): 347-351.

    [13] Diao W., Cheng Y. G., Zhang C. Z. et al. Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method: Validation [J].Journal of Hy-drodynamics, 2015, 27(2): 248-256.

    [14]Peng Y., Liao W., Luo L. S. et al. Comparison of the lattice Boltzmann and pseudo-spectral methods for decaying turbulence: Low-order statistics [J].Computers and Fluids, 2010, 39(4): 568-591.

    [15]Djenidi L. Lattice-Boltzmann simulation of grid-generated turbulence [J].Journal of fluid Mechanics, 2006, 552: 13-35.

    [16] Ladd A. J. C., Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions [J].Journal of Statistical Physics, 2001, 104(5-6): 1191-1251.

    [17] Chen H., Chen S., Matthaeus W. H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method [J].Physical Review A, 1992, 45(8): R5339- R5342.

    [18]Cosgrove J. A., Buick J. M., Tonge S. J. et al. Application of the lattice Boltzmann method to transition in oscillatory channel flow [J].Journal of Physics A: Mathematical and General, 2003, 36(10): 2609-2620.

    [19] Buick J. M., Greated C. A. Gravity in a lattice Boltzmann model [J].Physical Review E, 2000, 61(5): 5307-5320.

    [20] Medina P., Sánchez M. A., Redondo J. M. Grid stirred turbulence: Applications to the initiation of sediment motion and lift-off studies [J].Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2001, 26(4): 299-304.

    * Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51621092), the National Natural Science Foundation of China (Grant No. 51579171), the Tianjin Program of Applied Foundation and Advanced-Technology Research (Grant No. 12JCQNJC04100) and TH-1A supercomputer.

    Biography:Jin-feng Zhang (1978-), Female, Ph. D., Associate Professor

    av在线亚洲专区| 天堂网av新在线| 麻豆乱淫一区二区| 久久久久网色| 久久久久久大精品| 精品一区二区三区人妻视频| 日日摸夜夜添夜夜添av毛片| av线在线观看网站| 亚洲综合精品二区| 亚洲av电影在线观看一区二区三区 | 少妇的逼水好多| 亚洲欧美一区二区三区国产| 亚洲最大成人av| 人人妻人人澡欧美一区二区| 成年版毛片免费区| 联通29元200g的流量卡| 美女高潮的动态| 成人无遮挡网站| 国国产精品蜜臀av免费| 婷婷色综合大香蕉| 亚洲精品乱码久久久久久按摩| 美女被艹到高潮喷水动态| 欧美成人精品欧美一级黄| 精品人妻熟女av久视频| 高清日韩中文字幕在线| 边亲边吃奶的免费视频| 一级毛片aaaaaa免费看小| 亚洲国产精品国产精品| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久精品电影小说 | 黄色日韩在线| 久久久a久久爽久久v久久| 欧美激情在线99| 免费看a级黄色片| 亚洲av中文av极速乱| 午夜日本视频在线| 永久网站在线| 又爽又黄a免费视频| 水蜜桃什么品种好| 成人午夜高清在线视频| 亚洲av成人av| 亚洲欧洲日产国产| 有码 亚洲区| 最近最新中文字幕免费大全7| 国产一区二区三区av在线| 国产爱豆传媒在线观看| 国产伦一二天堂av在线观看| 国产亚洲精品av在线| 国产精品99久久久久久久久| 久久久久久久久久成人| 精品国内亚洲2022精品成人| 亚洲五月天丁香| 日日撸夜夜添| 最新中文字幕久久久久| 欧美精品一区二区大全| 内射极品少妇av片p| 国产一区有黄有色的免费视频 | a级毛片免费高清观看在线播放| 日韩欧美三级三区| 日韩中字成人| 亚洲精品自拍成人| 美女脱内裤让男人舔精品视频| 在线观看66精品国产| a级一级毛片免费在线观看| 晚上一个人看的免费电影| 中文乱码字字幕精品一区二区三区 | 国产高清不卡午夜福利| 日韩成人伦理影院| 日本一本二区三区精品| 日本黄色片子视频| 简卡轻食公司| 久久久久性生活片| 卡戴珊不雅视频在线播放| 国产高清三级在线| 日本黄色片子视频| 欧美高清性xxxxhd video| 欧美高清性xxxxhd video| 高清毛片免费看| 亚洲在线自拍视频| 国产成人a区在线观看| 日韩 亚洲 欧美在线| 亚洲国产色片| 麻豆精品久久久久久蜜桃| 建设人人有责人人尽责人人享有的 | 国产淫片久久久久久久久| 男女视频在线观看网站免费| 97热精品久久久久久| 久久国内精品自在自线图片| 丝袜美腿在线中文| 男女国产视频网站| 精品久久国产蜜桃| 亚洲怡红院男人天堂| 热99在线观看视频| 亚洲精品乱久久久久久| 国产视频首页在线观看| 午夜亚洲福利在线播放| 国国产精品蜜臀av免费| 丰满乱子伦码专区| 激情 狠狠 欧美| 亚洲国产欧美在线一区| 成人特级av手机在线观看| 校园人妻丝袜中文字幕| 国语对白做爰xxxⅹ性视频网站| 最近手机中文字幕大全| 激情 狠狠 欧美| 亚洲怡红院男人天堂| 日韩制服骚丝袜av| 免费播放大片免费观看视频在线观看 | 成人美女网站在线观看视频| 中文字幕免费在线视频6| 一级av片app| 桃色一区二区三区在线观看| 久久99热6这里只有精品| 国产精品久久久久久久久免| 99热6这里只有精品| 性插视频无遮挡在线免费观看| 一个人免费在线观看电影| or卡值多少钱| 一边亲一边摸免费视频| 国产私拍福利视频在线观看| 日本色播在线视频| 亚洲成人精品中文字幕电影| 午夜日本视频在线| 成人毛片a级毛片在线播放| 亚洲中文字幕日韩| 成人亚洲欧美一区二区av| 欧美激情久久久久久爽电影| 麻豆成人av视频| 中国美白少妇内射xxxbb| 国产又色又爽无遮挡免| 可以在线观看毛片的网站| 亚洲在线观看片| 亚洲天堂国产精品一区在线| 99久久人妻综合| 高清毛片免费看| 午夜久久久久精精品| 老司机影院成人| 日日干狠狠操夜夜爽| 我要搜黄色片| 日本一二三区视频观看| 建设人人有责人人尽责人人享有的 | 少妇高潮的动态图| av.在线天堂| 久久久亚洲精品成人影院| 国产免费一级a男人的天堂| 欧美激情国产日韩精品一区| 91狼人影院| 国产毛片a区久久久久| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲5aaaaa淫片| 日韩精品青青久久久久久| 日本-黄色视频高清免费观看| 国产免费福利视频在线观看| 国产爱豆传媒在线观看| 在线观看av片永久免费下载| av在线观看视频网站免费| 婷婷六月久久综合丁香| 床上黄色一级片| 综合色av麻豆| 国产一区二区在线av高清观看| 免费看美女性在线毛片视频| 亚洲av一区综合| 日韩欧美精品免费久久| 亚洲欧美中文字幕日韩二区| 嘟嘟电影网在线观看| 日韩欧美在线乱码| 高清毛片免费看| 国产69精品久久久久777片| 一级av片app| 乱码一卡2卡4卡精品| 国产一区有黄有色的免费视频 | 日韩av在线免费看完整版不卡| 一级黄色大片毛片| 日本免费在线观看一区| 成人毛片60女人毛片免费| 久久精品国产亚洲av涩爱| 久久久久久久久中文| 女人被狂操c到高潮| 麻豆乱淫一区二区| 久久精品久久久久久久性| 欧美极品一区二区三区四区| 建设人人有责人人尽责人人享有的 | 99热精品在线国产| 亚洲丝袜综合中文字幕| 免费av观看视频| 伊人久久精品亚洲午夜| 国产精品一区二区三区四区免费观看| 三级经典国产精品| av福利片在线观看| 成人亚洲欧美一区二区av| 日本黄大片高清| 男女啪啪激烈高潮av片| 国产精品无大码| 成人三级黄色视频| 日韩三级伦理在线观看| 国产精品爽爽va在线观看网站| 我要看日韩黄色一级片| 一本久久精品| 久久久久性生活片| 一边摸一边抽搐一进一小说| 一区二区三区乱码不卡18| av视频在线观看入口| 中文字幕精品亚洲无线码一区| 高清在线视频一区二区三区 | 久久鲁丝午夜福利片| 99视频精品全部免费 在线| 亚洲精品日韩在线中文字幕| 亚洲熟妇中文字幕五十中出| 18禁在线无遮挡免费观看视频| 毛片女人毛片| 好男人视频免费观看在线| 一本一本综合久久| 99热这里只有是精品在线观看| 午夜久久久久精精品| 精品酒店卫生间| 2022亚洲国产成人精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产欧洲综合997久久,| 免费看美女性在线毛片视频| 亚洲国产精品成人综合色| 久久精品国产亚洲网站| 国产色爽女视频免费观看| 白带黄色成豆腐渣| 91午夜精品亚洲一区二区三区| 午夜a级毛片| 我要看日韩黄色一级片| 99久久精品国产国产毛片| 日韩一区二区三区影片| 亚洲人成网站高清观看| 亚洲经典国产精华液单| 亚洲精品日韩在线中文字幕| 美女黄网站色视频| 狂野欧美激情性xxxx在线观看| 91久久精品国产一区二区成人| 男插女下体视频免费在线播放| 国产一级毛片在线| 麻豆一二三区av精品| 久久鲁丝午夜福利片| 国产毛片a区久久久久| 国产精品一区二区性色av| 91aial.com中文字幕在线观看| 美女黄网站色视频| 午夜亚洲福利在线播放| 在现免费观看毛片| 啦啦啦啦在线视频资源| 国产亚洲av片在线观看秒播厂 | 69av精品久久久久久| 丰满少妇做爰视频| 国产片特级美女逼逼视频| 欧美3d第一页| 亚洲国产精品久久男人天堂| 99热精品在线国产| 能在线免费看毛片的网站| 国产精品av视频在线免费观看| 免费播放大片免费观看视频在线观看 | 午夜福利高清视频| 日韩人妻高清精品专区| 色噜噜av男人的天堂激情| 激情 狠狠 欧美| av在线老鸭窝| 午夜精品一区二区三区免费看| 免费一级毛片在线播放高清视频| 老司机影院毛片| 久久久亚洲精品成人影院| 国产av不卡久久| 久久久久九九精品影院| 真实男女啪啪啪动态图| 成人高潮视频无遮挡免费网站| 国产精品国产三级专区第一集| 免费av毛片视频| 嫩草影院新地址| 国产视频内射| 亚洲性久久影院| 日日啪夜夜撸| 国产精品爽爽va在线观看网站| 久久国内精品自在自线图片| 中文字幕亚洲精品专区| 国产综合懂色| 日韩国内少妇激情av| 午夜福利在线在线| 欧美性猛交黑人性爽| 午夜激情欧美在线| 成人欧美大片| 亚洲av中文av极速乱| 亚州av有码| 一级毛片久久久久久久久女| 精品一区二区三区视频在线| 精品人妻一区二区三区麻豆| 内射极品少妇av片p| 日韩av在线免费看完整版不卡| 床上黄色一级片| 亚洲国产精品成人久久小说| 国产淫语在线视频| 亚洲欧美精品自产自拍| 99久久中文字幕三级久久日本| 男女视频在线观看网站免费| 国产久久久一区二区三区| 内射极品少妇av片p| 国产极品天堂在线| 国产精品爽爽va在线观看网站| 非洲黑人性xxxx精品又粗又长| 小蜜桃在线观看免费完整版高清| 婷婷色麻豆天堂久久 | 中文字幕制服av| 亚洲在久久综合| 天天躁夜夜躁狠狠久久av| 床上黄色一级片| 午夜激情福利司机影院| 欧美变态另类bdsm刘玥| 只有这里有精品99| 色吧在线观看| 日本免费a在线| 男女国产视频网站| 国产淫片久久久久久久久| 又黄又爽又刺激的免费视频.| 国产精品1区2区在线观看.| 看非洲黑人一级黄片| 免费观看性生交大片5| 国产视频内射| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| 99在线人妻在线中文字幕| 午夜福利在线观看吧| 亚洲国产成人一精品久久久| 18+在线观看网站| 欧美精品一区二区大全| 久久精品夜夜夜夜夜久久蜜豆| 我要搜黄色片| 麻豆乱淫一区二区| 99久久精品一区二区三区| 国产老妇女一区| 男女下面进入的视频免费午夜| 乱人视频在线观看| 欧美xxxx性猛交bbbb| 国产淫语在线视频| 国产免费福利视频在线观看| av免费在线看不卡| 好男人视频免费观看在线| 特大巨黑吊av在线直播| 亚洲性久久影院| av在线观看视频网站免费| 久久久久久大精品| 能在线免费观看的黄片| 欧美97在线视频| 国产午夜福利久久久久久| 亚洲av.av天堂| 99久久精品国产国产毛片| 精品人妻一区二区三区麻豆| 一级黄色大片毛片| 国产一区亚洲一区在线观看| 能在线免费观看的黄片| 少妇的逼水好多| 国产精品福利在线免费观看| 男女边吃奶边做爰视频| 人妻少妇偷人精品九色| 国产伦精品一区二区三区四那| 亚洲精品自拍成人| 天美传媒精品一区二区| 亚洲精品乱码久久久v下载方式| 亚洲国产高清在线一区二区三| 九色成人免费人妻av| 51国产日韩欧美| 97超碰精品成人国产| eeuss影院久久| 国产精品熟女久久久久浪| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看| 岛国在线免费视频观看| 极品教师在线视频| 伦精品一区二区三区| 亚洲av中文av极速乱| 成人特级av手机在线观看| 热99re8久久精品国产| 大香蕉久久网| 黑人高潮一二区| 一级黄片播放器| 不卡视频在线观看欧美| 少妇被粗大猛烈的视频| av视频在线观看入口| 在线播放国产精品三级| 全区人妻精品视频| 国产男人的电影天堂91| 97热精品久久久久久| 日韩视频在线欧美| 国产三级在线视频| 一区二区三区免费毛片| 美女被艹到高潮喷水动态| 国产极品天堂在线| 不卡视频在线观看欧美| 国产极品天堂在线| 日日干狠狠操夜夜爽| 亚洲美女搞黄在线观看| 国产av码专区亚洲av| 国产精品日韩av在线免费观看| 国产精品蜜桃在线观看| 午夜福利在线观看免费完整高清在| 亚洲最大成人av| 直男gayav资源| 久久欧美精品欧美久久欧美| 最后的刺客免费高清国语| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 中国国产av一级| 18禁动态无遮挡网站| 亚洲色图av天堂| 亚洲精品色激情综合| 韩国高清视频一区二区三区| 亚洲成人av在线免费| 91久久精品国产一区二区三区| 极品教师在线视频| h日本视频在线播放| 久久久久久久久久黄片| 亚洲人与动物交配视频| 久久久久久久久久成人| 亚洲伊人久久精品综合 | 麻豆av噜噜一区二区三区| 精品酒店卫生间| 国产高清视频在线观看网站| 99热6这里只有精品| 亚洲最大成人中文| 久久久久久久久久黄片| 熟女人妻精品中文字幕| 女人久久www免费人成看片 | 国产91av在线免费观看| 夫妻性生交免费视频一级片| 亚洲av福利一区| 国产69精品久久久久777片| 成年版毛片免费区| 黑人高潮一二区| 99热全是精品| 久久久久国产网址| 国产精品一及| 日韩 亚洲 欧美在线| 久久精品国产亚洲av涩爱| 精品久久久久久电影网 | 精品国产一区二区三区久久久樱花 | 18禁动态无遮挡网站| 熟女电影av网| 亚洲精品国产成人久久av| 久热久热在线精品观看| 国产精品久久久久久久电影| 国产精品日韩av在线免费观看| 91精品国产九色| 欧美日韩一区二区视频在线观看视频在线 | eeuss影院久久| 成人性生交大片免费视频hd| 国语自产精品视频在线第100页| 91久久精品国产一区二区三区| 99热这里只有精品一区| 亚洲欧美日韩东京热| av免费在线看不卡| 三级毛片av免费| h日本视频在线播放| 国产亚洲最大av| 久久人妻av系列| 国产 一区精品| 欧美xxxx性猛交bbbb| 美女脱内裤让男人舔精品视频| 九九热线精品视视频播放| 欧美高清性xxxxhd video| 波多野结衣高清无吗| 国产精华一区二区三区| 看免费成人av毛片| 精品久久国产蜜桃| 国产大屁股一区二区在线视频| 2021天堂中文幕一二区在线观| 亚洲精品影视一区二区三区av| 亚洲人成网站高清观看| 国产亚洲5aaaaa淫片| 97热精品久久久久久| 欧美人与善性xxx| 九色成人免费人妻av| 精品久久久久久久久久久久久| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清专用| 99久久九九国产精品国产免费| 国国产精品蜜臀av免费| 一夜夜www| 在线免费观看的www视频| 亚洲高清免费不卡视频| 国产精品美女特级片免费视频播放器| 两性午夜刺激爽爽歪歪视频在线观看| 舔av片在线| 十八禁国产超污无遮挡网站| 久久99热这里只有精品18| 老司机福利观看| 国产不卡一卡二| 国产 一区 欧美 日韩| 亚洲18禁久久av| 免费av观看视频| 99九九线精品视频在线观看视频| 中国美白少妇内射xxxbb| 搡老妇女老女人老熟妇| 一级黄色大片毛片| 最近手机中文字幕大全| 亚洲中文字幕一区二区三区有码在线看| 人妻少妇偷人精品九色| 亚洲成人中文字幕在线播放| 亚洲国产精品久久男人天堂| 亚洲精品乱久久久久久| 亚洲人成网站在线观看播放| 日日摸夜夜添夜夜爱| 亚洲电影在线观看av| 在线免费观看不下载黄p国产| eeuss影院久久| 男女那种视频在线观看| 亚洲av电影在线观看一区二区三区 | 美女大奶头视频| 级片在线观看| 五月玫瑰六月丁香| 91狼人影院| 午夜福利在线观看吧| 国产精品综合久久久久久久免费| 嘟嘟电影网在线观看| 日韩大片免费观看网站 | 亚洲熟妇中文字幕五十中出| 国产午夜精品论理片| 18禁在线无遮挡免费观看视频| 一区二区三区高清视频在线| 久热久热在线精品观看| 国产欧美另类精品又又久久亚洲欧美| 欧美日本视频| 能在线免费看毛片的网站| 91午夜精品亚洲一区二区三区| 热99re8久久精品国产| 国产精品综合久久久久久久免费| 久久久国产成人免费| 1000部很黄的大片| 乱系列少妇在线播放| 亚洲欧美日韩无卡精品| 国产高清三级在线| 欧美性感艳星| 在线天堂最新版资源| 韩国av在线不卡| 精品久久久久久电影网 | 国产黄色小视频在线观看| 美女脱内裤让男人舔精品视频| 国产乱来视频区| 色综合亚洲欧美另类图片| 欧美变态另类bdsm刘玥| 亚洲国产最新在线播放| av播播在线观看一区| 老师上课跳d突然被开到最大视频| 淫秽高清视频在线观看| 夫妻性生交免费视频一级片| 熟女人妻精品中文字幕| 国内揄拍国产精品人妻在线| 国产欧美日韩精品一区二区| 国产免费视频播放在线视频 | 久久久精品94久久精品| h日本视频在线播放| 久99久视频精品免费| 26uuu在线亚洲综合色| 久久精品熟女亚洲av麻豆精品 | 老司机影院成人| 亚洲精品乱码久久久久久按摩| 亚洲美女搞黄在线观看| 一级毛片电影观看 | 69人妻影院| 国产精品一区二区性色av| 国产v大片淫在线免费观看| 亚洲内射少妇av| 精品酒店卫生间| 精品人妻熟女av久视频| 国产 一区精品| 黄色欧美视频在线观看| 成人午夜高清在线视频| 午夜福利高清视频| 亚洲图色成人| 舔av片在线| 亚洲中文字幕日韩| 久久久国产成人精品二区| 国产一区亚洲一区在线观看| 精品酒店卫生间| 久久人人爽人人片av| 国产精品一及| 特级一级黄色大片| 1024手机看黄色片| 久久精品久久久久久噜噜老黄 | 亚洲国产精品成人综合色| 精品人妻偷拍中文字幕| 直男gayav资源| 乱人视频在线观看| 日本免费在线观看一区| 久久草成人影院| 国产成人福利小说| 国产精品一区二区在线观看99 | av黄色大香蕉| 免费大片18禁| 三级国产精品欧美在线观看| 亚洲av电影不卡..在线观看| 欧美一区二区国产精品久久精品| 三级男女做爰猛烈吃奶摸视频| 青春草国产在线视频| 长腿黑丝高跟| 网址你懂的国产日韩在线| 久久人人爽人人片av| 亚洲av福利一区| 欧美不卡视频在线免费观看| 中文字幕精品亚洲无线码一区| 久久久久久伊人网av| 欧美+日韩+精品| 亚洲国产色片| 国产成人免费观看mmmm| 国产免费男女视频| 简卡轻食公司| 免费电影在线观看免费观看| 免费看光身美女| 国产美女午夜福利| 日日撸夜夜添| 国产探花极品一区二区| 久99久视频精品免费| 亚洲一级一片aⅴ在线观看| 亚洲最大成人中文| 少妇人妻精品综合一区二区|