郭海明,夏天嬋,朱雯,張勇,葉均安
(浙江大學(xué)動物科學(xué)學(xué)院,浙江 杭州 310058)
青貯添加劑對稻草青貯品質(zhì)和有氧穩(wěn)定性的影響
郭海明,夏天嬋,朱雯,張勇,葉均安*
(浙江大學(xué)動物科學(xué)學(xué)院,浙江 杭州 310058)
試驗旨在探討不同添加劑對青貯稻草品質(zhì)和有氧穩(wěn)定性的影響。稻草青貯時,分別添加乳酸菌(L)、乳酸菌+糖蜜(LM)、乳酸菌+纖維素酶(LC)和乳酸菌+糖蜜+纖維素酶(LMC),乳酸菌、纖維素酶和糖蜜劑量分別為5×105cfu/g、0.6 IU/g、20 mg/g,貯存90 d后開包檢測。綜合評定青貯稻草的青貯質(zhì)量,測定常規(guī)營養(yǎng)成分,浸提液的pH值、氨態(tài)氮和有機(jī)酸的含量并測定稻草的有氧穩(wěn)定性。試驗結(jié)果:L組、LM組、LC組和LMC組的總綜合評分顯著高于對照組(P<0.05)。LC、LMC組的酸性洗滌纖維含量顯著低于對照組(P<0.05),提高了剩余可溶性碳水化合物的含量。與對照組相比,各處理組均提高了乳酸的含量;LC和LMC組顯著提高了乳酸的含量(P<0.05)。對照組的總有機(jī)酸含量顯著低于LC和LMC組(P<0.05),但是和L、LM組差異不顯著(P>0.05)。各組的有氧穩(wěn)定性和有氧損失均無顯著差異(P>0.05)。結(jié)果表明:添加乳酸菌,提高了乳酸的含量和綜合評分;在乳酸菌的基礎(chǔ)上,添加糖蜜或是與纖維素酶的組合,有利于提升發(fā)酵品質(zhì)。
青貯;稻草;乳酸菌;糖蜜;纖維素酶
我國秸稈資源豐富,稻草的年產(chǎn)量達(dá)到1.92億t以上,占秸稈總量的29.93%,是草食家畜的重要粗飼料資源[1]。近年來,每年焚燒秸稈總量在1.3億t以上,占秸稈總量的20%以上,不僅造成了資源的浪費,也會導(dǎo)致環(huán)境的污染[2]。合理開發(fā)利用秸稈資源,發(fā)展節(jié)糧型畜牧生產(chǎn),已成為發(fā)展畜牧業(yè)的重要途徑。然而稻草適口性差,營養(yǎng)水平低,不易消化的特質(zhì)限制了其在反芻動物中的應(yīng)用。同時南方地區(qū)多雨,稻草等秸稈不易干燥,將稻草等秸稈進(jìn)行青貯具有保存飼料,改善適口性等優(yōu)點,但稻草可溶性碳水化合物含量低,單獨青貯不易成功,需要添加青貯添加劑以提高青貯品質(zhì)。許能祥等[3]在水稻(Oryzasativa)秸稈青貯時,添加乳酸菌提高了乳酸的含量,降低了氨態(tài)氮與總氮的比值,提高青貯品質(zhì);但侯曉靜等[4]在水稻秸稈青貯時,添加乳酸菌提高了丁酸和氨態(tài)氮與總氮的比值,降低了發(fā)酵品質(zhì),在乳酸菌的基礎(chǔ)上添加蔗糖,提高了乳酸含量,降低了pH值和丁酸的含量,取得了良好的青貯效果。青貯時,添加纖維素酶可以降解細(xì)胞壁的結(jié)構(gòu),提高可溶性糖的含量,為乳酸菌發(fā)酵提供更多的底物。Li等[5]報道,添加乳酸菌提高了稻草發(fā)酵品質(zhì),在添加乳酸菌的基礎(chǔ)上添加木聚糖酶,青貯效果更好。本試驗在添加乳酸菌的基礎(chǔ)上,再添加糖蜜或(和)纖維素酶,旨在于尋找合理的稻草青貯方案,為開發(fā)利用稻草資源提供有效途徑。
1.1 試驗材料
原料采自浙江省海鹽縣通元鎮(zhèn)的鮮稻草(表1)。所需添加劑為乳酸菌(購自臺灣亞芯生物科技有限公司,活菌數(shù)為1.0×1011cfu/g),糖蜜(海鹽豐義牧業(yè)有限公司提供),纖維素酶(購自廣州溢多利有限公司,酶活為2000 IU/g)。
表1 青貯前鮮稻草營養(yǎng)成分Table 1 Nutrients of fresh rice straw %DM
1.2 試驗設(shè)計
試驗設(shè)5個處理組:對照組(control, CK),添加等量的去離子水;在稻草鮮樣中,添加乳酸菌5.0×105cfu/g(lactobacillus, L組);添加乳酸菌5.0×105cfu/g+糖蜜20 mg/g(lactobacillus+molasses, LM組);添加乳酸菌5.0×105cfu/g+纖維素酶0.6 IU/g(lactobacillus+cellulose, LC組);添加乳酸菌5.0×105cfu/g+糖蜜20 mg/g+纖維素酶0.6 IU/g(lactobacillus+molasses+cellulose, LMC組)。添加劑的量是以鮮重(FW, fresh weight)為基礎(chǔ)。
1.3 青貯的制作
試驗于2013年12月5日在浙江大學(xué)奶業(yè)科學(xué)研究所試驗?zāi)翀鲞M(jìn)行。將稻草用鍘草機(jī)切短至2~3 cm,取5 kg稻草鮮樣,將添加劑溶解于100 mL的去離子水中,均勻噴灑在稻草上,對照組均勻噴灑等量的去離子水,將拌勻的樣品使用尼龍袋制作成圓球狀,壓實用膠布密封。試驗一共5個處理,每個處理3個重復(fù),20~25 ℃避光保存90 d后開包檢測。
1.4 測定指標(biāo)及方法
按常規(guī)法[6]測定樣品的干物質(zhì)(dry matter, DM)和粗蛋白(crude protein, CP)的含量,根據(jù)青貯前后的質(zhì)量及干物質(zhì)含量測定干物質(zhì)回收率(dry matter recovery, DMR)。采用Van Soest等[7]的方法測定中性洗滌纖維(neutral detergent fiber, NDF)和酸性洗滌纖維(acid detergent fiber, ADF)的含量,半纖維素(hemicellulose)的含量為NDF和ADF含量之差??扇苄蕴妓衔?water soluble carbohydrate, WSC)的含量測定使用蒽酮比色法[8]。將準(zhǔn)確稱取的20 g新鮮樣品,加入200 mL去離子水用組織搗碎機(jī)勻質(zhì)30 s之后,4層紗布過濾[9],濾液立即檢測pH(pH Meter PB-10,Sartorious)。浸提液樣品的氨態(tài)氮(NH3-N)濃度采用苯酚-次氯酸鈉法測定[10]。乳酸采用對羥基聯(lián)苯比色法測定[11],采用姜芳等[12]的方法測定乙酸、丙酸和丁酸的含量(GC-2010,Shimadzu);HP-INNOWAX毛細(xì)管柱(30 m×0.25 mm×0.25 μm),色譜參數(shù):柱溫120 ℃,氣化室溫度250 ℃,檢測室溫度270 ℃,載氣為氮氣,總壓力160 kPa。有機(jī)酸的含量為乙酸、丙酸、丁酸和乳酸的含量之和。
在青貯后的第90天,打開青貯包,從顏色、氣味和質(zhì)地等指標(biāo)進(jìn)行綜合評定[13]。參考Conaghan等[14]檢測有氧穩(wěn)定性和有氧損失。操作方法如下:每個樣品取3 kg放在塑料箱子(2.5 cm厚,59 cm×39 cm×22 cm)里,在20~23 ℃繼續(xù)培養(yǎng)15 d,同時在青貯樣品旁邊放一個裝滿水的箱子,用作青貯樣品溫度的對照,每天記錄青貯樣品的溫度。乳酸菌,酵母菌和霉菌分別采用MRS培養(yǎng)基和馬丁培養(yǎng)基進(jìn)行平板培養(yǎng)計數(shù)[15]。
1.5 數(shù)據(jù)處理
數(shù)據(jù)進(jìn)行Excel分析和SAS 9.0單因素k水平Duncan多重比較,P<0.05差異顯著。
2.1 青貯稻草的綜合評定
各處理組青貯料中,L、LM、LMC組在氣味上的評分值顯著高于LC和對照組(P<0.05);同時對照組的氣味評分顯著低于LC組(P<0.05),酸香味較差。在色澤上,LM、LMC組顯著高于對照組(P<0.05),但是和L、LC組的差異不顯著(P>0.05),主要是因為糖蜜的添加,提高色澤評分。在質(zhì)地、pH值和水分的各項評分,各處理組與對照組相比均無顯著差異(P>0.05)。在總評分,其他各處理的得分均顯著高于對照組(P<0.05),添加劑的使用提高了青貯稻草的綜合評分;各組均無霉變的情況,除對照組外,其他各處理的綜合評定屬于優(yōu)質(zhì)青貯料(表2)。
表2 稻草青貯90 d后的綜合評分Table 2 The comprehensive evaluation of rice straw after 90 d ensiling
注:SEM:標(biāo)準(zhǔn)誤。同一行數(shù)據(jù)后字母不同者差異顯著(P<0.05),下同。
Note:SEM: Standard error of mean. The different small letters in the same row mean significant difference (P<0.05), the same below.
2.2 不同處理對青貯稻草營養(yǎng)成分的影響
青貯后的營養(yǎng)成分見表3。由表3知,添加劑的使用對于DM、DMR、CP等指標(biāo)均無顯著影響(P>0.05)。LC組的NH3-N含量略高于其他各組,但無顯著差異(P>0.05)。各組之間的WSC含量差異不顯著(P>0.05),從數(shù)值上看,添加乳酸菌及乳酸菌與纖維素酶、糖蜜的不同組合,提高了發(fā)酵后剩余可溶性碳水化合物的含量,增加了青貯料的能量供應(yīng)。與對照組相比,添加劑對中性洗滌纖維和半纖維素的含量無顯著影響(P>0.05);但是LC、LMC組的酸性洗滌纖維的含量顯著低于對照組(P>0.05),降低了青貯稻草的纖維含量,提升了青貯品質(zhì)。
表3 青貯90 d后各處理組的營養(yǎng)成分Table 3 The nutrients of different groups after 90 d ensiling %DM
2.3 不同處理對青貯有機(jī)酸及菌類計數(shù)的影響
由表4可知,各處理組的pH值與對照組相比,無顯著差異(P>0.05);除對照組外,各處理組pH均低于4.00,青貯效果好。青貯發(fā)酵以后,LC組和LMC組的乳酸含量顯著高于對照組和L組(P<0.05),但是和LM組差異不顯著(P>0.05)。各處理組的乙酸和對照組相比,差異不顯著(P>0.05)。LMC、LC組的乳乙比顯著高于CK組、L組(P<0.05),但是和LM組差異不顯著(P>0.05),同時LM組的乳乙比顯著高于對照(P<0.05)。各組均未檢測出丙酸和丁酸。
表4 稻草青貯90 d后的有機(jī)酸含量及乳酸菌、酵母菌、霉菌計數(shù)(干物質(zhì)基礎(chǔ))Table 4 The organic acid content and lactic acid bacteria acid, yeast, mold counts of rice straw after 90 d ensiling (dry matter basis)
ND:未檢測到Not detected.
與對照組相比,LC、LMC組顯著提高了總有機(jī)酸的含量(P<0.05),LM、L組的總有機(jī)酸數(shù)值上有升高的趨勢,但未達(dá)到顯著水平(P>0.05)。各組的乳酸菌數(shù)量與對照組相比無顯著差異(P>0.05),但在數(shù)值上都有所提高,在一定程度上印證了各處理組乳酸含量的變化。各組的酵母菌數(shù)量無顯著差異(P>0.05)。試驗各組霉菌均未檢出。
2.4 不同處理對青貯稻草有氧穩(wěn)定性的影響
由表5知,試驗各組有氧穩(wěn)定性無顯著差異(P>0.05),但從數(shù)值上來看CK和LM組的有氧穩(wěn)定性低于其他幾組,有氧穩(wěn)定性較差。CK和LM組的有氧損失要高于L、LC和LMC組,但沒有顯著差異(P>0.05),這和有氧穩(wěn)定性的結(jié)果相吻合。
表5 稻草青貯90 d后有氧穩(wěn)定性和有氧損失評價Table 5 The evaluation of aerobic stability and deterioration of rice straw after 90 d ensiling
3.1 乳酸菌對稻草青貯質(zhì)量的影響
青貯是在厭氧的條件下,附著在青貯料表面的乳酸菌利用糖發(fā)酵產(chǎn)生乳酸,進(jìn)而降低pH值、抑制有害微生物(酵母菌、霉菌和梭狀芽孢桿菌等)進(jìn)而達(dá)到保存飼料的目的。青貯的成敗,乳酸的含量成為一個關(guān)鍵性的評價指標(biāo)。與對照組相比,單獨添加乳酸菌使乳酸的含量提高了15.23%,降低了pH值,提高了飼料的酸香味,表明乳酸菌的添加提高了青貯稻草的乳酸含量,從總的綜合評分這一結(jié)果亦可以得到印證。氨態(tài)氮與總氮的比值反映了青貯過程中,蛋白質(zhì)的損失情況,數(shù)值越高,損失越多。從本試驗結(jié)果來看,添加乳酸菌對氨態(tài)氮與總氮的比值無顯著影響,這與Tabacco等[16]的結(jié)果一致。與對照組比,單獨添加乳酸菌對NDF、ADF和半纖維素?zé)o顯著影響,這與許能祥等[3]的結(jié)果相一致。
在青貯稻草中,添加乳酸菌,及乳酸菌與糖蜜、纖維素酶的不同組合,除LM組外,其他各組的有氧穩(wěn)定性略高于對照組,但差異不顯著(P>0.05)。乳酸菌利用糖生成乳酸有2種發(fā)酵形式:同型發(fā)酵乳酸菌,利用1 mol葡萄糖或果糖產(chǎn)生2 mol乳酸;異型發(fā)酵乳酸菌,生成等摩爾乳酸、乙酸(或乙醇)和CO2[17]。Tabacco等[18]在玉米(Zeamays)青貯中添加異型發(fā)酵乳酸菌制劑,提高了青貯料的有氧穩(wěn)定性。Conaghan等[14]在萎蔫的黑麥草(Loliumperenne)中添加同型發(fā)酵的乳酸菌制劑,降低了有氧穩(wěn)定性,提高了有氧損失。在本研究中,各處理組的乙酸含量高于對照組而無顯著性差異,但均提高了乳酸含量,由此推測在本試驗條件下,以同型發(fā)酵為主。
3.2 糖蜜對稻草青貯質(zhì)量的影響
據(jù)Nishino等[19]報道,在直接切碎和萎蔫處理的羊草(Leymuschinensis)中添加糖蜜均顯著提高了乳酸的含量;在本試驗中,LM組的乳酸含量與CK組、L組相比分別提高了61.93%、40.53%,迅速降低了pH值,提高了青貯料的發(fā)酵品質(zhì)。這與Lima等[20]的報道結(jié)果一致,主要是因為糖蜜的添加為乳酸菌的發(fā)酵提供了更多的發(fā)酵底物。LM組的乙酸含量,與CK組相比略有提升,但差異不顯著(P>0.05);LM組的有氧穩(wěn)定性和對照組相比亦無顯著差異(P>0.05)。Huisden等[21]報道了在玉米青貯中添加糖蜜,提高了乳酸的含量,但未能提高青貯料的有氧穩(wěn)定性,與本試驗結(jié)果相一致,因為乳酸菌的添加并未顯著提高乙酸的含量,乙酸含量越高越有助于青貯料的保存,提高有氧穩(wěn)定性[22]。Arbabi等[23]在狗尾草(Setariaviridis)青貯時,添加2.5%,5.0%,7.5%的糖蜜,隨著添加水平的提高,剩余可溶性糖的含量不斷提高。在本研究中,添加糖蜜(LM、LMC)組亦提高了剩余可溶性糖的含量,提高了青貯料的營養(yǎng)價值,主要是糖蜜自身的可溶性糖含量較高的原因。
3.3 纖維素酶對稻草青貯質(zhì)量的影響
Dean等[24]的研究顯示,在青貯時添加纖維素酶是通過降低pH值和NDF的含量進(jìn)而改善青貯的發(fā)酵品質(zhì),興麗等[25]在全株玉米青貯發(fā)酵時,添加纖維素酶降低了ADF的含量。Guo等[26]認(rèn)為,與單獨添加纖維素酶或乳酸菌相比,同時添加乳酸菌和纖維素酶能進(jìn)一步提高青貯料的品質(zhì)。本試驗中,LC組的ADF顯著低于對照組、乳酸菌組(P<0.05),LC組的乳酸含量顯著高于對照組和L組(P<0.05)。吳躍明等[27]在青貯稻草中添加纖維素酶提高了乳酸的含量,本試驗結(jié)果與其相符合,主要是因為降解了細(xì)胞壁的結(jié)構(gòu),提高了可溶性糖的含量,為發(fā)酵提供充足的底物,提高了發(fā)酵的品質(zhì)。在乳酸菌和纖維素酶的基礎(chǔ)上,再添加糖蜜,進(jìn)一步提高了WSC和乳酸的含量,有利于提高發(fā)酵品質(zhì)。
在稻草青貯中,添加乳酸菌,提高了乳酸的含量和綜合評分;在乳酸菌的基礎(chǔ)上,添加糖蜜或是與纖維素酶的組合,有利于提升發(fā)酵品質(zhì)。
References:
[1] Han L J, Yan Q J, Liu X Y,etal. Straw resources and their utilization in China. Transaction of the CSAE, 2002, (3): 87-91. 韓魯佳, 閆巧娟, 劉向陽, 等. 中國農(nóng)作物秸稈資源及其利用現(xiàn)狀. 農(nóng)業(yè)工程學(xué)報, 2002, (3): 87-91.
[2] Feng W, Zhang L Q, Pang Z W,etal. The economic and environmental analysis of crop residues burning and reutilization in China. Chinese Agricultural Science Bulletin, 2011, (6): 350-354. 馮偉, 張利群, 龐中偉, 等. 中國秸稈廢棄焚燒與資源化利用的經(jīng)濟(jì)與環(huán)境分析. 中國農(nóng)學(xué)通報, 2011, (6): 350-354.
[3] Xu N X, Ding C L, Gu H R,etal. Effects of adding lactic acid bacteria and rice bran on the fermentation quality of rice straw silage. Jiangsu Journal of Agricultural Sciences, 2010, (6): 1308-1312. 許能祥, 丁成龍, 顧洪如, 等. 添加乳酸菌和米糠對水稻秸稈青貯品質(zhì)的影響. 江蘇農(nóng)業(yè)學(xué)報, 2010, (6): 1308-1312.
[4] Hou X J, Shen Y X, Xu N X,etal. Effects of different additives on the quality and nutrient composition of rice straw. Jiangsu Agricultural Sciences, 2011, (6): 356-360. 侯曉靜, 沈益新, 許能祥, 等. 不同添加物對稻草青貯品質(zhì)及營養(yǎng)組成的影響. 江蘇農(nóng)業(yè)科學(xué), 2011, (6): 356-360.
[5] Li J, Shen Y, Cai Y. Improvement of fermentation quality of rice straw silage by application of a bacterial inoculant and glucose. Asian Australian Journal of Animal, 2010, 23(7): 901-906.
[6] Zhang L Y. Feed Analysis and Quality Test Technology (Second Edition)[M]. Beijing: Chinese Agricultural University Press, 2003. 張麗英. 飼料分析及飼料質(zhì)量檢測技術(shù)(第2版)[M]. 北京: 中國農(nóng)業(yè)大學(xué)出版社, 2003.
[7] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74: 3583-3597.
[8] Dubois M, Gilles K A, Hamilton J K,etal. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350-356.
[9] Adesogan A T, Krueger N, Salawu M B,etal. The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. Journal of Dairy Science, 2004, 87(10): 3407-3416.
[10] Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid andinvitromedia. Journal of Dairy Science, 1980, 63(1): 64-75.
[11] Madrid J, Martínez-Teruel A, Hernández F,etal. A comparative study on the determination of lactic acid in silage juice by colorimetric, high-performance liquid chromatography and enzymatic methods. Journal of Science Food Agriculture, 1999, 79(12): 1722-1726.
[12] Jiang F, Wang J K, Liu J X. Study on simultaneous determination of VFAs and lactic acid by using internal standard method. Chinese Journal of Animal Science, 2009, 45(21): 73-76. 姜芳, 王佳堃, 劉建新. 內(nèi)標(biāo)法同時測定揮發(fā)性脂肪酸和乳酸的方法探究. 中國畜牧雜志, 2009, 45(21): 73-76.
[13] Liu J X, Yang Z H, Ye J A,etal. Reasonable making and evaluation standard of silage (continued). Feed Industry, 1999, 20(4): 3-5. 劉建新, 楊振海, 葉均安, 等. 青貯飼料的合理調(diào)制與質(zhì)量評定標(biāo)準(zhǔn)(續(xù)). 飼料工業(yè), 1999, 20(4): 3-5.
[14] Conaghan P, O’Kiely P, O’Mara F P. Conservation characteristics of wilted perennial ryegrass silage made using biological or chemical additives. Jounal of Dairy Science, 2010, 93(2): 628-643.
[15] Fu T. The Effects of Microbial Inoculants on the Fermentation Process and Quality of Corn Silage[D]. Beijing: Chinese Academy of Agricultural Sciences, 2005: 14. 傅彤. 微生物接種劑對玉米青貯飼料發(fā)酵進(jìn)程及其品質(zhì)的影響[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2005: 14.
[16] Tabacco E, Piano S, Revello-Chion A,etal. Effect ofLactobacillusbuchneriLN4637 andLactobacillusbuchneriLN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions. Jounal of Dairy Science, 2011, 94(11): 5589-5598.
[17] Zhang T, Cui Z J, Li J P,etal. The effect of different fermentation type of silage inoculants bacteria on the fermentation of silage. Acta Prataculturae Sinica, 2005, 14(3): 67-71. 張濤, 崔宗均, 李建平, 等. 不同發(fā)酵類型青貯菌制劑對青貯發(fā)酵的影響. 草業(yè)學(xué)報, 2005, 14(3): 67-71.
[18] Tabacco E, Righi F, Quarantelli A,etal. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. Jounal of Dairy Science, 2011, 94(3): 1409-1419.
[19] Nishino N, Li Y, Wang C,etal. Effects of wilting and molasses addition on fermentation and bacterial community in guinea grass silage. Letter Applied Microbiology, 2012, 54(3): 175-181.
[20] Lima R, Louren?o M, Díaz R F,etal. Effect of combined ensiling of sorghum and soybean with or without molasses and lactobacilli on silage quality and in vitro rumen fermentation. Animal Feed Science Technology, 2010, 155(2-4): 122-131.
[21] Huisden C M, Adesogan A T, Kim S C,etal. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage. Jounal of Dairy Science, 2009, 92(2): 690-697.
[22] Queiroz O C M, Arriola K G, Daniel J L P,etal. Effects of 8 chemical and bacterial additives on the quality of corn silage. Jounal of Dairy Science, 2013, 96(9): 5836-5843.
[23] Arbabi S, Ghoorchi T. Effect of different levels of molasses as silage additives on fermentation quality of foxtail millet silage. Asian Journal of Animal Sciences, 2008, 2(2): 43-50.
[24] Dean D B, Adesogan A T, Krueger N,etal. Effect of fibrolytic enzymes on the fermentation characteristics, aerobic stability, and digestibility of bermudagrass silage. Jounal of Dairy Science, 2005, 88(3): 994-1003.
[25] Xing L, Han L J, Liu X,etal. Effects of lactobacillus and cellulase on the fermentation characteristics and microorganism of whole-plant corn silage. Journal of China Agricultural University, 2004, (5): 38-41. 興麗, 韓魯佳, 劉賢, 等. 乳酸菌和纖維素酶對全株玉米青貯發(fā)酵品質(zhì)和微生物菌落的影響. 中國農(nóng)業(yè)大學(xué)學(xué)報, 2004, (5): 38-41.
[26] Guo G, Yuan X, Li L,etal. Effects of fibrolytic enzymes, molasses and lactic acid bacteria on fermentation quality of mixed silage of corn and hulless-barely straw in the Tibetan Plateau. Grassland Science, 2014, 60(4): 240-246.
[27] Wu Y M, Liu J X, Liu D,etal. Effects of addition of cellulase-xylanase based enzyme and/or wheat bran on the quality of corn stover and rice straw silages and on their digestibility by sheep. Chinese Journal of Veterinary, 2004, (3): 298-303. 吳躍明, 劉建新, 劉丹, 等. 添加復(fù)合酶制劑與麩皮對玉米秸、稻草青貯發(fā)酵品質(zhì)和養(yǎng)分消化率的影響. 中國獸醫(yī)學(xué)報, 2004, (3): 298-303.
Effect of additives on the quality and aerobic stability of rice straw silage
GUO Hai-Ming, XIA Tian-Chan, ZHU Wen, ZHANG Yong, YE Jun-An*
CollegeofAnimalSciences,ZhejiangUniversity,Hangzhou310058,China
The effects of different additives on the fermentation and aerobic stability of rice straw silage were studied under laboratory conditions. The treatments were no additive (CK); Lactobacillus (L); a mixture of Lactobacillus and cellulose (LC); a mixture of Lactobacillus and molasses (LM); and a mixture of Lactobacillus, cellulose, and molasses (LMC). The Lactobacillus, cellulose, and molasses were applied at the rate of 5×105cfu/g, 0.6 IU/g, and 20 mg/g fresh weight, respectively. After 90 days of ensilage, the quality of rice straw silages was assessed and their chemical composition was determined. The pH value, NH3-N, and organic acid contents in fermented juice were determined and the aerobic stability of the silages was evaluated. The comprehensive score was significantly higher for the silages with additives than for the control silage (P<0.05). Compared with the control silage, the LC and LMC silages showed significantly (P<0.05) lower acid detergent fiber content, resulting in higher residual water soluble content. Compared with the control silage, the L, LM, LC and LMC silages showed higher lactic acid concentrations, especially the LC and LMC silages (P<0.05). The total acid content was significantly lower in the control silage than in the LC and LMC silages, but did not differ significantly among the control, L, and LM silages (P>0.05). The aerobic stability and aerobic deterioration did not differ significantly between the control silage and those with additives (P>0.05). In conclusion, the results showed that addition of Lactobacillus increased the lactic acid content and comprehensive evaluation score of silage. Addition of molasses and/or cellulose with Lactobacillus improved the quality of rice straw silage.
silage; rice straw; lactobacillus; molasses; cellulose
10.11686/cyxb2016124
http://cyxb.lzu.edu.cn
2016-03-23;改回日期:2016-05-17
浙江省科技廳反芻動物飼料資源高效利用團(tuán)隊特派員專項資助。
郭海明(1990-),男,安徽阜陽人,在讀碩士。E-mail:15067161398@163.com
*通信作者Corresponding author. E-mail: yja@zju.edu.cn
郭海明, 夏天嬋, 朱雯, 張勇, 葉均安. 青貯添加劑對稻草青貯品質(zhì)和有氧穩(wěn)定性的影響. 草業(yè)學(xué)報, 2017, 26(2): 190-196.
GUO Hai-Ming, XIA Tian-Chan, ZHU Wen, ZHANG Yong, YE Jun-An. Effect of additives on the quality and aerobic stability of rice straw silage. Acta Prataculturae Sinica, 2017, 26(2): 190-196.