孟雪蓮,劉佳,陳長(zhǎng)蘭
(遼寧大學(xué) 藥學(xué)院,遼寧 沈陽(yáng) 110036)
小膠質(zhì)細(xì)胞內(nèi)的鈣離子信號(hào)的研究進(jìn)展
孟雪蓮,劉佳,陳長(zhǎng)蘭*
(遼寧大學(xué) 藥學(xué)院,遼寧 沈陽(yáng) 110036)
細(xì)胞內(nèi)鈣離子(Ca2+)對(duì)多種生理活動(dòng)均具有一定的調(diào)節(jié)作用,它可影響神經(jīng)遞質(zhì)釋放和細(xì)胞興奮性.細(xì)胞內(nèi)鈣離子濃度([Ca2+]i)受到多方面調(diào)控,[Ca2+]i的變化是重要的信號(hào)轉(zhuǎn)導(dǎo)方式之一.小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中固有的免疫細(xì)胞,它們對(duì)腦損傷、腦炎癥和多種神經(jīng)退行性疾病有先天性的免疫應(yīng)答.除了在疾病發(fā)生發(fā)展中的作用,小膠質(zhì)細(xì)胞也在很大程度上參與了神經(jīng)元網(wǎng)絡(luò)的發(fā)育和腦組織穩(wěn)態(tài)的維持.受體介導(dǎo)的鈣離子信號(hào)的傳遞,是包括小膠質(zhì)細(xì)胞在內(nèi)的所有細(xì)胞中最普遍的信號(hào)轉(zhuǎn)導(dǎo)機(jī)制.小膠質(zhì)細(xì)胞功能變化與小膠質(zhì)細(xì)胞內(nèi)鈣離子信號(hào)的變化密切相關(guān),對(duì)小膠質(zhì)細(xì)胞內(nèi)鈣離子信號(hào)的研究具有重大的意義.
小膠質(zhì)細(xì)胞;鈣離子;神經(jīng)退行性疾病
神經(jīng)退行性疾病(Neurodegenerative Disease,NDD)是一類以神經(jīng)元退行性病變?yōu)樘卣鞯穆?、進(jìn)行性神經(jīng)系統(tǒng)疾病,主要包括阿爾茨海默病(Alzheime′s Disease,AD)、帕金森病(Parkinson′s Disease,PD)、肌萎縮側(cè)索硬化癥(amyotrophiclateral sclerosis,ALS)、亨廷頓病(Huntington disease,HD)等.神經(jīng)退行性疾病是典型的老年病,已引起廣泛關(guān)注.調(diào)查發(fā)現(xiàn),長(zhǎng)期服用非甾體類抗炎藥(NSAIDs)的老年人患AD的發(fā)生率顯著降低,NSAIDs是目前研究最多的抑制小膠質(zhì)細(xì)胞活化的藥物之一.已有實(shí)驗(yàn)結(jié)果顯示,NSAIDs可顯著減少AD模型動(dòng)物腦內(nèi)激活的小膠質(zhì)細(xì)胞的數(shù)量,減輕中樞炎癥,發(fā)揮抗AD作用[1].小膠質(zhì)細(xì)胞作為腦內(nèi)的免疫細(xì)胞,在神經(jīng)退行性疾病中起關(guān)鍵作用.小膠質(zhì)細(xì)胞可通過(guò)表達(dá)多種受體,來(lái)識(shí)別不同的危險(xiǎn)信號(hào)并做出反應(yīng).大量的實(shí)驗(yàn)表明,小膠質(zhì)細(xì)胞的功能與細(xì)胞內(nèi)Ca2+水平密切相關(guān).小膠質(zhì)細(xì)胞上的一些受體激活可引起細(xì)胞中游離鈣離子濃度增高,小膠質(zhì)細(xì)胞的過(guò)度活化與其胞漿鈣離子水平的增高直接相關(guān)[2],而過(guò)度激活的小膠質(zhì)細(xì)胞可導(dǎo)致神經(jīng)元嚴(yán)重變性死亡,引起腦損傷[3-4].然而,目前對(duì)于小膠質(zhì)細(xì)胞內(nèi)Ca2+信號(hào)仍知之較少.本文將主要介紹小膠質(zhì)細(xì)胞內(nèi)鈣離子信號(hào)的研究進(jìn)展.
小膠質(zhì)細(xì)胞是一種免疫細(xì)胞,在中樞神經(jīng)系統(tǒng)(CNS)中最具代表性,其在不同腦區(qū)域的密度不同,其中,在腦灰質(zhì)中的密度最高[5].小膠質(zhì)細(xì)胞大約占腦細(xì)胞的12%[6],神經(jīng)膠質(zhì)細(xì)胞(Neuroglia)的20%.目前,關(guān)于小膠質(zhì)細(xì)胞的起源仍存在一些爭(zhēng)論,現(xiàn)在普遍接受的觀點(diǎn)是小膠質(zhì)細(xì)胞起源于外周的骨髓細(xì)胞,在胚胎形成時(shí)骨髓的前體細(xì)胞(myeloid precursor cells)進(jìn)入到CNS中并分化形成了小膠質(zhì)細(xì)胞[7].
在發(fā)育成熟的腦中,呈分枝狀的靜息態(tài)小膠質(zhì)細(xì)胞被認(rèn)為是感應(yīng)細(xì)胞[8-9],可監(jiān)測(cè)腦內(nèi)異常變化.小膠質(zhì)細(xì)胞在腦損傷或免疫刺激等傷害的刺激下可被激活.小膠質(zhì)細(xì)胞激活后,形態(tài)從分枝狀轉(zhuǎn)變?yōu)榘⒚装蜆?同時(shí),細(xì)胞表面的一些分子,包括CD14、主要組織相容性復(fù)合物(major histocompatibility complex,MHC)分子、趨化因子受體等表達(dá)水平上調(diào)[5,10].小膠質(zhì)細(xì)胞的激活發(fā)生在中樞神經(jīng)系統(tǒng)受損傷的部位,如嚴(yán)重的中樞神經(jīng)系統(tǒng)損傷、腦癌、腦細(xì)胞壞死、感染、腦缺血和神經(jīng)退行性疾病(如阿爾茨海默癥,帕金森癥、HIV癡呆等)可使小膠質(zhì)細(xì)胞激活[11].
適度激活的小膠質(zhì)細(xì)胞對(duì)神經(jīng)元具有保護(hù)作用,它會(huì)對(duì)病理變化做出吞噬細(xì)胞碎片、分泌生長(zhǎng)因子和抵御外來(lái)的侵襲等不同的適應(yīng)性反應(yīng)[12].在阿爾茲海默癥病變的過(guò)程中可以減少細(xì)胞碎片或錯(cuò)誤折疊的蛋白如淀粉樣蛋白β(Aβ)[13].激活的小膠質(zhì)細(xì)胞能夠合成并釋放抗炎因子和神經(jīng)保護(hù)因子,例如,腦衍生的神經(jīng)保護(hù)因子(BDNF)、轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)或白細(xì)胞介素-10(IL-10),對(duì)周圍的組織存在有益作用[14-15].此外,小膠質(zhì)細(xì)胞可能參與了發(fā)育成熟腦內(nèi)的神經(jīng)發(fā)生過(guò)程[16].
然而過(guò)度激活的小膠質(zhì)細(xì)胞釋放大量的神經(jīng)毒性因子[17],如白介素-1β(IL-1β)、白介素-6(IL-6)、一氧化氮(NO)、腫瘤壞死因子-α(TNF-α)、活性氧(reactive oxygen species,ROS)等[18-19],導(dǎo)致阿爾茨海默氏病、帕金森病等神經(jīng)退行性疾病的發(fā)生[20].過(guò)度活化的小膠質(zhì)細(xì)胞可以導(dǎo)致嚴(yán)重的神經(jīng)損傷,這已經(jīng)成為了被廣泛接受的事實(shí)[21].
鈣是體內(nèi)含量最多的元素之一,是骨骼組織的主要組成部分,約占機(jī)體質(zhì)量的2%[22].Ca2+參與細(xì)胞增殖、分化、生長(zhǎng)、衰老等生命活動(dòng)的信息傳遞與調(diào)控,并在各種生理活動(dòng)(如肌肉興奮收縮、血管緊張度調(diào)節(jié)、神經(jīng)沖動(dòng)傳導(dǎo)等)中起著十分重要的作用,它是生物體內(nèi)重要的信使物質(zhì),且分布廣泛,許多重要疾病的發(fā)生和發(fā)展是由于其代謝的變化和信號(hào)的異常導(dǎo)致.
鈣離子可通過(guò)多種途徑進(jìn)出細(xì)胞,并且通過(guò)作用于各種Ca2+感受器從而激活下游分子來(lái)調(diào)節(jié)細(xì)胞的分泌和活化.鈣離子的多數(shù)生理功能是通過(guò)與鈣調(diào)蛋白(calmodulin,CaM)形成復(fù)合物來(lái)實(shí)現(xiàn)的[23].
1)小膠質(zhì)細(xì)胞中的鈣離子內(nèi)流細(xì)胞外鈣離子能夠經(jīng)過(guò)細(xì)胞膜上的鈣離子通道進(jìn)入細(xì)胞內(nèi).原則上,小膠質(zhì)細(xì)胞的鈣離子內(nèi)流存在三種機(jī)制[24]:①配體結(jié)合觸發(fā)的鈣離子跨膜流動(dòng),即受體門控性鈣通道(ROCs);②細(xì)胞膜去極化激活電壓門控性鈣通道(VOCs)導(dǎo)致的鈣內(nèi)流;③當(dāng)細(xì)胞內(nèi)鈣離子耗竭,為了補(bǔ)充鈣離子不足,儲(chǔ)存開(kāi)啟性鈣通道(SOCs)開(kāi)放,促使鈣離子大量?jī)?nèi)流.
2)小膠質(zhì)細(xì)胞中的鈣離子外排在所有真核細(xì)胞中,質(zhì)膜上的ATP依賴性鈣離子泵維持著鈣離子跨膜濃度梯度.ATP依賴性鈣離子泵使小膠質(zhì)細(xì)胞外鈣離子濃度遠(yuǎn)遠(yuǎn)高于細(xì)胞內(nèi)(約為105倍),這使得[Ca2+]i無(wú)論短暫的還是長(zhǎng)期的改變,均可啟動(dòng)下游的信號(hào)轉(zhuǎn)導(dǎo).在小膠質(zhì)細(xì)胞內(nèi)鈣超載的情況下,Na+/Ca2+交換體可協(xié)助鈣離子泵將鈣離子從細(xì)胞中排出[25].
3)小膠質(zhì)細(xì)胞鈣庫(kù)中鈣離子的釋放細(xì)胞內(nèi)鈣離子主要貯存在內(nèi)質(zhì)網(wǎng)(ER)或肌質(zhì)網(wǎng)(SR)中,是細(xì)胞內(nèi)主要的鈣庫(kù).小膠質(zhì)細(xì)胞內(nèi)鈣離子釋放通道主要為1,4,5-三磷酸肌醇(InsP3)受體,即InsP3R家族.細(xì)胞膜上相關(guān)受體激動(dòng),可使細(xì)胞中InsP3增加,作用于InsP3Rs,進(jìn)一步導(dǎo)致細(xì)胞內(nèi)鈣庫(kù)中的鈣離子釋放[26].簡(jiǎn)言之,G蛋白偶聯(lián)受體(GPCRs)或受體蛋白激酶(RPKs)可激活特定亞型的磷脂酶C(PLC),使4,5-二磷酸肌醇轉(zhuǎn)變?yōu)槿姿峒〈己投8视?DAG).三磷酸肌醇作為第二信使,與內(nèi)質(zhì)網(wǎng)上的InsP3Rs結(jié)合,使鈣庫(kù)中的鈣離子釋放.還有一種受體通道.
4)小膠質(zhì)細(xì)胞中鈣離子的貯存除了將鈣離子從細(xì)胞質(zhì)排出到細(xì)胞外,還可以將細(xì)胞質(zhì)中鈣離子攝入內(nèi)質(zhì)網(wǎng)或者線粒體內(nèi).通過(guò)內(nèi)質(zhì)網(wǎng)上的肌漿網(wǎng)Ca2+-ATP酶(SERCA)可以補(bǔ)充內(nèi)質(zhì)網(wǎng)鈣庫(kù)中的鈣離子不足[27],這在G蛋白/InsP3介導(dǎo)的鈣離子信號(hào)傳導(dǎo)中起到關(guān)鍵作用.在小膠質(zhì)細(xì)胞內(nèi)鈣離子濃度增高時(shí),線粒體可作為鈣離子儲(chǔ)存器或緩沖器,并且可能在SOCs的調(diào)節(jié)中發(fā)揮作用.
在未激活的小膠質(zhì)細(xì)胞中,[Ca2+]i的變化是重要的信號(hào)轉(zhuǎn)導(dǎo)途徑之一.小膠質(zhì)細(xì)胞中[Ca2+]i受到多種機(jī)制的嚴(yán)格調(diào)控[28].當(dāng)[Ca2+]i發(fā)生改變,細(xì)胞膜上表達(dá)多種不同的離子型和代謝型受體[29].除此之外,[Ca2+]i的增高與小膠質(zhì)細(xì)胞執(zhí)行的功能密切相關(guān),例如釋放前炎癥因子、抗炎癥因子、一氧化氮和營(yíng)養(yǎng)因子等[30].然而,這些數(shù)據(jù)主要是從體外實(shí)驗(yàn)獲得的,目前,對(duì)原位或體內(nèi)小膠質(zhì)細(xì)胞的鈣離子信號(hào)知之甚少.
作為腦內(nèi)的巨噬細(xì)胞,小膠質(zhì)細(xì)胞必須以適當(dāng)?shù)姆绞桨l(fā)現(xiàn)危險(xiǎn)信號(hào)并做出反應(yīng).研究表明,小膠質(zhì)細(xì)胞可表達(dá)多種受體,用以識(shí)別不同的危險(xiǎn)信號(hào).在這些危險(xiǎn)信號(hào)中,補(bǔ)體因子、緩激肽、血小板活化因子、凝血酵素、前列腺素、甲酰肽(fMLP)、LPA(lysophosphatidylic acid)、趨化因子、前炎癥因子均可引起小膠質(zhì)細(xì)胞中[Ca2+]i增高[4].多項(xiàng)研究結(jié)果表明,激活的小膠質(zhì)細(xì)胞中[Ca2+]i持續(xù)增高,其升高一方面來(lái)自胞內(nèi)Ca2+庫(kù)的釋放,另一方面來(lái)自胞外Ca2+的內(nèi)流.以脂多糖(LPS)[31]或Aβ[32]激活體外培養(yǎng)的大鼠或人胚胎小膠質(zhì)細(xì)胞中,可觀察到[Ca2+]i的持續(xù)增加.同樣,從AD病人腦中分離的小膠質(zhì)細(xì)胞基礎(chǔ)離鈣離子濃度亦顯著高于正常人[32].腦內(nèi)Aβ激活的小膠質(zhì)細(xì)胞中Ca2+依賴的神經(jīng)毒性物質(zhì)的釋放與AD的發(fā)生密切關(guān)聯(lián)[33].此外,研究認(rèn)為激活的小膠質(zhì)細(xì)胞釋放NO、細(xì)胞因子、趨化因子均需要[Ca2+]i的提高[34].
P2X7受體激動(dòng)劑BZ-ATP可激活小膠質(zhì)細(xì)胞,使[Ca2+]i增高.已有研究表明,P2X7受體在AD腦中在AD病人腦中小膠質(zhì)細(xì)胞介導(dǎo)的嘌呤炎癥反應(yīng)中發(fā)揮起重要的作用[35].在AD大鼠腦內(nèi)的小膠質(zhì)細(xì)胞中P2X7受體表達(dá)量比正常非癡呆(ND)大鼠腦內(nèi)小膠質(zhì)細(xì)胞中的表達(dá)量增高.在ATP激動(dòng)劑作用下,通過(guò)P2X7受體的介導(dǎo),原代培養(yǎng)的小膠質(zhì)細(xì)胞會(huì)逐漸發(fā)生形態(tài)上的變化,同時(shí)受體表達(dá)會(huì)逐漸增加.在ATP持續(xù)刺激下,小膠質(zhì)細(xì)胞逐漸凋亡.
FPRL1受體在AD腦部炎癥反應(yīng)中發(fā)揮重要作用.甲酰肽受體(FPRL1)激動(dòng)劑fMLP可使小膠質(zhì)細(xì)胞激活,[Ca2+]i增高[36].研究表明,Aβ1-42可通過(guò)作用于FPRL1而誘導(dǎo)小鼠小膠質(zhì)細(xì)胞趨化移動(dòng),并可通過(guò)抑制FPR2 (人FPRL1在小鼠的同源受體)的表達(dá),而抑制Aβ1-42誘導(dǎo)的小膠質(zhì)細(xì)胞激活,同時(shí)Aβ1-42還可以抑制TNF-α、IL-1β、IL-6等炎癥因子和趨化因子MCP-1的釋放[37].
鈣通道的鈣依賴性易化(Ca2+-dependent facilitation,CDF)和鈣依賴性失活(Ca2+-dependentinactivation,CDI)都是由鈣調(diào)蛋白(CaM)介導(dǎo)的.目前認(rèn)為CaM是鈣依賴性調(diào)節(jié)過(guò)程中的Ca2+感受器.因此鈣調(diào)蛋白對(duì)鈣離子通道的開(kāi)放非常重要[38].
CaM分子量為17.6kD,由148個(gè)氨基酸組成,空間結(jié)構(gòu)呈亞玲狀,兩端(N端,C端)膨大呈球形,中間由細(xì)長(zhǎng)的α螺旋結(jié)構(gòu)連接,兩端各有兩個(gè)Ca2+結(jié)合位點(diǎn)[39],其中C端與Ca2+的親和力是N端的10倍.當(dāng)Ca2+與CaM結(jié)合形成復(fù)合物時(shí),CaM由原來(lái)松散的結(jié)構(gòu)變成緊密的螺旋結(jié)構(gòu)并暴露疏水區(qū),成為 Ca2+-CaM依賴性靶酶的結(jié)合部位[40].CaM的一級(jí)結(jié)構(gòu)極為保守,已證實(shí)動(dòng)物、植物以及低級(jí)真核生物所得到的CaM氨基酸組成及排列基本相同.它本身無(wú)活性,但能改變多種靶蛋白的構(gòu)象,包括酶、膜轉(zhuǎn)運(yùn)蛋白等,其中最重要的是Ca激酶,包括蛋白磷酸化酶、脫磷酸酶和鈣轉(zhuǎn)移酶等[41].鈣調(diào)蛋白依賴性蛋白激酶Ⅱ(CaMKⅡ)是一種絲/氨酸蘇氨酸蛋白激酶,將某些底物磷酸化而改變其活性,CaMKⅡ的活化需要Ca2+/CaM的啟動(dòng),CaM和CaMKⅡ同時(shí)參與鈣離子通道的鈣依賴性調(diào)節(jié)過(guò)程.鈣通道蛋白的CaMKⅡ磷酸化對(duì)L型鈣通道(目前最具藥理學(xué)意義的一類鈣通道,通道被激活后持續(xù)時(shí)間長(zhǎng),失活慢)的CDF起決定性作用.進(jìn)一步的研究表明,CaMKⅡ與alc亞基(L型鈣通道的主要功能單位之一)C末端的相互作用對(duì)CDF是必需的,在Ca2+介導(dǎo)下,CaMKⅡ緊緊結(jié)合于通道的alc亞基上,起到鈣峰率檢測(cè)器作用.
研究表明,經(jīng)紅藻氨酸處理的小鼠海馬組織中,激活的小膠質(zhì)細(xì)胞內(nèi)CaM的表達(dá)顯著增高[42].研究發(fā)現(xiàn),由LPS誘導(dǎo)的炎癥反應(yīng)包含Ca2+介導(dǎo)的信號(hào)調(diào)節(jié).將RAW264.7細(xì)胞暴露給LPS能夠引起CaM的快速增加,而CaM與炎癥反應(yīng)的調(diào)節(jié)密切相關(guān).隨著CaM的增加,關(guān)鍵轉(zhuǎn)錄因子(如NF-κB p65亞基,磷酸化的c-Jun,Sp1)向細(xì)胞核內(nèi)定位移動(dòng),致炎細(xì)胞因子TNF-α和iNOS跟著增加.通過(guò)穩(wěn)定轉(zhuǎn)染CaM增加細(xì)胞內(nèi)CaM的水平,導(dǎo)致LPS誘導(dǎo)的TNF-α和iNOS表達(dá)的減少,同時(shí)伴隨著他們的轉(zhuǎn)錄調(diào)節(jié)因子活化的減少.因此在Ca2+依賴的信號(hào)調(diào)節(jié)過(guò)程中,CaM對(duì)控制LPS處理細(xì)胞過(guò)程中所導(dǎo)致的致炎因子表達(dá)能起至關(guān)重要的作用[43].近期研究也證實(shí),在LPS激活的BV-2小膠質(zhì)細(xì)胞中,抑制Ca2+-CaMKⅡ/TAK1-NF-κB信號(hào)通路,可使iNOS表達(dá)降低,NO生成減少[44].
綜上所述,小膠質(zhì)細(xì)胞與阿爾茨海默病、帕金森癥等神經(jīng)退行性疾病的病理進(jìn)程有重要的關(guān)聯(lián).調(diào)節(jié)小膠質(zhì)細(xì)胞功能狀態(tài),增強(qiáng)它的保護(hù)作用,減弱、抑制它的炎癥反應(yīng),有利于疾病的預(yù)防和治療.鈣離子信號(hào)參與了小膠質(zhì)細(xì)胞的多種功能調(diào)控.通過(guò)多年研究,鈣離子信號(hào)的傳遞對(duì)小膠質(zhì)細(xì)胞功能的影響已取得了很大的進(jìn)展,但許多問(wèn)題仍存在爭(zhēng)議.因此小膠質(zhì)細(xì)胞內(nèi)鈣離子水平的變化及其信號(hào)轉(zhuǎn)導(dǎo)通路值得進(jìn)行更深入的研究,在防治炎癥相關(guān)的中樞神經(jīng)退行性疾病中具有重要的研究?jī)r(jià)值.
[1] 艾海新,鄧芳博,劉宏生.與阿爾茨海默病發(fā)病機(jī)制相關(guān)的microRNA的研究現(xiàn)狀及進(jìn)展[J].遼寧大學(xué)學(xué)報(bào):自然科學(xué)版,2015,143(3):263-269.
[2] Brawek B,Garaschuk O.Microglial calcium signaling in the adult,aged and diseased brain [J].Cell Calcium,2013,53(3):159-169.
[3] Streit W J.Microglia and Alzheimer′s disease pathogenesis [J].J Neurosci Res,2004,77(1):1-8.
[4] Block M L,Hong J S.Chronic microglial activation and progressive dopaminergic neurotoxicity [J].BiochemSoc Trans,2007,35(5):1127-1132.
[5] Block M L,Zecca L,Hong J S.Microglia-mediated neurotoxicity:uncovering the molecular mechanisms [J].Nat Rev Neurosci,2007,8(1):57-69.
[6] Block M L,Hong J S.Microglia and inflammation-mediated neurodegeneration:mu common mechanism [J].ProgNeurobiol,2005,76(2):77-98.
[7] Ginhoux F,Greter M,Leboeuf M,et al.Fate mapping analysis reveals that adult microglia derive from primitive macrophages [J].Science,2010,330(6005):841-845.
[8] Nimmerjahn A,Kirchhoff F,Helmchen F.Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J].Science,2005,308(5726):1314-1318.
[9] Davalos D,Grutzendler J,Yang G,et al.ATP med [J].Nat Neurosci,2005,8(6):752-758.
[10] McLarnon J G.Purinergic mediated changes in Ca2+mobilization and functional responses in microglia:effects oof low levels of ATP [J].J NeurosciRes,2005,81(3):349-356.
[11] Ransohoff R M,Perry V H.Microglial physiology:unique stimuli,specialized responses [J].Annu Rev Immunol,2008,27(27):119-145.
[12] Benarroch E E.Microglia:Multiple roles in surveillance,circuit shaping,and response to injury [J].Neurology,2013,81(12):1079-1088.
[13] Hanisch U K,Kettenmann H.Microglia:active sensor and versatipathologic brain [J].Nat Neurosci,2007,10(11):1387-1394.
[14] Neumann H,Kotter M R,Franklin R J.Debris clearance by microglia:an essential link between degeneration and regeneration [J].Brain,2009,132(2):288-295.
[15] Sierra A,Encinas J M,Deudero J J,et al.Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis [J].Cell Stem Cell,2010,7(4):483-495.
[16] Eyo U B,Dailey M E.Microglia:key elements in neural development,plasticity,and pathology [J].J Neuroimmune Pharm,2013,8(3):494-509.
[17] Kettenmann H,Hanisch U K,Noda M,et al.Physiology of microglia [J].Physiol Rev,2011,91(2):461-553.
[18] Ziv Y,Ron N,Butovsky O,et al.Immune function of microglia [J].Glia,2001,36(2):165-179.
[19] Meng X L,Yang J Y,Chen G L,et al.Effects of resveratrol and its derivatives on lipopolysaccharide-induced microglial activation and their structure-activity relationships [J].ChemBiol Interact,2008,174(1):51-59.
[20] Glass C K,Saijo K,Winner B,et al.Mechanisms underlying inflammation in neurodegeneration [J].Cell,2010,140(6):918-934.
[21] Harry G J.Microglia during development and aging [J].PharmacolTher,2013,139(3):313-326.
[22] 楊麗亞,高菂.鈣調(diào)蛋白的藥用研究[J].西北藥學(xué)雜志,2008,23(2):124-125.
[23] Cheung W Y.Cyclic 3′,5′-nucleotide phosphodiesterase.Demonstration of an activator [J].BiochemBiophys Res Commu,1970,38(3):533-538.
[24] Wang S Q,Song L S,Lakatta E G,et al.Ca2+signalling between single L-type Ca2+channels and ryanodine receptors in heart cells [J].Nature,2001,410(6828):592-596.
[25] Kaneko M,Matsumoto Y,Hayashi H,et al.Oxygen free radicals and calcium homeostasis in ten heart [J].Mol Cell Biochem,1994,135(1):99-108.
[26] Patel S,Joseph S K,Thomas A P.Molecular properties of inositol 1,4,5-trisphosphate receptors [J].Cell Calcium,1999,25(3):247-264.
[27] Xu K Y,Zweier J L,Becker L C.Hydroxyl radical inhibits sarcoplasmic reticulum Ca2+-ATPase function by direct attack on the ATP binding site [J].CircRes,1997,80(1):76-81.
[28] Moller T.Calcium signaling in microglial cells [J].Glia,2002,40(2):184-194.
[29] Farber K,Kettenmann H.Functional role of calcium signals for microglial function [J].Glia,2006,54(7):656-665.
[30] Inoue K.Microglial activation by purines and pyrimidines [J].Glia,2002,40(2):156-163.
[31] Hoffmann A,Kann O,Ohlemeyer C,et al.Elevation of basal intracellular calcium as a central element in the activation of brain macrophages(microglia):suppression of receptor-evoked calcium signaling and control of release function [J].J neurosci,2003,23(11):4410-4419.
[32] McLarnon J G,Choi H B,Lue L F,et al.Perturbations in calcium-mediated signal transduction in microglia from Alzheimer′s disease patients [J].J Neurosci Res,2005,81(3):426-435.
[33] Brawek B,Schwendele B,Riester K,et al.Impairment of in vivo calcium signaling in amyloid plaque-associated microglia [J].ActaNeuropathol,2014,127(4):495-505.
[34] Eichhoff G,Brawek B,Garaschuk O.Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo [J].BiochimBiophysActa,2011,1813(5):1014-1024.
[35] Liang S,Xu C,Li G,et al.P2X receptors and modulation of pain transmission:focus on effects of drugs and compounds used in traditional Chinese medicine [J].NeurochemInt,2010,57(7):705-712.
[36] Cui Y H,Le Y,Gong W,et al.Bacterial lipoplysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine mircroglial cells [J].J Immunol,2002,168(1):434-444.
[37] Alberdi E,Sanchez-Gomez M V,Cavaliere F,et al.Amyloid beta oligomers induce Ca2+dysregulation and neuronal death through activation of ionotropic glutamate receptors [J].Cell Calcium,2010,47(3):264-272.
[38] Ben-Johny M,Yue D T.Calmodulin regulation(calmodulation) of voltage-gated calcium channels [J].J Gen Physiol,2014,143(6):679-692.
[39] Tidow H,Nissen P.Structural diversity of calmodulin binding to its target sites [J].FEBS J,2013,280(21):5551-5565.
[40] Piazza M,Futrega K,Spratt D E,et al.Structure and dynamics of calmodulin(CaM) bound to nitric oxide synthase peptides:effects of a phosphomimeticCaM mutation [J].Biochemistry,2012,51(17):3651-3661.
[41] Skelding K A,Rostas J A.The role of molecular regulation and targeting in regulating calcium/calmodulin stimulated protein kinases [J].AdvExp Med Biol,2012,740(10):703-730.
[42] Solà C,Tusell J M,Serratosa J.Calmodulin is expressed by reactive microglia in the hippocampus okainic acid-treated mice [J].Neuroscience,1997,81(3):699-705.
[43] Weber T J,Smallwood H S,Kathmann L E,et al.Functional link between TNF biosynthesis and CaM-dependent activation of inducible nitric oxide synthase in RAW 264.7 macrophages[J].Am J Physiol Cell Physiol,2006,290(6):C1512-1520.
[44] Huang C,Lu X,Wang J,et al.Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na+/H+exchanger 1-Ca2+-calcium-calmodulin-dependent protein kinase II/transforming growth factor u-activated kinase 1-nuclear factor-κB signals in BV-2 microglia[J].J Neurosci Res,2015,93(8):1192-1202.
(責(zé)任編輯 李 超)
Calcium Signaling in Microglia
MENG Xue-lian,LIU Jia,CHEN Chang-lan*
(SchoolofPharmaceuticalsciences,LiaoningUniversity,Shenyang110036,China)
Intracellular calcium(Ca2+) has the regulation to a variety of physiological activities.It can affect the release of neurotransmitter and the excitability of cell.Intracellular calcium concentration([Ca2+]i) subject to many regulatory,the change of [Ca2+]iis one of the most important pathways of signal transduction.Microglia are inherent immune cells in the central nervous system.They have innate immune response to brain injury,brain inflammation and a variety of neurodegenerative diseases.In addition to roles in disease development,microglia are also heavily involved in the development of neural networks and the homeostasis of neural network.Receptor-mediated calcium signaling transfer is the most common signal transduction mechanisms in all cells,including microglia.The functional changes of microglia are closely related to the changes of calcium signaling in microglia,and it is of great significance for the study of microglia calcium signal.
microglia; calcium; neurodegenerative diseases
2016-07-05
國(guó)家自然科學(xué)基金項(xiàng)目(81503085,31371085);遼寧省自然科學(xué)基金項(xiàng)目(2014020171);遼寧大學(xué)教改項(xiàng)目(JG2016YB0052)
孟雪蓮(1978-),女,遼寧沈陽(yáng)人,博士,副教授,從事藥理學(xué)研究,E-mail:rubymxl@163.com.
*通訊作者:陳長(zhǎng)蘭(1963-),教授,E-mail:chenchanglanbio@aliyun.com.
R 967
A
1000-5846(2017)01-0034-07