• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Triethylenetetramine Functionalized Mesoporous ZrO2 Adsorbents for CO2 Capture

    2017-02-28 03:11:24CHENShengYANGFanmingCHENLang
    關(guān)鍵詞:介孔射線乙烯

    CHEN Sheng,YANG Fan-ming,CHEN Lang

    (1.College of Chemistry and Chemical Engineering,Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions,Hunan University,Changsha 410082,China;2.Yali Middle School,Changsha 410007,China)

    Synthesis of Triethylenetetramine Functionalized Mesoporous ZrO2Adsorbents for CO2Capture

    CHEN Sheng2,YANG Fan-ming1,CHEN Lang1

    (1.College of Chemistry and Chemical Engineering,Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions,Hunan University,Changsha 410082,China;2.Yali Middle School,Changsha 410007,China)

    Mesoporous ZrO2was prepared and functionalized with triethylenetetramine (TETA).The as-synthesized materials were characterized by powder X-ray diffraction,N2adsorption-desorption,Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,dispersive spectroscopy,thermogravimetric analysis,and CO2temperature-programmed desorption.The CO2adsorption performance of the adsorbents was tested in a stream of 5% CO2.The results show that TETA-functionalized mesoporous ZrO2is a good agent for CO2adsorption.A proper increase of the gas flow rate shows a positive impact whereas an increase of the adsorption temperature has a negative effect on CO2adsorption.At a TETA loading of 200 mg and a CO2flow rate of 20 cm3·min-1,the adsorbent exhibits a maximum adsorption capacity of 4.16 mmol·g-1at 75 ℃.In addition,the adsorbent exhibits excellent reusability.The remarkable adsorption capacity and recyclability suggest that the synthesized adsorbents are promising for CO2capture.

    triethylenetetramine; zirconium oxide; adsorbent; carbon dioxide

    With the growth of world economy,the emission of carbon dioxide (CO2) into the atmosphere leads to global warming and climate change[1-3].In order to mitigate CO2emission,carbon capture and sequestration (CCS) has become a global interest.Currently,CO2adsorption with solid adsorbents is considered as an effective method for CCS.For efficient CO2adsorption at a low temperature,solid substances such as zeolites[4],silicas[5],carbons[6-7],metal-organic frameworks (MOFs) mat erials[3,8],superamolecular-organic frameworks (SOFs) materials[9],and covalent-organic frameworks (COFs) materials are employed[10-11].

    To enhance CO2adsorption,porous materials functionalized with organic amines were developed[12-26].For instance,polyethyleneimine (PEI) modified MCM-41 (MCM-41-PEI) displays a CO2adsorption capacity of 2.54 mmol·g-1at 75 ℃[13],which is 13 times than that of MCM-41[12].The capacity of ethylenediamine functionalized MOFs material (en-Mg2dobpdc) achieves a CO2uptake of about 1.0 mmol·g-1at 40 ℃,whereas that of Mg2dobpdc alone is only about 0.24 mmol·g-1[3].With the functionalized materials,CO2adsorption capacity is substantially enhanced because of the interaction between the amino-groups and CO2molecules (Scheme 1)[14,17].In addition,with the doping of heteroatoms onto the support,the performance of the adsorbents can be markedly elevated.In these materials,heteroatoms with many electro-holes act as Lewis acid sites and react with the organic amines,leading to the enrichment of CO2-philic sites and better thermal stability of the adsorbents.These prior results inspired us to prepare new solid materials utilizing metal oxides with Lewis acid sites.

    It is known that zirconyl chloride octahydrate (ZrOCl2·8H2O) is enriched with electron holes[27-28].It is hence possible to generate an oxide with Lewis acid sites from ZrOCl2·8H2O[29].In this study,we synthesized ZrO2from ZrOCl2·8H2O and NaOH,and used it as the support of triethylenetramine (TETA) that is affluent with N atoms.By exposing the as-generated materials to a stream of 5% CO2,we evaluated their CO2adsorption performance at 75 ℃.In addition,we investigated the effect of TETA amount,adsorption temperature,and gas flow rate on the adsorption performance.Finally,we assessed the recyclability of the adsorbents.

    Where R1,R2,R3and R4represent alkyl groups

    Scheme 1 Route for chemical adsorption of CO2over organic-amine functionalized solid materials

    1 Experimental

    1.1 Synthetic procedures

    ZrO2was synthesized according to the following procedure.At first,1.5 g of polyethylene glycol (PEG,MW=2000) and 0.9 g of NaOH were dissolved in 80 ml of deionized water.With the addition of 3.22 g of ZrOCl2·8H2O,the mixture was stirred at room temperature (RT) for 4 h.Then,the mixture was transferred to an autoclave and hydrothermally treated in an oven at 110 ℃ for 24 h under static conditions.The resulted product was separated by centrifugation,washed thoroughly with deionized water,and dried at 120 ℃ for 24 h.The as-obtained product was collected for this study(99.4% yield based on Zr).

    The TETA-modified ZrO2adsorbents were synthesized according to the method reported by Xu et al.[12].A designated amount of TETA was dissolved in 10 g of ethanol,followed by the addition of 0.5 g of the synthesized ZrO2.The mixture was stirred vigorously until the majority of solvent was evaporated.Then the product was dried at 80 ℃ for 24 h and at 100 ℃ for another 6 h.The as-prepared adsorbents are named herein as ZrO2-TETA-n,wherenstands for the nominal weight (mg) of TETA.

    1.2 Characterization

    Powder X-ray diffraction (XRD) patterns of the adsorbents were collected on a Shimadzu XD-5A diffractometer with monochromatized Cu Kαradiation (λ=0.154 06 nm) at a setting of 30 kV and 20 mA.N2adsorption-desorption performance tests were performed at 77 K over a Quantachrome Nova-Win2 instrument.The Fourier transform infrared spectroscopy (FT-IR) measurements were conducted using a Nicolet 6 700 FT-IR spectrometer.X-ray photoelectron spectroscopy (XPS) characterization was performed using an ESCALAB 250Xi Spectrometer.Energy dispersive spectroscopy (EDS) was performed on a FEI QuANTA 200 instrument.Thermogravimetric analysis (TGA) was conducted over thermal analyzer TA-60WS with the sample heated (in N2) from 35 to 700 ℃ (heating rate:10 ℃·min-1).Temperature-programmed desorption of CO2(CO2-TPD) was carried out over a Micromeritics 2 920 apparatus equipped with a thermal conductivity detector (TCD).

    1.3 CO2adsorption and adsorbent regeneration

    CO2adsorption experiments were carried out over a Micromeritics AutoChem II 2920 Chemisorption Analyzer.The method was reported elsewhere[19].About 100 mg of sample was used and degassed at 100 ℃ for 60 min in an argon flow (80 cm3·min-1).Then,the sample was exposed to a flow of 5% CO2for 10 min at a desired temperature.After CO2adsorption,the sample temperature was raised to 100 ℃ and kept at this temperature for 60 min in an argon flow (80 cm3·min-1).The CO2adsorption capacity of an adsorbent was estimated by integrating the resulted breakthrough curve.

    For regeneration,a spent material was heated to 100 ℃ and kept at this temperature for 60 min in an argon flow (80 cm3·min-1).To assess the reusability of the samples,the procedure of CO2adsorption-desorption was repeated 10 times using ZrO2-TETA-200 as a model.

    2 Results and Discussion

    2.1 XRD

    The XRD patterns of ZrO2and ZrO2-TETA-nare displayed in Fig.1.The diffraction pattern of the as-prepared ZrO2matches well with that of standard ZrO2(PDF card:50-1089),indicating that the ZrO2was successfully obtained.Since there is no detection of signals assignable to impurities,it is deduced that pure ZrO2can be synthesized following the above procedure.There is no significant change of ZrO2diffraction pattern after TETA modification,demonstrating that the structure of ZrO2remains largely intact.However,with the introduction of TETA there is a shift of the (011) and (110) peaks from 30.16° and 35.10° to 30.24° and 35.18°,respectively.And there is a decrease of the peak intensity with respect to the increase of TETA amount.These results are similar to those reported by Zhao et al[2].and Xu et al.[12],who ascribed the phenomena to the interaction between N and Zr species and the deterioration of crystallinity.Our results suggest that TETA was successfully introduced to ZrO2.

    Fig.1 XRD patterns of ZrO2 and ZrO2-TETA-n

    Fig.2 FT-IR spectra of ZrO2 and ZrO2-TETA-200

    2.2 N2adsorption-desorption

    Our results of N2adsorption-desorption isotherms are illustrated in Tab.1.The BET specific surface area (SBET),pore volume (Vp) and pore diameter (dp) of the synthesized ZrO2are 64 m2·g-1,0.24 cm3·g-1and 15.4 nm,respectively.These results indicate that the ZrO2material is mesoporous.TheSBET,Vpanddpvalues decrease with the rise of TETA amount due to the filling of pore channels.Nonetheless,the ZrO2-TETA-nadsorbents are mesoporous,with pore diameters ranging from 2 nm to 50 nm.

    Tab.1 Textural property of ZrO2 and ZrO2-TETA-n

    2.3 FT-IR

    The FT-IR spectra of ZrO2and ZrO2-TETA-200 are displayed in Fig.2.Similar to the work of Chen et al.[29],there is a peak at 1 615 cm-1in the spectrum of ZrO2,which is attributed to the existence of Lewis acid sites.Compared with ZrO2,ZrO2-TETA-200 shows additional peaks at 1 452,1 523,2 897 and 2 932 cm-1.The peaks at 1 452 and 1 523 cm-1can be attributed to the deformation of C—H and N—H bonds,respectively,whereas those at 2 897 and 2 932 cm-1to C—H stretching vibrations[20-22].Furthermore,the peaks attributable to ZrO2observed over ZrO2-TETA-200 are lower in intensity in comparison with those observed over the as-prepared ZrO2sample,providing further evidence for the successful introduction of TETA onto ZrO2.

    2.4 XPS

    The XPS results of ZrO2and ZrO2-TETA-200 are displayed in Fig.3.There are apparent Zr(3d) peaks at 182.3 and 184.7 eV detected over ZrO2.The ZrO2-TETA-200 sample shows Zr(3d) peaks at 181.8 and 184.1 eV,which are lower in binding energy than those of ZrO2(Fig.3A).The shift of these peaks is similar to that reported by Martin et al.[30]who ascribed the phenomenon to the interaction between Zr and N species.In addition,the N(1s) profile collected over ZrO2-TETA-200 can be ascribed to N—Zr,N—H and N—C species (Fig.3B)[31].Again,these results indicate that TETA is successfully introduced to ZrO2.

    Fig.3 XPS spectra of ZrO2 and ZrO2-TETA-200.(A) Zr(3d) spectra of ZrO2 and ZrO2-TETA-200; (B) N(1s) spectrum of ZrO2-TETA-200

    2.5 EDS

    The EDS results of ZrO2-TETA-nare compiled in Tab.2.The detections of Zr,C,N and O over ZrO2-TETA-nwere observed.C and N contents increased while Zr and O contents decreased with the increase of TETA amount,confirming for one more time that TETA was successfully introduced to ZrO2.

    Tab.2 Element content of ZrO2-TETA-n*

    *H was too light to be detected.

    2.6 TG analysis

    TG profiles of ZrO2-TETA-nare illustrated in Fig.4.For ZrO2-TETA-100,ZrO2-TETA-150,and ZrO2-TETA-200,the decomposition temperature is around 190 ℃,which is about 15 ℃ higher than that of ZrO2-TETA-250,ZrO2-TETA-300,and ZrO2-TETA-350.When the TETA amount is below 200 mg,there is strong interaction between TETA and the support because of N—Zr bonding.In excess amount of TETA (above 200 mg),the interaction between TETA and ZrO2is not as strong and there is decrease in decomposition temperature.

    2.7 CO2adsorption

    According to Xu et al.,solid adsorbents functionalized with organic amine perform excellently for CO2adsorption at 75 ℃[12].In the present investigation we also adopted 75 ℃ as the temperature for CO2adsorption.The breakthrough curves corresponding to CO2adsorption are shown in Fig.5(彩圖見封三).It is observed that the CO2concentration returns to the initial level within 10 min.In addition,there is complete CO2desorption when the materials are heated to 100 ℃ (5 ℃·min-1) and remained at 100 ℃ for 60 min in an argon flow (80 cm3·min-1) (Fig.6).These results indicate that the spent adsorbents can be easily regenerated.

    Fig.4 TGA profiles of ZrO2 and ZrO2-TETA-n

    Fig.5 Breakthrough curves of CO2 adsorption on ZrO2-TETA-n in a stream of 5% CO2 at 75 ℃ (within a 5-min period)

    Fig.6 CO2-TPD curves of ZrO2-TETA-n from 75 to 100 ℃ at

    Fig.7 CO2 adsorption capacity of ZrO2 and ZrO2-TETA-n as a a ramping rate of 5 ℃·min-1 function of TETA amount (Conditions:adsorbate=5% CO2,T=75 ℃,gas flow rate=10 cm3·min-1

    2.8 Effect of TETA amount

    The CO2adsorption capacities of ZrO2and ZrO2-TETA-nat 75 ℃ are displayed in Fig.7.Similar to the phenomena of amine modification[2,3,12-26],the CO2adsorption capacity of ZrO2-TETA-nis larger than that of ZrO2,demonstrating that TETA is a good agent for CO2uptake.The CO2adsorption capacity increases with the increase of TETA amount from 100 to 200 mg as a result of the increase of CO2affinity sites originating from-NH2[2,3,12-26].However,there is a decline of the adsorption capacity when the rise of TETA amount is from 200 to 350 mg,which is in line with the results of previous work when TETA was in excess[12,19].With the surface covered by TETA agglomerates,it is difficult for gaseous CO2molecules to react with the basic sites.Consequently,the excess amount of TETA has a negative effect on CO2adsorption.

    2.9 Effect of adsorption temperature

    Fig.8 CO2 adsorption capacity of ZrO2-TETA-n as a function of temperature (Conditions:t=10 min,adsorbate=5% CO2,gas flow rate=10 cm3·min-1)

    The CO2adsorption performance of organic amine-modified adsorbents varies with adsorption temperature[12,17-20,22].For example,due to both kinetic and thermodynamic factors PEI-modified MCM-41 (MCM-41-PEI) performs the best at 75 ℃.In this study,the influence of adsorption temperature on the adsorption performance of ZrO2-TETA-nwas examined and the results are displayed in Fig.8.It is clear that the adsorption capacity decreases with the increase of the adsorption temperature.It should be pointed out that CO2adsorption over organic amine-modified adsorbents is a reversible and exothermic process[12,17-20,22].With the increase of the adsorption temperature,the adsorption equilibrium (Scheme 1) shifts to the left,leading to the decline of adsorption capacity.

    2.10 Effect of gas flow rate

    It was reported that the gas flow rate has a strong impact on CO2adsorption[26,35].In the present work,the influence of the CO2flow rate over ZrO2-TETA-200 was investigated,and the results are shown in Fig.9.Similar to the work of Zhao et al.[26],the breakthrough time decreases with the increase of CO2flow rate (Fig.9A).At a low flow rate,CO2adsorption is controlled by CO2diffusion through the gas-film system of surface particles[32].With the increase of the flow rate from 5 to 20 cm3·min-1,CO2adsorption equilibrium (Scheme 1) is shifted to the right due to the higher presence of CO2molecules on the surface,leading to the increase of CO2adsorption capacity (Fig.9B).However,further increase of the flow rate from 20 to 35 cm3·min-1results in a decline in CO2adsorption capacity (Fig.9B).When the flow rate is larger than 20 cm3·min-1,CO2adsorption is governed by the contact time between the gas molecules and basic sites as well as by the change of mass transfer zone.At a large flow rate,CO2diffusion extends beyond the gas-film system and the contact time between them decreases rapidly,leading to the decline of chemical adsorption capacity.Besides,the mass transfer zone increases with the rise of flow rate,leading to the decline of mass transfer coefficient.Consequently,CO2adsorption capacity of ZrO2-TETA-200 declines with further rise of the CO2flow rate.

    Fig.9 (A) Influence of CO2 flow rate on the adsorption capacity; (B) Breakthrough curves of CO2 adsorption over ZrO2-TETA-200 at different gas flow rates and CO2 adsorption capacity of ZrO2-TETA-200 as a function of gas flow rate

    Fig.10 FT-IR spectra of ZrO2-TETA-200.(a):before,(b):after CO2 adsorption,and (c):the result of spectrum (b)-spectrum (a)

    Displayed in Tab.3 is a comparison of CO2adsorption performance of ZrO2-TETA-200 with other organic amine-functionalized materials.It is clear that ZrO2-TETA-200 is a good candidate for CO2adsorption.

    Tab.3 CO2 adsorption performance of ZrO2-TETA-200 and other amine-modified adsorbents

    aMCM-41-PEI-50:polyethyleneimine modified MCM-41;bmono-SBA-15-p:3-amino propyltrimethoxysilane modified P123-occluded SBA-15;cPEI/Zr-SBA-15:polyethyleneimine modified Zr-doped SBA-15;dZr-MCM-41-TETA-200:triethylenetetramine functionalized Zr-doped MCM-41;eMCM-41-TEPA30wt%-AMP30%:tetraethylenepentamine and 2-amino-2-methyl-l-propanol modified MCM-41;fPE-SBA-15(17e)-PEI:polyethyleneimine modified pore expanded SBA-15;gAAM-Silica:acrylamide modified silica gel.

    2.11 Recyclability performance

    Fig.11 Recyclability study of ZrO2-TETA-200 (Conditions:T=75 ℃,t=10 min,5% CO2 in a stream of 10 cm3·min-1 flow rate)

    In practical applications,performance stability in cyclic operations is of paramount importance[12-13,16,18-20].The recyclability of ZrO2-TETA-200 for CO2adsorption at 75 ℃ was examined and the test results are shown in Fig.11.One can see that the adsorbent shows excellent recyclability ad reusability with a test of 10 repeating runs.These results suggest that ZrO2-TETA-200 is a promising candidate for the capture of CO2.

    3 Conclusions

    The adsorbents generated through the introduction of triethylenetetramine to mesoporous ZrO2show excellent CO2adsorption performance in a stream of 5% CO2.At 75 ℃,a maximum CO2uptake of 4.16 mmol·g-1has been achieved over ZrO2-TETA-200 at a CO2flow rate of 20 cm3·g-1.An increase of TETA amount or gas flow rate has a positive impact on its performance whereas an increase in the adsorption temperature has a negative effect on the adsorption.The spent adsorbent can be easily regenerated at 100 ℃ for 60 min in argon.It can be concluded that the adsorbent is suitable for efficient CO2capture.

    [1] WANG J,HUANG L,YANG R,etal.Recent advances in solid sorbents for CO2capture and new development trends[J].Energy Environ Sci,2014,7(11):3478-3518.

    [2] ZHAO X,HU X,HU G,etal.Enhancement of CO2adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine[J].J Mater Chem A,2013,1(20):6208-6215.

    [3] LEE W R,HWANG S Y,RYU D W,etal.Diamine-functionalized metal-organic framework:exceptionally high CO2capacities from ambient air and flue gas,ultrafast CO2uptake rate,and adsorption mechanism[J].Energy Environ Sci,2014,7(2):744-751.

    [4] SIRIWARDANE R V,SHEN M S,AND E P F,etal.Adsorption of CO2on molecular sieves and activated carbon[J].Energy & Fuels,2001,15(2):279-284.

    [5] BELMABKHOUT Y,SERNA-GUERRERO R,SAYARI A.Adsorption of CO2from dry gases on MCM-41 silica at ambient temperature and high pressure.1:Pure CO2adsorption[J].Chem Eng Sci,2009,64(17):3721-3728.

    [6] DRAGE T C,BLACKMAN J M,PEVIDA C,etal.Evaluation of activated carbon adsorbents for CO2capture in gasification[J].Energy & Fuels,2009,23(5):2790-2796.

    [7] LI X,CHENG Y,ZHANG H,etal.Efficient CO2capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J].ACS Appl Mater Interfaces,2015,7(9):5528-5537.

    [8] AHRENHOLTZ S R,LANDAVERDE-ALVARADO C,WHITTING M,etal.Thermodynamic Study of CO2sorption by polymorphic microporous MOFs with open Zn(II) coordination sites[J].Inorg Chem,2015,54(9):4328-4336.

    [9] LU J,PEREZ-KRAP C,SUYETIN M,etal.A robust binary supramolecular organic framework (SOF) with high CO2adsorption and selectivity[J].J Am Chem Soc,2014,136(1):522-526.

    [10] DING S Y,WANG W.Covalent organic frameworks (COFs):from design to applications[J].Chem Soc Rev,2013,42(1):538-568.

    [11] COTE A P,BENIN A L,OCKWING N W,etal.Porous,crystalline,covalent organic frameworks[J].Science,2005,310:1166-1170.

    [12] XU X,SONG C,ANDRESEN J M,etal.Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2capture[J].Energy & Fuels,2002,16(6):1463-1469.

    [13] NIGAR H,GARCIA-BANOS B,CATAL-CIVERA J M,etal.Amine-functionalized mesoporous silica.A material capable of CO2adsorption and fast regeneration by microwave heating[J].AIChE J,2015,61(2):547-555.

    [14] HAO S,CHANG H,XIAO Q,etal.One-pot synthesis and CO2adsorption properties of ordered mesoporous SBA-15 materials Functionalized with APTMS[J].J Phys Chem C,2011,115(26):12873-12882.

    [15] ZHOU L,FAN J,GUI G,etal.Highly efficient and reversible CO2adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels[J].Green Chem,2014,16(8):4009-4016.

    [16] GOLMAKANI A,FATEMI S,TAMNANLOO J.CO2capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process,using SAPO-34[J].Ind Eng Chem Res,2016,55(1):334-350.

    [17] MONAZAM E R,SHADLE L J,MILLER D C,etal.Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica[J].AIChE J,2013,59(3):923-935.

    [18] KUWAHARA Y,KANG D Y,COPELAND J R,etal.Dramatic enhancement of CO2uptake by poly(ethyleneimine) using zirconosilicate supports[J].J Am Chem Soc,2012,134(26):10757-10760.

    [19] YANG F M,CHEN L,AU C T,etal.Preparation of triethylenetetramine-modified zirconosilicate molecular sieve for carbon dioxide adsorption[J].Environ Prog Sustain Energy,2015,34(6):1814-1821.

    [20] WANG X,GUO Q J,ZHAO J,etal.Mixed amine-modified MCM-41 sorbents for CO2capture[J].Int J Greenh Gas Control,2015,37(1):90-98.

    [21] REZAEI F,SAKWA-NOVAK M A,BALI S,etal.Shaping amine-based solid CO2adsorbents:effects of pelletization pressure on the physical and chemical properties[J].Micropor Mesopor Mater,2015,204:34-42.

    [22] VILARRASA-GARCIA E,ORTIGOSA Moya E M,CECILIA J A,etal.CO2adsorption on amine modified mesoporous silicas:effect of the progressive disorder of the honeycomb arrangement[J].Micropor Mesopor Mater,2015,209:172-183.

    [23] OLEA A,SANZ-PEREZ E S,ARENCIBIA A,etal.Amino-functionalized pore-expanded SBA-15 for CO2adsorption[J].Adsorpt,2013,19(2/3/4):589-600.

    [24] BELMABKHOUT Y,SERNA-GUERRERO R,SAYARI A.Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica:application for gas purification[J].Ind Eng Chem Res,2010,49(1):359-365.

    [25] HARLICK P J E,SAYARI A.Applications of pore-expanded mesoporous Silica.5.triamine grafted material with exceptional CO2dynamic and equilibrium adsorption performance[J].Ind Eng Chem Res,2007,46(2):446-458.

    [26] ZHAO Y,SHEN Y,BAI L,etal.Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling[J].Appl Surf Sci,2012,261:708-716.

    [27] ZHANG Z H,YIN L,WANG Y M,An expeditious synthesis of benzimidazole derivatives catalyzed by Lewis acids[J].Catal Commun,2007,8(7):1126-1131.

    [28] FIROUZABADA H,IRANPOOR N,JAFARPOUR M,etal.ZrOCl2·8H2O as a highly efficient and the moisture tolerant Lewis acid catalyst for Michael addition of amines and indoles toα,β-unsaturated ketones under solvent-free conditions[J].J Mol Catal A:Chem,2006,252(1/2):150-155.

    [29] CHEN W H,KO H H,SAKTHIEVL A,etal.A solid-state NMR,FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia:Influence of promoter and sulfation treatment[J].Catal Today,2006,116(2):111-120.

    [30] MARTIN P J,BENDAVID A,CAIRNEY J M,etal.Nanocomposite Ti-Si-N,Zr-Si-N,Ti-Al-Si-N,Ti-Al-V-Si-N thin film coating deposited by vacuum arc deposition[J].Surf Coat Technol,2005,200(7):2228-2235.

    [31] XUE A,ZHOU S,ZHAO Y,etal.Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes[J].J Hazard Mater,2011,194:7-14.

    [32] RODRIGUEZ-MOSQUEDA R,PFEIFFER H.Thermokinetic analysis of the CO2chemisorption on Li4SiO4by using different gas flow rates and particle sizes[J].J Phys Chem A,2010,114(13):4535-4541.

    [33] LIAO Y,CAO S W,YUAN Y,etal.Efficient CO2capture and photoreduction by amine-functionalized TiO2[J].Chem Euro J,2014,20(33):10220-10222.

    [34] TSENG C L,CHEN Y K,WANG S H,etal.2-ethanolamine on TiO2investigated by in situ infrared spectroscopy,adsorption,photochemistry,and its interaction with CO2[J].J Phys Chem C,2010,114(27):11835-11843.

    (編輯 WJ)

    2016-10-12

    國家自然科學(xué)基金資助項(xiàng)目(21401054);湖南省自然科學(xué)基金資助項(xiàng)目(2015JJ3033);國家科技支撐計(jì)劃資助項(xiàng)目(2013BAC11B03)

    O614.81+2

    A

    1000-2537(2017)01-0051-09

    三乙烯四胺修飾介孔ZrO2的合成及其CO2吸附性能研究

    陳 盛2,楊泛明1,陳 浪1*

    (1.湖南大學(xué)化學(xué)化工學(xué)院,化石能源清潔利用湖南省重點(diǎn)實(shí)驗(yàn)室,中國 長沙 410082;2.雅禮中學(xué),中國 長沙 410007)

    合成介孔ZrO2并采用三乙烯四胺修飾制備CO2吸附劑.采用X-射線粉末衍射、低溫N2吸附-脫附、傅里葉紅外、X-射線光電子能譜、色散光譜、熱重及CO2程序升溫脫附等表征手段對合成材料的理化性質(zhì)進(jìn)行表征.吸附劑的吸附性能在CO2濃度為5%的流動氣流中進(jìn)行測定.研究結(jié)果表明通過三乙烯四胺改性的介孔ZrO2對CO2有較好的吸附性能,適當(dāng)增加CO2氣體流速能促進(jìn)吸附而提高吸附溫度對吸附不利.當(dāng)三乙烯四胺的負(fù)載量為200 mg,CO2氣體流速為20 cm3·min-1,吸附溫度為75 ℃時,吸附劑表現(xiàn)出最好的吸附性能,最大吸附容量達(dá)到4.16 mmol·g-1,該條件下吸附劑還具有很好的重復(fù)使用性能.因此其突出的吸附能力和良好的重復(fù)利用性表明三乙烯四胺改性的介孔ZrO2在CO2吸附方面具有潛力.

    三乙烯四胺; 氧化鋯; 吸附劑; 二氧化碳

    10.7612/j.issn.1000-2537.2017.01.008

    * 通訊作者,E-mail:huagong042cl@163.com

    猜你喜歡
    介孔射線乙烯
    功能介孔碳納米球的合成與應(yīng)用研究進(jìn)展
    “直線、射線、線段”檢測題
    『直線、射線、線段』檢測題
    乙烷裂解制乙烯產(chǎn)業(yè)大熱
    新型介孔碳對DMF吸脫附性能的研究
    赤石脂X-射線衍射指紋圖譜
    中成藥(2017年3期)2017-05-17 06:09:16
    有序介孔材料HMS的合成改性及應(yīng)用新發(fā)展
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    乙烯裂解爐先進(jìn)控制系統(tǒng)開發(fā)及工業(yè)應(yīng)用
    自動化博覽(2014年9期)2014-02-28 22:33:35
    兩個基于二噻吩乙烯結(jié)構(gòu)單元雙核釕乙烯配合物的合成,表征和性質(zhì)
    日韩欧美精品免费久久| 免费看不卡的av| 在线a可以看的网站| 亚洲欧美日韩无卡精品| 超碰av人人做人人爽久久| 人妻少妇偷人精品九色| 久久精品熟女亚洲av麻豆精品 | 美女主播在线视频| 日日干狠狠操夜夜爽| 国产乱来视频区| 午夜视频国产福利| 日韩欧美精品免费久久| 欧美高清性xxxxhd video| a级一级毛片免费在线观看| 日本-黄色视频高清免费观看| 国产伦精品一区二区三区视频9| 最近中文字幕高清免费大全6| 亚洲精品成人av观看孕妇| 成人一区二区视频在线观看| 国产乱人视频| 噜噜噜噜噜久久久久久91| 久久久久网色| 日韩一区二区视频免费看| 永久网站在线| 国产成人免费观看mmmm| 精品久久久精品久久久| 99久久人妻综合| 黄色配什么色好看| 亚洲美女视频黄频| 欧美日韩国产mv在线观看视频 | 水蜜桃什么品种好| 赤兔流量卡办理| 22中文网久久字幕| 精品一区在线观看国产| 精品人妻熟女av久视频| 久久久欧美国产精品| 亚洲精品aⅴ在线观看| 国产精品人妻久久久影院| 欧美xxxx黑人xx丫x性爽| 欧美成人午夜免费资源| 最近中文字幕2019免费版| 日本wwww免费看| 91久久精品国产一区二区成人| 女的被弄到高潮叫床怎么办| 三级经典国产精品| 国产成人91sexporn| 毛片一级片免费看久久久久| 国产乱人偷精品视频| 欧美不卡视频在线免费观看| 七月丁香在线播放| 国产精品嫩草影院av在线观看| 久久久a久久爽久久v久久| 熟女电影av网| av又黄又爽大尺度在线免费看| 美女cb高潮喷水在线观看| 在线观看人妻少妇| 成人毛片a级毛片在线播放| 国产亚洲91精品色在线| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 久久精品人妻少妇| 欧美日韩视频高清一区二区三区二| 麻豆精品久久久久久蜜桃| 午夜免费男女啪啪视频观看| 国产一区二区三区av在线| 视频中文字幕在线观看| 国产亚洲一区二区精品| www.av在线官网国产| 久久精品夜夜夜夜夜久久蜜豆| 卡戴珊不雅视频在线播放| 熟妇人妻不卡中文字幕| 日本免费在线观看一区| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 国产伦精品一区二区三区四那| 在线观看av片永久免费下载| 天美传媒精品一区二区| 午夜久久久久精精品| 国产有黄有色有爽视频| 国产精品国产三级国产av玫瑰| 午夜免费激情av| 国产一区有黄有色的免费视频 | 卡戴珊不雅视频在线播放| 亚洲精品乱码久久久v下载方式| 一个人看的www免费观看视频| 国产伦精品一区二区三区视频9| 成人无遮挡网站| 国产亚洲av片在线观看秒播厂 | 美女内射精品一级片tv| 老女人水多毛片| 日本-黄色视频高清免费观看| 久久久国产一区二区| 熟女人妻精品中文字幕| 伊人久久精品亚洲午夜| 草草在线视频免费看| 丰满少妇做爰视频| 精品一区二区三卡| 亚洲精品日韩在线中文字幕| av卡一久久| av黄色大香蕉| 亚洲精品亚洲一区二区| 毛片一级片免费看久久久久| 免费人成在线观看视频色| 精品人妻偷拍中文字幕| 久久精品久久精品一区二区三区| 免费黄网站久久成人精品| 成人亚洲欧美一区二区av| 一级毛片 在线播放| 久久久色成人| 亚洲,欧美,日韩| eeuss影院久久| av卡一久久| 精品人妻一区二区三区麻豆| 久久精品人妻少妇| 欧美成人a在线观看| 真实男女啪啪啪动态图| 亚洲精品亚洲一区二区| 搡老妇女老女人老熟妇| 老女人水多毛片| 午夜福利网站1000一区二区三区| 嫩草影院新地址| 九九爱精品视频在线观看| 三级经典国产精品| 欧美另类一区| 成人亚洲精品av一区二区| 国产男女超爽视频在线观看| 国产精品日韩av在线免费观看| 久久久久性生活片| 免费av不卡在线播放| 亚州av有码| 国产精品一区www在线观看| 久久久久久久久中文| 亚洲熟女精品中文字幕| 美女cb高潮喷水在线观看| 秋霞伦理黄片| 黄片wwwwww| 成人无遮挡网站| 联通29元200g的流量卡| 国产极品天堂在线| 啦啦啦中文免费视频观看日本| 丝瓜视频免费看黄片| 午夜福利在线观看免费完整高清在| 2018国产大陆天天弄谢| 成人亚洲精品av一区二区| 国产精品久久久久久久电影| 欧美性猛交╳xxx乱大交人| 亚洲av电影不卡..在线观看| 国产av在哪里看| 免费大片18禁| 久久久久久久亚洲中文字幕| 日本色播在线视频| 日韩亚洲欧美综合| 国产成人freesex在线| 精品一区二区免费观看| 麻豆乱淫一区二区| 精品国产露脸久久av麻豆 | 国产高清三级在线| 欧美日韩在线观看h| av国产久精品久网站免费入址| 日韩视频在线欧美| 精品久久久久久久久亚洲| 亚洲va在线va天堂va国产| 久久久精品免费免费高清| 国产一区二区三区av在线| 国模一区二区三区四区视频| 国产伦理片在线播放av一区| 成人国产麻豆网| 久久久色成人| 十八禁网站网址无遮挡 | 日韩在线高清观看一区二区三区| 日本午夜av视频| 一区二区三区乱码不卡18| 小蜜桃在线观看免费完整版高清| av播播在线观看一区| 欧美xxxx黑人xx丫x性爽| 久久精品熟女亚洲av麻豆精品 | 久久人人爽人人片av| 国产成人精品福利久久| 国产精品日韩av在线免费观看| 欧美日韩亚洲高清精品| 在线观看av片永久免费下载| 亚洲va在线va天堂va国产| 国产精品人妻久久久久久| 精品国产三级普通话版| 日韩一区二区三区影片| 永久网站在线| 天天躁日日操中文字幕| 尾随美女入室| 亚洲av福利一区| 干丝袜人妻中文字幕| 国产熟女欧美一区二区| 观看美女的网站| 极品少妇高潮喷水抽搐| 欧美日韩在线观看h| 男插女下体视频免费在线播放| 国产又色又爽无遮挡免| 日韩欧美三级三区| 特大巨黑吊av在线直播| 久久热精品热| 99久久精品国产国产毛片| 亚洲性久久影院| 免费av毛片视频| 非洲黑人性xxxx精品又粗又长| 亚洲av二区三区四区| 少妇的逼好多水| 女的被弄到高潮叫床怎么办| 汤姆久久久久久久影院中文字幕 | 精品少妇黑人巨大在线播放| 日韩三级伦理在线观看| 精品久久久久久成人av| 国产爱豆传媒在线观看| 日日摸夜夜添夜夜爱| 啦啦啦韩国在线观看视频| 91av网一区二区| 国产亚洲精品久久久com| 国产伦在线观看视频一区| 国产精品一及| 亚洲av不卡在线观看| 国产高潮美女av| 免费观看无遮挡的男女| 中国美白少妇内射xxxbb| 我的女老师完整版在线观看| 亚洲av电影不卡..在线观看| 精品人妻偷拍中文字幕| 亚洲最大成人手机在线| 国产男女超爽视频在线观看| 久久97久久精品| 免费人成在线观看视频色| 久久精品久久久久久噜噜老黄| av女优亚洲男人天堂| 看免费成人av毛片| 亚洲欧洲日产国产| 亚洲在线自拍视频| 九九久久精品国产亚洲av麻豆| 国产中年淑女户外野战色| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清| 亚洲人成网站高清观看| 美女主播在线视频| 成年免费大片在线观看| 男的添女的下面高潮视频| 性插视频无遮挡在线免费观看| 欧美高清成人免费视频www| 国产精品久久久久久精品电影| 国产亚洲一区二区精品| 亚洲精品乱码久久久久久按摩| 午夜老司机福利剧场| 日日摸夜夜添夜夜添av毛片| 色综合站精品国产| 亚洲在线观看片| 日本色播在线视频| 久久99热6这里只有精品| 亚洲欧美一区二区三区黑人 | 91久久精品电影网| 春色校园在线视频观看| av天堂中文字幕网| 女人十人毛片免费观看3o分钟| 久久久精品免费免费高清| 久久久久久久久大av| 超碰97精品在线观看| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| 久久久久久久久久久免费av| 日本免费a在线| 国产淫语在线视频| av又黄又爽大尺度在线免费看| 午夜福利成人在线免费观看| 2021天堂中文幕一二区在线观| 久久久久网色| 亚洲欧美一区二区三区黑人 | 日韩精品青青久久久久久| 亚洲综合精品二区| 黄色日韩在线| 久久97久久精品| 国产又色又爽无遮挡免| 97在线视频观看| 中文在线观看免费www的网站| 哪个播放器可以免费观看大片| 欧美xxxx性猛交bbbb| 天堂中文最新版在线下载 | 久久精品久久精品一区二区三区| 乱码一卡2卡4卡精品| 国产成人精品一,二区| 欧美日韩国产mv在线观看视频 | 少妇的逼好多水| 麻豆乱淫一区二区| 免费无遮挡裸体视频| 国产成人免费观看mmmm| 国产精品嫩草影院av在线观看| 久久亚洲国产成人精品v| 欧美日韩精品成人综合77777| 亚洲综合精品二区| 国产伦一二天堂av在线观看| av免费观看日本| 观看免费一级毛片| 国产精品1区2区在线观看.| 美女黄网站色视频| 成人性生交大片免费视频hd| a级一级毛片免费在线观看| 亚洲欧美一区二区三区黑人 | 综合色av麻豆| 中文字幕免费在线视频6| 国产永久视频网站| 国产免费视频播放在线视频 | 热99在线观看视频| 亚洲四区av| 夜夜爽夜夜爽视频| 国产女主播在线喷水免费视频网站 | 日韩av在线免费看完整版不卡| 91久久精品国产一区二区三区| 非洲黑人性xxxx精品又粗又长| 尾随美女入室| 欧美日韩精品成人综合77777| 成人无遮挡网站| 黄色欧美视频在线观看| 国产永久视频网站| 日本爱情动作片www.在线观看| 亚洲av在线观看美女高潮| 九九在线视频观看精品| 九色成人免费人妻av| 免费在线观看成人毛片| 波野结衣二区三区在线| 一级片'在线观看视频| 极品教师在线视频| 中文天堂在线官网| 熟女人妻精品中文字幕| 永久免费av网站大全| 毛片女人毛片| 国产一级毛片七仙女欲春2| 卡戴珊不雅视频在线播放| 免费看光身美女| 欧美性感艳星| 中文资源天堂在线| 欧美一区二区亚洲| 内射极品少妇av片p| 成人漫画全彩无遮挡| 久久久久久久久中文| 国产亚洲午夜精品一区二区久久 | 成人毛片a级毛片在线播放| 国产精品熟女久久久久浪| 插逼视频在线观看| 午夜福利视频1000在线观看| 寂寞人妻少妇视频99o| 午夜福利视频1000在线观看| 国产一级毛片七仙女欲春2| 午夜福利视频1000在线观看| 国内精品美女久久久久久| 高清欧美精品videossex| 熟女电影av网| 在现免费观看毛片| 亚洲av日韩在线播放| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 亚洲精品自拍成人| 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式| 日日啪夜夜撸| 国产精品久久久久久精品电影小说 | 七月丁香在线播放| 色视频www国产| 22中文网久久字幕| 一本一本综合久久| 国产老妇女一区| 国产免费视频播放在线视频 | av卡一久久| 亚洲欧美日韩东京热| 久久久精品94久久精品| 国产一区有黄有色的免费视频 | 卡戴珊不雅视频在线播放| 欧美97在线视频| 26uuu在线亚洲综合色| 麻豆成人午夜福利视频| 亚洲欧美成人精品一区二区| 午夜日本视频在线| 乱人视频在线观看| 国产在视频线在精品| 国产黄色免费在线视频| 亚洲精品影视一区二区三区av| 少妇的逼水好多| 亚洲欧洲国产日韩| 国产人妻一区二区三区在| 人人妻人人澡人人爽人人夜夜 | 久久人人爽人人片av| 欧美区成人在线视频| 一级毛片久久久久久久久女| 国产一区有黄有色的免费视频 | 欧美成人一区二区免费高清观看| 欧美日本视频| 五月玫瑰六月丁香| 女的被弄到高潮叫床怎么办| 亚洲成人精品中文字幕电影| 精品99又大又爽又粗少妇毛片| 亚洲精品成人久久久久久| 亚洲精品国产av蜜桃| 国产精品av视频在线免费观看| 亚洲图色成人| 亚洲18禁久久av| 夜夜爽夜夜爽视频| 亚洲精品国产成人久久av| 久久久欧美国产精品| av在线天堂中文字幕| 伦精品一区二区三区| 嫩草影院新地址| 欧美不卡视频在线免费观看| 插阴视频在线观看视频| 亚洲欧美一区二区三区黑人 | 热99在线观看视频| 丝袜喷水一区| 男女边吃奶边做爰视频| 国产伦一二天堂av在线观看| 一个人观看的视频www高清免费观看| 波野结衣二区三区在线| 一本一本综合久久| 亚洲精品日韩在线中文字幕| 91精品国产九色| 成人国产麻豆网| 日韩欧美国产在线观看| 高清av免费在线| 久久久久久久久中文| 一级毛片久久久久久久久女| 国产黄片美女视频| 一本一本综合久久| 亚洲精品久久久久久婷婷小说| 免费看av在线观看网站| 99久久精品热视频| 免费少妇av软件| 久久精品综合一区二区三区| 尾随美女入室| 毛片一级片免费看久久久久| 亚洲欧美精品自产自拍| 免费在线观看成人毛片| 男人舔女人下体高潮全视频| 乱码一卡2卡4卡精品| 又粗又硬又长又爽又黄的视频| 午夜免费观看性视频| 搡老乐熟女国产| 不卡视频在线观看欧美| 性色avwww在线观看| 精品不卡国产一区二区三区| 成人av在线播放网站| 国产爱豆传媒在线观看| 超碰97精品在线观看| 亚洲欧洲国产日韩| 午夜精品一区二区三区免费看| 丰满乱子伦码专区| 99re6热这里在线精品视频| 国产免费视频播放在线视频 | 麻豆乱淫一区二区| 最新中文字幕久久久久| 午夜精品一区二区三区免费看| 久久久精品94久久精品| 黄色配什么色好看| 最近手机中文字幕大全| 男女啪啪激烈高潮av片| 午夜福利视频精品| 欧美日韩一区二区视频在线观看视频在线 | 观看美女的网站| 国产精品1区2区在线观看.| 毛片女人毛片| 只有这里有精品99| 日本三级黄在线观看| av又黄又爽大尺度在线免费看| 赤兔流量卡办理| 国产黄片视频在线免费观看| 亚洲国产高清在线一区二区三| 在线免费十八禁| 亚洲精品,欧美精品| 精品久久久久久成人av| 久久人人爽人人爽人人片va| 亚洲,欧美,日韩| 好男人视频免费观看在线| 国产免费一级a男人的天堂| 麻豆精品久久久久久蜜桃| 日韩伦理黄色片| 一级爰片在线观看| 噜噜噜噜噜久久久久久91| 国内精品一区二区在线观看| 最近手机中文字幕大全| 日日啪夜夜撸| 色尼玛亚洲综合影院| 2018国产大陆天天弄谢| 欧美激情国产日韩精品一区| 18禁裸乳无遮挡免费网站照片| 成人毛片60女人毛片免费| 国产精品一二三区在线看| 日本wwww免费看| 成人一区二区视频在线观看| 久久99热这里只频精品6学生| 99视频精品全部免费 在线| 国产麻豆成人av免费视频| 五月伊人婷婷丁香| 午夜精品一区二区三区免费看| 成人漫画全彩无遮挡| 黄色日韩在线| 能在线免费观看的黄片| 日韩伦理黄色片| 精品久久久噜噜| 免费大片18禁| 亚洲成人av在线免费| 国产美女午夜福利| 日韩精品有码人妻一区| 免费人成在线观看视频色| 校园人妻丝袜中文字幕| 日本-黄色视频高清免费观看| 非洲黑人性xxxx精品又粗又长| 最新中文字幕久久久久| 国产欧美日韩精品一区二区| 久久6这里有精品| 国产精品一区二区性色av| 女人被狂操c到高潮| 美女黄网站色视频| 国产伦理片在线播放av一区| 插阴视频在线观看视频| 亚洲精品,欧美精品| av黄色大香蕉| 成人漫画全彩无遮挡| 大陆偷拍与自拍| 97精品久久久久久久久久精品| 男人舔女人下体高潮全视频| 国产欧美日韩精品一区二区| 卡戴珊不雅视频在线播放| 一区二区三区高清视频在线| 亚洲精品国产av蜜桃| 2018国产大陆天天弄谢| 精品酒店卫生间| 国产精品久久久久久精品电影小说 | 欧美激情国产日韩精品一区| 国产亚洲av嫩草精品影院| 黄片无遮挡物在线观看| 亚洲av成人精品一区久久| 99九九线精品视频在线观看视频| 在线天堂最新版资源| 韩国高清视频一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人freesex在线| 一本一本综合久久| 婷婷色综合大香蕉| 国产探花在线观看一区二区| 亚洲精品久久午夜乱码| 国产女主播在线喷水免费视频网站 | 永久免费av网站大全| 18禁动态无遮挡网站| 高清av免费在线| 精品酒店卫生间| 亚洲成人久久爱视频| 美女主播在线视频| 美女被艹到高潮喷水动态| 午夜福利视频精品| 亚洲av国产av综合av卡| 久久精品国产鲁丝片午夜精品| 国产视频首页在线观看| 精品国产露脸久久av麻豆 | 午夜福利高清视频| 久久精品国产亚洲av天美| 国产亚洲最大av| 成人亚洲欧美一区二区av| 人妻系列 视频| 色吧在线观看| 亚洲,欧美,日韩| 老司机影院成人| 亚洲精品成人久久久久久| 欧美潮喷喷水| 亚洲精品影视一区二区三区av| freevideosex欧美| 天堂影院成人在线观看| 观看美女的网站| 纵有疾风起免费观看全集完整版 | 亚洲欧美精品专区久久| 精品久久久噜噜| 亚洲国产精品成人综合色| 亚洲精品自拍成人| 丝袜喷水一区| 久久精品久久精品一区二区三区| 成人毛片a级毛片在线播放| 久久精品国产亚洲av天美| 最近视频中文字幕2019在线8| 一级毛片黄色毛片免费观看视频| 美女高潮的动态| 天堂√8在线中文| 免费无遮挡裸体视频| 少妇熟女欧美另类| 亚洲精品色激情综合| 国产成人freesex在线| 水蜜桃什么品种好| 亚洲av.av天堂| 不卡视频在线观看欧美| 亚洲欧美一区二区三区国产| 99久久中文字幕三级久久日本| 搞女人的毛片| 成人性生交大片免费视频hd| 国产精品av视频在线免费观看| 久久亚洲国产成人精品v| 禁无遮挡网站| 看非洲黑人一级黄片| 国产又色又爽无遮挡免| 亚洲综合精品二区| 精品久久久久久久久亚洲| 中文字幕av在线有码专区| 亚洲欧美清纯卡通| eeuss影院久久| 欧美高清成人免费视频www| 99久国产av精品国产电影| 久久精品久久久久久噜噜老黄| 97超碰精品成人国产| 禁无遮挡网站| 国内揄拍国产精品人妻在线| 国产伦理片在线播放av一区| 国产片特级美女逼逼视频| 久久久成人免费电影| 日韩国内少妇激情av| 最近的中文字幕免费完整| 国产 亚洲一区二区三区 | 久久久久久久久久成人| 乱系列少妇在线播放| 亚洲伊人久久精品综合|