• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gd Doped Hollow Nanoscale Coordination Polymers as Multimodal Imaging Agents and a Potential Drug Delivery Carriers

    2018-11-09 06:53:36GozhengZhoZhenGuoQinwngChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Go-zheng ZhoZhen GuoQin-wng Chen

    a.Hefei National Laboratory for Physical Sciences at the Microscale,Department of Materials Science&Engineering,University of Science and Technology of China,Hefei 230026,China

    b.Anhui Key Laboratory for Cellular Dynamics and Chemical Biology,School of Life Sciences,University of Science and Technology of China,Hefei 230027,China

    Key words:Coordination polymers,Magnetic resonance imaging,Fluorescence optical imaging,Drug delivery potentials

    I.INTRODUCTION

    The early detection of cancers,as the very first and most crucial step before treatment,determines the chances of survival of patients[1,2],and a variety of imaging methods provide good auxiliary assistance to the diagnosis.The requirements for the detection are not only tracking the lesion location[3,4],but also well con firming the margins of the tumor for the next surgical resection[5,6].Inevitably,one single way of imaging could encounter with their respective limitations[7,8],thus resulting in the possible inaccuracy or even misdiagnosis.So a step forward aims at conceiving nanomaterials that could serve as multimodal imaging probes,of which different modalities could have complementary effects.

    Among various imaging modalities,magnetic resonance imaging(MRI)and fluorescence optical imaging tools are broadly applied to medical and biological fields.For the MRI technique,the need for higher imaging effect puts forward the request of contrast agents(CAs)for contrast enhancement.Generally,there are two types of MRI CAs:one type is the positive contrast agent[9,10]that shortens the longitudinal relaxation time(T1)of water protons,and the other type is the negative contrast agent[11,12]that reduces the transverse relaxation time(T2)of water protons.The advantages and disadvantages of both modes have been discussed in previous reports[13,14],and thus dual modal contrast agents combining T1 and T2 CAs are necessary in order to adopt the advantages and avoid the shortcomings.As for the fluorescence optical imaging,the fluorophores labeled with targeting ligands have been applied to delineating tumor margins with the help of intraoperative optical devices during the surgery[15].However,the intraoperative pathology cannot be correlated with preoperative diagnostic images.Hence,in many researchs, fluorescent organic dyes(such as FITC[16]or RITC[17]),inorganic quantum dots[18,19]or nanoparticles containing rare earth ions[20,21]are often decorated onto MRI CAs.Integrated with the MRI CAs,the multimodal imaging probes will offer aid to the preoperative diagnosis and the accurate intraoperative resection.

    Typically,the common idea is to combine different materials in the form of composites to attain multifunctionality[22,23].This way to some extent has proven to be effective,but still faced with a series of drawbacks:except for the complicated synthesis steps,usually nanocomposites may result in the undesirable interactions between different materials[24,25].So an increasing number of researches[26–28]are focused on the one single material that integrates different imaging tools to facilitate the detection of the lesion locations.Recently,our group has developed a novel contrast agent Mn3[Co(CN)6]2which combines both the MRI(T1 and T2)and fluorescence optical imaging in one material[29].As we expected,the bimetallic coordination polymers present the properties of each element:the T1 contrast effects originate from the Mn element,while the Co element contributes to the T2-relaxation property.In the meantime,the energy level transition of Mn2+brings about the nanomaterials fluorescent optical imaging effect.Further experiments demonstrate the viability of bio-application.Unfortunately,ther1value of the Mn-based contrast agents still remains at a lower level in contrast with the Gd-based ones[30],and in theory replacing Mn element by Gd could effectively improve ther1value,but simply replacing all the manganese by the Gd element would abandon the fluorescence optical imaging effect derived from the intrinsic nature of the Mn ions[29].A compromise way to overcome the situation might be partial substitution of the manganese ions to realize the co-residency of the three metal elements coexisting in the structure.On the other hand,ther2value of Mn3[Co(CN)6]2is also relatively lower than the commonly used T2-weighted CAs Fe3O4,which has room for promotion.Herein,we prepare a highly integrated system through a solvothermal method.Gd doped hollow nanoscale coordination polymers(Gd doped prussian blue analogue,denoted as GPBA)are formed as a multimodal imaging contrast agents,and the hollow structure formed without acid etching also exhibits prospect as a drug carrier system.Although the metal ions and CN?may be toxic alone,the coordination polymers of these units show good biocompatibility due to the intrinsic stability under room temperature.After the silica coating process,both the MRI contrast effects and biocompatibility have been improved.

    II.EXPERIMENTS

    A.Materials

    Materials used in the experiment are as follows:potassium cobalticyanide(K3[Co(CN)6])was purchased from J&K chemical Ltd.(Shanghai,China);tetraethylorthosilicate(TEOS),gadolinium oxide(Gd2O3),manganese acetate(Mn(COOH)2·4H2O),nitric acid(HNO3),aqueous ammonia,and polyvinyl pyrrolidone(PVP)were purchased from Shanghai Chemical Reagent Company(Shanghai,China).Gadolinium oxide was dissolved in the nitric acid and Gd(NO3)3was crystallized through evaporation of the acid solution.

    B.Synthesis of the hollow nanoparticles and silica coating

    A slight change was carried out to synthesize the precursor according to the previous report.18.375 mg manganese acetate and 0.3 g PVP(K-30)were dissolved in a mixed solution containing 15 mL ethanol and 5 mL deionized water,and the solution was denoted as solution A.0.04 mmol potassium cobalticyanide was dissolved in 5 mL deionized water and then added to solution A using a syringe under stirring.The white precipitates of the precursor were formed.Then adequate amounts of Gd(NO3)3together with 1 g PVP(K-30)were added into the above solution,afterwards,adequate amounts of ethanol and water were added to form a 30 mL C2H5OH/15 mL H2O system.The solution was then added into a Te flon autoclave(50 mL),then the sealed autoclave was heated for 40 h at 170?C.After it was cooled to room temperature,the precipitate was centrifuged and washed a few times with mixed solution containing ethanol,purified water,and DMF.

    The silica coating procedure was performed through suspending 18 mg nanocubes in 18 mL of ethanol and then dissolving 1.08 mL aqueous ammonia in 18 mL ethanol(3%V/V).One solution was poured into the other one under stirring and kept stirring for 10 min.68μL tetraethylorthosilicate was injected into the suspension above and the solution was stirred for 2 h.In order to get a thicker silica layer,the process can be repeated once again.The coated nanoparticles were centrifuged and washed several times using ethanol and purified water repeatedly.

    C.DOX-loading and releasing studies

    The prepared nanoparticles(1 mg)were added into 1.4 mL DOX solution(1 mg/mL)for drug loading experiments.The mixture was shaking for 24 h at 37?C and then centrifuged and washed several times.All the supernatants after centrifugation were retained for the next measurement of loading capacity and encapsulation efficiency,which was calculated according to the previous report[31].

    For the DOX release behavior investigation,the drug loaded nanoparticles were placed in a dialysis bag and then immersed in 20 mL PBS solution(pH=7.4).Every 3 h we would collect 1.0 mL solution outside the dialysis bag to measure the concentration of DOX by UV-Vis spectrophotometer and further calculate the release amount.We conducted three sets of experiments to reduce the deviations.

    D.Cell viability test

    Cytotoxicity of the NPs and the silica-coated ones were determined by the tetrazolium dye(MTT)method using H520 and A549 cell lines. Cells were incu-bated in a 96-well plate at 37?C in a moist atmosphere with 100%CO2,and then the medium above was modified with fetal bovine serum(10%),penicillin(100 units/mL)and streptomycin(100 units).After cultured for 24 h,the solution containing uncoated and coated GPBA nanoparticles was added to replace the original medium.Then,MTT solution was added into each well for another 4 h incubation.Finally,an ELISA reader was applied to test the absorbance of each well.

    E.Fluorescence imaging measurement in vitro

    The GPBA nanoparticles were cultured with A549 cells for 24 h,followed byin vitrolaser confocal scanning fluorescence measurements.The detailed procedure can be found in the previous literature[47]and after incubation images were taken with a laser scanning microscope(Zeiss L SM 710)equipped with a 63?1.3 numerical aperture PlanApo objective.

    F.Magnetic resonance imaging measurement

    Based on the metal(Gd+Mn)content of GPBA measured by ICP-AES,different concentrations of GPBA were dispersed in deionized water and clinical magnetic resonance scanner(GE Signa HDxt 3.0 Tesla MRI system)was applied to measure the relaxation characteristics.T1-weighted magnetic resonance images were acquired by utilizing a saturated recovery spin echo sequence(TE=10 ms;TR=4000,2000,1000,500,200,100 ms). T2?weighted images are obtained by the Carr-Purcell-Meiboom-Gill method with RARE sequences(parameters:TR=120 ms;TE=2.328,6.112,9.896,13.68,17.46,21.24 ms;the filp angle=30o;bandwidth=31.25 Hz;FOV=180×180 mm2).

    BALB/c mice bearing tumors were employed to perform MRI exprerimentin vivo.The mouse was anesthetized and then intravenously injected at tail by GPBA nanoparticles(5 mg/mL in PBS,100μL).MR imaging was obtained at preinjection,20 min and 24 h post-injection.

    G.Characterization

    The morphology of the nanostructured material was observed using a field emission scanning electron microscopy(FE-SEM,JEOL JSM-6700M)and a transmission electron microscope(TEM,Hitachi H7650).The crystal structure of the material was measured by an X-ray diffractometer(XRD,Rigaku D/MAX-cA,Japan),the 2θscanning range was 10o?70o.Metal ion concentrations were measured with an Optima 7300DV Inductively Coupled Plasma Atomic Emission Spectrometer(ICP-AES).The surface electronic structure was characterized by X-ray photoelectron spectroscopy

    FIG.1(a,b)SEM images and(c,d)TEM images of GPBA.

    (XPS,VGESCALAB MKII).High-resolution transmission electron microscopy(STEM,JEM2100F)was used to characterize the distribution of Fe,O,C,and N elements in the sample.Ultraviolet-visible(UV-Vis)absorption spectra were measured with a UV-visible spectrophotometer(TU-1810 DSPC)over a measuring wavelength at 480 nm.

    III.RESULTS AND DISCUSSION

    The morphology of the products was revealed by the SEM images as shown in FIG.1(a)and(b).It can be seen that the cube-shaped nanoparticles ranging from 120 nm to 160 nm in size have been prepared,which have little changes in the size and shape with the precursor.Some cracks on the surface(shown in the inset of the FIG.1(a))reveal that it may be hollow in the interior,which is further proven by TEM results.The high magnification image in FIG.1(b)indicates the surface of the nanoparticle may be composed of tiny nanograins.From TEM micrographs,we can see that after the solvothermal process,the uniform hollow structures are formed with an outer shell in thickness of about 10 nm,while in stark contrast,the diameter of the cavity is more than 100 nm.This kind of thin-shelled hollow structure provides a huge space for encapsulating therapeutic drugs.

    FIG.2(a)XRD pattern of GPBA and the inset is magnified XRD pattern from 10oto 37o,showing slightly left-shifted peaks compared with the precursor.(b)X-ray photoelectron spectroscopy(XPS)of GPBA.

    X-ray diffraction(XRD)patterns of the precursor and GPBA are shown in FIG.2(a).The peak position has a good consistence with the standard XRD pattern of the precursor(Mn3[Co(CN)6]2),but has a slightly left shift as shown in the inset of FIG.2(a),indicating the lattice constant enlargement,which could be caused by Gd3+doping.The molar ratio of Gd to Mn was measured to be approximately 2.9:6.2 by ICP-AES.The X-ray photoelectron spectroscopy(XPS)measurement was carried out with the peak at 1188.8,614.88,and 781.27 eV in XPS spectra(FIG.2(b)),demonstrating existence of Gd,Mn,and Co elements,respectively.Dark- field STEM image of the same nanoparticle clearly shows the spatial distribution of Gd,Mn,Co elements in the nanoprobes(see FIG.3).Obviously,the three elements are mainly distributed in the outer layer,while absent in the middle,further indicating the hollow interior structure.The position of the three elements matches roughly well with the shell.The three elements are cano-bridged to form the trimetallic coordination polymers in the shell of the NPs.Through the measurements above,it is con firmed that the hollow trimetallic coordination polymers have been successfully fabricated.

    The nanoporous characteristic and hollow structure of the coordination polymers suggest it is a potential drug delivery vehicle.DOX,as one of the most widely used antitumor drug,was employed to perform the drug loading procedure[31].It is determined that the DOX loading content was as high as 1166 mg/g(53.8 wt%),and encapsulation efficiency reached 83.29%,the loading capacity showed quite excellent results in contrast with previous reports[32,33],in which the loading capacity was usually several hundred milligrams per gram.The high loading capacity demonstrated the great potentials of our platform as antitumor drug delivery vehicle.Drug release behavior was also studied as shown in FIG.4.Under buffers of pH=7.4,DOX gradually released over time,eventually entering plateau phase with around 40%of DOX being released.

    FIG.3(a)HAADF-STEM image of the Gd doped coordination polymer.(b)The merged image and(c)?(e)EDX element mapping of the same nanoparticles.

    FIG.4 The pro file of DOX release in PBS solution(pH=7.4).

    The excellent drug loading performance of the NPs obviously bene fits from the hollow structure.We found that the hollow structure gradually evolved as the reaction time proceeded until a completely hollow structure was formed as shown in FIG.5.Although our previous study[34]has provided reasonable explanations for the forming mechanism of Pd-doped hollow Prussian blue analogue nanoparticles,however,the mechanism of Gd doped ones should be different due to the distinct formation process.The formation progress of the hollow structure was an action of evacuating and recently a research[35]about the formation of the hollow MOFs provided some guidance for us,and the explanation may account for the possible mechanism:just like Rubik-cube,the big nanocubes of the precursor Mn3[Co(CN)6]2are composed of great amounts of small nanocubes;under the high temperature condition,Gd3+gradually substitutes Mn2+to form a thin layer of coordination polymers on the surface of the particles,then an inside-out formation process takes place;the surface-energy-driven mechanism makes the inner nanocubes to dissolve and migrate to the surface,recrystallizing with the little surface nanocubes to form Gd dopped hollow coordination polymers.Further studies should be carried out to make the mechanism clear.

    FIG.5 The formation progress of the hollow structure of the NPs.

    As our previous report[29]revealed,the nanoparticles could enhance both biocompatibility and MRI contrast effect simultaneously after a silica layer coating on the surface,so our NPs were also coated by silica layer and then MRI measurements were carried out by a clinical magnetic resonance scanner.Uncoated and silica-coated nanoprobes were respectively dispersed in deionized water with different concentration to determine the longitudinal(r1)and transverse(r2)relaxivities.As illustrated in FIG.6,uncoated and silica-coated GPBA exhibitedr1of 7.38 and 13.57(mmol/L)?1·s?1,andr2of 180.6 and 304.8(mmol/L)?1·s?1,exhibiting fairly good contrast effect. Compared with the precursor,r1value of the uncoated NPs could reach 7.38(mmol/L)?1·s?1,53%enhancement,while ther2value is 2 times as high as the previous one.Initially we intended to enhance the T1 imaging effect through partial substitution,however,the final results showed that both T1 and T2 imaging effects were well strengthened.Through comparison with CAs in previous reports(as shown in Table I),we concluded that no matter as T1 CA or as T2 CA individually,the nanoprobes showed no weaker imaging effects than other single modal CAs.Thus,the hybrid system could well satisfy the imaging demands as dual T1&T2 CAs.Apparently T1 enhancement is derived from Gd doping as we have anticipated;seven unpaired electrons of Gd ions would help shorten longitudinal(T1)relaxation time,while the T2 contrast enhancement may result from changes of coordination environment.On the other hand,there are reports[36]revealing magnetic properties enhancement due to magnetic coupling effect via doping magnetic element.We can also make a reasonable inference:Gd ions partially substitutes Mn ions,which could enhance magnetic coupling,thus consequently getting a promotion at the T2 relaxation rates.

    FIG.6 T1 and T2 weighted MR images of(a)uncoated and(b)silica-coated nanoparticles with different concentrations of metal ions,respectively.T1 and T2 relaxation rates as a function of metal concentration of(c)uncoated nanoparticles and(d)silica-coated nanoparticles,respectively.

    Uncoated nanoparticles as CAs for MRI have alsobeen investigatedin vivo.0.5 mL saline solution containing 0.5 mg NPs was injected into a mouse bearing an A549-tumor via the tail vein and measured by clinically used 3T MR scanner mentioned above.Theoretically the CAs would enter the tumor readily as a result of EPR effect and be retained there for long periods.As shown in FIG.7 above,within 20 min after injection,T1 contrast effect had slightly enhancement,while after 24 h,MRI tests exhibited excellent T1 imaging effect,helping delineate the margins of the tumor clearly,which would be of great advantages for the next surgical resection.As for T2-weighted imaging,the MRI contrast effect at 20 min showed no obvious changes,but after 24 h injection,we could see negative contrast enhancement at partial regions of the tumor.Thein vivoexperiments showed the potential of our nanoparticles for use as preoperative diagnosis.

    TABLE I The relaxivities rates of some typical contrast agents reported in previous articles.

    FIG.7 in vivo T1 images and T2 images of a mouse bearing an A549-tumor at different time intervals before or after injection with uncoated nanocubes.

    FIG.8CLSM images of GPBA incubated with A549 cells with different excitation wavelengths:(a)bright field,(b)720 nm two-photon excitation,(c)?(e)543,488,and 360 nm single-photon excitation,and(f)their merged image.

    The uncoated GPBA nanoparticles were incubated with A549 cell lines for 24 h without any further dying in concentration of 50μg/mL for fluorescence optical imaging tests by confocal laser scanning microscopy(CLSM).Irradiated by laser beams of various wavelengths of single photon excitation(λex=360,488,543 nm),the cultured tumor cells emitted multicolor fluorescence as shown in FIG.8(c)?(e).It was observed that the uncoated NPs were localized in cytoplasm,and the fluorescence from unstained cells should be caused by the NPs themselves.However,due to the drawbacks of UV-excited imaging such as undesired tissue photodamage,two-photon fluorescence(TPF)microscopy was thus proposed.With the aids of powerful femtosecond pulse irradiation,the nanoprobes can simultaneously absorb two photons to the excited state and then emit fluorescence after a ground-state relaxation.Upon biphotonic excitation at 720 nm(equivalent to 360 nm single-photon excitation),the NPs displayed outstanding fluorescence in the blue spectrum region(FIG.8(b)). The excellent fluorescence effect above demonstrated the nanocubes offered a multiple-choice platform for biological labels.It is reported that the photoluminescence of4T1-6A1transition of Mn2+can offer two-photon fluorescence in doped quantum dots,such as Mn-doped ZnS QDs[37],and our previous work[34]had also demonstrated the materials containing Mn2+ions applied in fluorescence optical imaging.The abundant energy levels of Mn2+could account for the multicolor fluorescence.

    FIG.9 in vitro cytotoxicity of uncoated and silica-coated nanocubes on the viability of H520 and A549 cells after 24 h incubation.

    As well known,CN?in the matrix is extremely toxic,but it does not mean our nanoparticles cannot be usedin vivo.In 2003,prussian blue(Fe4[Fe(CN)6]3)had already been approved by US Food and Drug Administration(FDA)as a pharmaceutical drug in clinic.Although CN?could be toxic alone,the coordination between metal ions and CN?is quite stable,which allows prussian blue to be applied clinically. As one of prussian blue analogues,Mn3[Co(CN)6]2exhibited excellent chemical stability even at strong acid environment[46].The inner coordination sphere between Co3+and CN?was especially stable,and the stability of the structure can effectively prevent the leakage of ions from reducing the toxicity.To evaluate the cytotoxicity of the as-prepared nanoprobes before and after SiO2coating,MTT assays were carried on H520 and A549 cell lines,and different concentration levels ranging from 25μg/mL to 75μg/mL were assessed.The results showed that no obvious toxicity was exhibited at tested concentrations,especially after SiO2coating(see FIG.9).The MTT assays above can demonstrate low toxicity of the NPs to be applied to bioimaging.

    IV.CONCLUSION

    In summary,Gd doped hollow prussian blue analogue was prepared by solvothermal method and demonstrated good T1 and T2 dual-mode magnetic resonance imaging capabilities.The longitudinal relaxation rate(r1)was 13.57(mmol/L)?1·s?1and transverse relaxation rate(r2)was 304.8(mmol/L)?1·s?1after silica coating,which was higher than many reported singlemode magnetic resonance probes.Under various wavelengths of laser irradiation,the nanoparticles emitted multiple colors of fluorescence.This multi-modal imaging could complement each other to make up for the defects of one single imaging mode.On the other hand,the NPs with hollow structure have a high loading capacity(1166 mg/g)for the chemotherapeutic drug doxorubicin,showing potentials as a drug delivery system,andin vitrocytotoxicity tests revealed that the obtained silica-coated nanoparticles have good biocompatiblity.The highly integrated nanoplatfrom showed great prospect for cancer theranostics.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21571168),the Ministry of Science and Technology Grant(No.2016YFA0101202,No.U1232211,and No.31501130),CAS/SAFEA international partnership program for creative research teams and CAS Hefei Science Center(No.2016HSCIU011).

    [1]I.R.Whittle,Curr.Opin.Neurol.15,663(2002).

    [2]R.C.Bast Jr.,B.Hennessy,and G.B.Mills,Nat.Rev.Cancer 9,415(2009).

    [3]L.An,H.Hu,J.Du,J.Wei,L.Wang,H.Yang,D.M.Wu,H.L.Shi,F.H.Li,and S.P.Yang,Biomaterials 35,5381(2014).

    [4]J.V.Frangioni,Curr.Opin.Chem.Biol.7,626(2003).

    [5]S.Arii,S.Tanaka,Y.Mitsunori,N.Nakamura,A.Kudo,N.Noguchi,and T.Irie,Oncology 78,125(2010).

    [6]H.Hirschberg,G.N.Wu,and S.J.Madsen,Minim.Invasive Neurosurg.50,318(2007).

    [7]J.Schnorr,S.Wagner,C.Abramjuk,R.Drees,T.Schink,E.A.Schellenberger,H.Pilgrimm,B.Hamm,and M.Taupitz,Radiology 240,90(2006).

    [8]C.Bremer,V.Ntziachristos,and R.Weissleder,Eur.Radiol.13,231(2003).

    [9]P.Caravan,Chem.Soc.Rev.35,512(2006).

    [10]K.M.L.Taylor,W.J.Rieter,and W.B.Lin,J.Am.Chem.Soc.130,14358(2008).

    [11]S.Laurent,D.Forge,M.Port,A.Roch,C.Robic,L.V.Elst,and R.N.Muller,Chem.Rev.108,2064(2008).

    [12]A.K.Gupta and M.Gupta,Biomaterials 26,3995(2005).

    [13]H.B.Na,I.C.Song,and T.Hyeon,Adv.Mater.21,2133(2009).

    [14]M.Liong,J.Lu,M.Kovochich,T.Xia,S.G.Ruehm,A.E.Nel,F.Tamanoi,and J.I.Zink,ACS Nano 2,889(2008).

    [15]S.Walter,S.Susanne,W.Simon,S.Herbert,F.Clemens,G.Claudia,E.G.Alwin,K.Rainer,and J.R.Hans,Neurosurgery 42,518(1998).

    [16]Y.L.Pei,J.Li,J.H.Sui,Z.G.Li,and W.Cai,J.Nanosci.Nanotechnol.13,3928(2013).

    [17]H.Lee,D.Sung,J.Kim,B.T.Kim,T.Wang,S.S.A.An,S.W.Seo,and D.K.Yi,Int.J.Nanomedicine 10,215(2015).

    [18]P.Zrazhevskiy,M.Sena,and X.H.Gao,Chem.Soc.Rev.39,4326(2010).

    [19]S.Z.Wang,B.R.Jarrett,S.M.Kauzlarich,and A.Y.Louie,J.Am.Chem.Soc.129,3848(2007).

    [20]X.M.Li,D.Y.Zhao,and F.Zhang,Theranostics 3,292(2013).

    [21]H.Y.Chen,B.Qi,T.Moore,D.C.Colvin,T.Crawford,J.C.Gore,F.Alexis,O.T.Mefford,and J.N.Anker,Small 10,160(2014).

    [22]H.X.Peng,B.Cui,L.L.Li,and Y.S.Wang,J.Alloys Compd.531,30(2012).

    [23]L.J.Zhou,X.P.Zheng,Z.J.Gu,W.Y.Yin,X.Zhang,L.F.Ruan,Y.B.Yang,Z.B.Hu,and Y.L.Zhao,Biomaterials 35,7666(2014).

    [24]J.S.Choi,J.H.Lee,T.H.Shin,H.T.Song,E.Y.Kim,and J.Cheon,J.Am.Chem.Soc.132,11015(2010).

    [25]Z.J.Zhou,D.T.Huang,J.F.Bao,Q.L.Chen,G.Liu,Z.Chen,X.Y.Chen,and J.H.Gao,Adv.Mater.24,6223(2012).

    [26]Y.Zhang,J.D.Lin,V.Vijayaragavan,K.K.Bhakoo,and T.T.Y.Tan,Chem.Commun.48,10322(2012).

    [27]C.Y.Liu,Z.Y.Gao,J.F.Zeng,Y.Hou,F.Fang,Y.L.Li,R.R.Qiao,L.Shen,H.Lei,W.S.Yang,and M.Y.Gao,ACS Nano 7,7227(2013).

    [28]E.Chelebaeva,J.Larionova,Y.Guari,R.A.S.Ferreira,L.D.Carlos,A.A.Trifonov,T.Kalaivani,A.Lascialfari,C.Gurin,K.Molvinger,L.Datas,M.Maynadier,M.Gary-Bobo,and M.Garcia,Nanoscale 3,1200(2011).

    [29]Y.M.Huang,L.Hu,T.T.Zhang,H.Zhong,J.J.Zhou,Z.B.Liu,H.B.Wang,Z.Guo,and Q.W.Chen,Sci.Rep.3,2647(2013).

    [30]F.Q.Hu and Y.S.Zhao,Nanoscale 4,6235(2012).

    [31]J.Chen,Z.Guo,H.B.Wang,M.Gong,X.K.Kong,P.Xia,and Q.W.Chen,Biomaterials 34,571(2013).

    [32]X.Y.Yang,Y.S.Wang,X.Huang,Y.F.Ma,Y.Huang,R.C.Yang,H.Q.Duan,and Y.S.Chen,J.Mater.Chem.21,3448(2011).

    [33]J.N.Shen,Q.J.He,Y.Gao,J.L.Shi,and Y.P.Li,Nanoscale 3,4314(2011).

    [34]Y.Wang,S.X.Bao,R.Li,G.Z.Zhao,Z.H.Wang,Z.A.Zhao,and Q.W.Chen,ACS Appl.Mater.Interf.7,2088(2015).

    [35]Z.C.Zhang,Y.F.Chen,X.B.Xu,J.C.Zhang,G.L.Xiang,W.He,and X.Wang,Angew.Chem.Int.Ed.53,429(2014).

    [36]L.A.Li,H.X.Jin,D.F.Jin,Q.Lu,L.N.Sun,Q.Tang,M.Chen,H.L.Ge,and X.Q.Wang,Rare.Metal.Mat.Eng.39,479(2010).

    [37]C.J.Xu,J.Xie,D.Ho,C.Wang,N.Kohler,E.G.Walsh,J.R.Morgan,Y.E.Chin,and S.H.Sun,Angew.Chem.Int.Ed.47,173(2007).

    [38]Y.X.J.Wang,S.M.Hussain,and G.P.Krestin,Eur.Radiol.11,2319(2001).

    [39]Y.W.Jun,Y.M.Huh,J.S.Choi,J.H.Lee,H.T.Song,S.Yoon,K.S.Kim,J.S.Shin,J.S.Suh,and J.Cheon,J.Am.Chem.Soc.127,5732(2005).

    [40]J.H.Lee,Y.M.Huh,Y.W.Jun,J.W.Seo,J.T.Jang,H.T.Song,S.Kim,E.J.Cho,H.G.Yoon,J.S.Suh,and J.Cheon,Nat.Med.13,95(2007).

    [41]J.L.Bridot,A.C.Faure,S.Laurent,C.Riviere,C.Billotey,B.Hiba,M.Janier,V.Josserand,J.L.Coll,L.V.Elst,R.Muller,S.Roux,P.Perriat,and O.Tillement,J.Am.Chem.Soc.129,5076(2007).

    [42]M.A.Fortin,R.M.Petoral Jr.,F.S?oderlind,A.Klasson,M.Engstr?om,T.Veres,P.O.K¨all,and K.Uvdal,Nanotechnology 18,395501(2007).

    [43]F.Evanics,P.R.Diamente,F.C.J.M.van Veggel,G.J.Stanisz,and R.S.Prosser,Chem.Mater.18,2499(2006).

    [44]Q.Ju,D.T.Tu,Y.S.Liu,R.F.Li,H.M.Zhu,J.C.Chen,Z.Chen,M.D.Huang,and X.Y.Chen,J.Am.Chem.Soc.134,1323(2012).

    [45]H.B.Na,J.H.Lee,K.An,Y.I.Park,M.Park,I.S.Lee,D.H.Nam,S.T.Kim,S.H.Kim,S.W.Kim,K.H.Lim,K.S.Kim,S.O.Kim,and T.Hyeon,Angew.Chem.Int.Ed.46,5397(2007).

    [46]L.Hu,J.Y.Mei,Q.W.Chen,P.Zhang,and N.Yan,Nanoscale 3,4270(2011).

    [47]D.D.Wang,Z.Guo,J.J.Zhou,J.Chen,G.Z.Zhao,R.H.Chen,M.N.He,Z.B.Liu,H.B.Wang,and Q.W.Chen,Small 11,5956(2015).

    精品亚洲乱码少妇综合久久| 国产毛片在线视频| 一区二区三区乱码不卡18| 亚洲av电影在线观看一区二区三区| 女性生殖器流出的白浆| 久久精品熟女亚洲av麻豆精品| av在线app专区| 久久99热6这里只有精品| 一区二区三区乱码不卡18| 校园人妻丝袜中文字幕| av免费在线看不卡| 欧美bdsm另类| 国产 一区精品| 2022亚洲国产成人精品| 纵有疾风起免费观看全集完整版| 看免费成人av毛片| 国产又色又爽无遮挡免| 成人午夜精彩视频在线观看| 在线观看免费视频网站a站| 久久久国产欧美日韩av| 欧美成人午夜免费资源| 欧美3d第一页| 熟女人妻精品中文字幕| 最后的刺客免费高清国语| 一二三四中文在线观看免费高清| 91久久精品国产一区二区三区| 久久精品久久久久久噜噜老黄| 波野结衣二区三区在线| 亚洲中文av在线| 亚洲经典国产精华液单| 亚洲欧美精品自产自拍| 美女脱内裤让男人舔精品视频| 国产精品一区二区三区四区免费观看| 亚洲久久久国产精品| a级一级毛片免费在线观看| 赤兔流量卡办理| 少妇被粗大的猛进出69影院 | 中文字幕亚洲精品专区| 下体分泌物呈黄色| 51国产日韩欧美| 久久人人爽人人片av| 韩国av在线不卡| 欧美3d第一页| 亚洲国产成人一精品久久久| 亚洲国产色片| 男男h啪啪无遮挡| 久久午夜福利片| 美女内射精品一级片tv| 日韩成人av中文字幕在线观看| √禁漫天堂资源中文www| 国产精品人妻久久久影院| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美成人综合另类久久久| 亚洲av成人精品一二三区| 街头女战士在线观看网站| 日韩av不卡免费在线播放| 久久免费观看电影| 精品人妻偷拍中文字幕| 在线看a的网站| 亚洲欧美精品自产自拍| freevideosex欧美| 少妇丰满av| 免费av中文字幕在线| 精品午夜福利在线看| 国产毛片在线视频| 成人毛片60女人毛片免费| 在线观看av片永久免费下载| 久久精品久久久久久噜噜老黄| 久久久久人妻精品一区果冻| av国产久精品久网站免费入址| 嫩草影院新地址| 热re99久久国产66热| 日韩中文字幕视频在线看片| 韩国高清视频一区二区三区| 一二三四中文在线观看免费高清| 日本爱情动作片www.在线观看| 亚洲高清免费不卡视频| 中文字幕精品免费在线观看视频 | 久久久久久久久久成人| 国产成人午夜福利电影在线观看| 国产精品99久久久久久久久| 欧美最新免费一区二区三区| 永久免费av网站大全| 午夜日本视频在线| 中文欧美无线码| 搡女人真爽免费视频火全软件| 国产精品国产三级国产av玫瑰| 色哟哟·www| 久久人人爽av亚洲精品天堂| 国产日韩一区二区三区精品不卡 | 最新的欧美精品一区二区| 最新的欧美精品一区二区| 深夜a级毛片| 精品国产一区二区久久| 亚州av有码| 一级a做视频免费观看| 人人妻人人添人人爽欧美一区卜| 国产精品福利在线免费观看| 欧美精品人与动牲交sv欧美| 国产精品偷伦视频观看了| 日韩中字成人| 99久久中文字幕三级久久日本| 一级a做视频免费观看| 视频中文字幕在线观看| av卡一久久| 女性被躁到高潮视频| 亚洲国产欧美日韩在线播放 | 亚洲欧美成人综合另类久久久| 各种免费的搞黄视频| 免费av中文字幕在线| 日日爽夜夜爽网站| 免费观看的影片在线观看| 国产黄色免费在线视频| 美女主播在线视频| 一级毛片 在线播放| 久久久精品94久久精品| 久久青草综合色| 美女cb高潮喷水在线观看| 婷婷色av中文字幕| 97在线人人人人妻| 国产欧美日韩精品一区二区| 国产在线视频一区二区| 欧美最新免费一区二区三区| av.在线天堂| 男人舔奶头视频| 久久精品国产自在天天线| 久久人人爽人人爽人人片va| 国产精品久久久久久久电影| 高清午夜精品一区二区三区| 午夜av观看不卡| 黑人高潮一二区| av天堂久久9| 亚洲成人手机| 熟女人妻精品中文字幕| 如何舔出高潮| 在线观看一区二区三区激情| 国产伦理片在线播放av一区| 亚洲成色77777| 中文天堂在线官网| 亚洲欧美精品专区久久| 一级毛片 在线播放| 精品一区在线观看国产| 美女内射精品一级片tv| 建设人人有责人人尽责人人享有的| 欧美成人午夜免费资源| 午夜视频国产福利| 成年人午夜在线观看视频| 97精品久久久久久久久久精品| 晚上一个人看的免费电影| 免费少妇av软件| 伊人久久精品亚洲午夜| 国产有黄有色有爽视频| 两个人的视频大全免费| 婷婷色综合大香蕉| 中国三级夫妇交换| 亚洲欧洲精品一区二区精品久久久 | av.在线天堂| 91久久精品电影网| 国产 一区精品| 国产精品免费大片| 国内揄拍国产精品人妻在线| 久热久热在线精品观看| 成人美女网站在线观看视频| 成年人免费黄色播放视频 | 国产中年淑女户外野战色| 99热这里只有精品一区| 久久久精品免费免费高清| 97在线人人人人妻| 午夜免费男女啪啪视频观看| 黑丝袜美女国产一区| 2022亚洲国产成人精品| 最近最新中文字幕免费大全7| 一级二级三级毛片免费看| 女性被躁到高潮视频| 午夜精品国产一区二区电影| 一个人免费看片子| 免费看不卡的av| 高清午夜精品一区二区三区| av免费观看日本| 欧美国产精品一级二级三级 | 国产伦理片在线播放av一区| 在线看a的网站| 精品国产一区二区久久| 青青草视频在线视频观看| 热99国产精品久久久久久7| 国产爽快片一区二区三区| 在线播放无遮挡| 国产免费一级a男人的天堂| 亚洲伊人久久精品综合| av天堂久久9| 老司机影院成人| 精品99又大又爽又粗少妇毛片| 日本欧美视频一区| 亚洲精品一二三| 日本91视频免费播放| 人人妻人人看人人澡| 亚洲av成人精品一区久久| 99re6热这里在线精品视频| 国内揄拍国产精品人妻在线| 中国国产av一级| 最后的刺客免费高清国语| 中文字幕制服av| 日韩在线高清观看一区二区三区| 午夜福利在线观看免费完整高清在| 免费观看a级毛片全部| 2018国产大陆天天弄谢| 啦啦啦视频在线资源免费观看| 男人爽女人下面视频在线观看| 日日啪夜夜爽| 成人亚洲精品一区在线观看| 街头女战士在线观看网站| 一级毛片电影观看| 最近手机中文字幕大全| 亚洲成人一二三区av| 熟女av电影| 纵有疾风起免费观看全集完整版| 七月丁香在线播放| 少妇猛男粗大的猛烈进出视频| 超碰97精品在线观看| 夜夜爽夜夜爽视频| 纵有疾风起免费观看全集完整版| 午夜激情久久久久久久| 精品一区在线观看国产| 国产黄色免费在线视频| 日韩制服骚丝袜av| av国产久精品久网站免费入址| 精品人妻一区二区三区麻豆| 免费观看av网站的网址| 美女xxoo啪啪120秒动态图| 免费看日本二区| 人人妻人人澡人人爽人人夜夜| 日日撸夜夜添| 亚洲精品国产av成人精品| 国产美女午夜福利| 在线亚洲精品国产二区图片欧美 | 国产精品国产三级国产专区5o| 九九爱精品视频在线观看| 在线观看免费视频网站a站| 成年人免费黄色播放视频 | 日韩大片免费观看网站| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜爱| 男人和女人高潮做爰伦理| 人妻系列 视频| 丁香六月天网| 91精品一卡2卡3卡4卡| 色94色欧美一区二区| av网站免费在线观看视频| av播播在线观看一区| 十分钟在线观看高清视频www | 女性被躁到高潮视频| 成人午夜精彩视频在线观看| 亚洲欧美精品专区久久| 91精品国产国语对白视频| 亚洲图色成人| 天堂中文最新版在线下载| 欧美国产精品一级二级三级 | 深夜a级毛片| 美女福利国产在线| 99热这里只有是精品50| 亚洲精品乱码久久久久久按摩| 少妇裸体淫交视频免费看高清| 成年av动漫网址| 在线看a的网站| 成人影院久久| 妹子高潮喷水视频| 黄色日韩在线| av又黄又爽大尺度在线免费看| 人妻系列 视频| 国产在线视频一区二区| 美女国产视频在线观看| 性色avwww在线观看| 国产淫语在线视频| 国产精品成人在线| 热re99久久国产66热| 国产淫语在线视频| 在线观看免费日韩欧美大片 | 热99国产精品久久久久久7| 国产又色又爽无遮挡免| 日本色播在线视频| 一级毛片我不卡| 亚洲丝袜综合中文字幕| 蜜桃久久精品国产亚洲av| 亚洲国产成人一精品久久久| 你懂的网址亚洲精品在线观看| 国产精品三级大全| 老司机亚洲免费影院| 免费看光身美女| 又粗又硬又长又爽又黄的视频| 青春草国产在线视频| h日本视频在线播放| 一区二区av电影网| 秋霞在线观看毛片| 大香蕉久久网| 美女国产视频在线观看| 麻豆乱淫一区二区| 欧美区成人在线视频| 少妇的逼好多水| 美女视频免费永久观看网站| 女性生殖器流出的白浆| 国产精品人妻久久久影院| 乱系列少妇在线播放| 中文资源天堂在线| 国内揄拍国产精品人妻在线| 最近手机中文字幕大全| 亚洲丝袜综合中文字幕| 国产精品成人在线| 国产高清有码在线观看视频| videos熟女内射| 国产永久视频网站| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲av天美| 午夜福利在线观看免费完整高清在| 亚洲欧洲精品一区二区精品久久久 | 最近中文字幕2019免费版| av在线播放精品| 欧美+日韩+精品| 在线观看国产h片| 亚洲人成网站在线观看播放| 久久ye,这里只有精品| 国产欧美日韩精品一区二区| 国产亚洲午夜精品一区二区久久| 成人综合一区亚洲| 国产男女内射视频| 中文字幕人妻熟人妻熟丝袜美| av福利片在线观看| 欧美日韩国产mv在线观看视频| 日韩熟女老妇一区二区性免费视频| 欧美性感艳星| 18+在线观看网站| 国产成人精品婷婷| 国产亚洲av片在线观看秒播厂| 日韩制服骚丝袜av| 涩涩av久久男人的天堂| 97超视频在线观看视频| 国产精品麻豆人妻色哟哟久久| 亚洲av男天堂| 国产一区有黄有色的免费视频| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 色吧在线观看| 国产精品麻豆人妻色哟哟久久| 色吧在线观看| 精品久久久噜噜| 国产精品人妻久久久影院| 免费黄频网站在线观看国产| 亚洲av福利一区| 久久久国产欧美日韩av| 中文精品一卡2卡3卡4更新| 欧美精品高潮呻吟av久久| 一本色道久久久久久精品综合| 乱码一卡2卡4卡精品| 亚洲av.av天堂| 日日啪夜夜爽| 国产一区亚洲一区在线观看| 久久狼人影院| 国产亚洲最大av| 久热这里只有精品99| 五月玫瑰六月丁香| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 秋霞伦理黄片| 在线观看国产h片| 久久亚洲国产成人精品v| 亚洲av电影在线观看一区二区三区| 国产精品人妻久久久久久| 成人影院久久| 内射极品少妇av片p| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 久久97久久精品| 国产成人精品福利久久| 日韩欧美精品免费久久| 天堂中文最新版在线下载| 国内精品宾馆在线| 欧美精品人与动牲交sv欧美| 日韩一区二区三区影片| 免费观看a级毛片全部| 纯流量卡能插随身wifi吗| 国内揄拍国产精品人妻在线| 国产日韩欧美亚洲二区| 自拍欧美九色日韩亚洲蝌蚪91 | 人人澡人人妻人| 亚洲在久久综合| 在线观看美女被高潮喷水网站| 久久久久久久久久成人| 91精品国产国语对白视频| 国产黄片美女视频| 亚洲综合精品二区| 成人毛片a级毛片在线播放| 久久久久精品性色| 男人舔奶头视频| 国产视频内射| 午夜av观看不卡| 97精品久久久久久久久久精品| 久久久午夜欧美精品| 少妇熟女欧美另类| 日本午夜av视频| 免费黄网站久久成人精品| 日韩制服骚丝袜av| 国产色婷婷99| av一本久久久久| 国产毛片在线视频| 卡戴珊不雅视频在线播放| 国产高清不卡午夜福利| 国产老妇伦熟女老妇高清| 精品人妻偷拍中文字幕| 欧美丝袜亚洲另类| 国产精品秋霞免费鲁丝片| 乱人伦中国视频| 搡女人真爽免费视频火全软件| 极品少妇高潮喷水抽搐| 国产一区亚洲一区在线观看| 国产午夜精品一二区理论片| 久久青草综合色| 人人妻人人澡人人爽人人夜夜| 插阴视频在线观看视频| 精品人妻偷拍中文字幕| 亚洲成人一二三区av| 日韩精品有码人妻一区| 日本91视频免费播放| 国产亚洲欧美精品永久| 国产伦理片在线播放av一区| 91精品伊人久久大香线蕉| 一级毛片黄色毛片免费观看视频| 国产精品一区www在线观看| 蜜臀久久99精品久久宅男| 美女视频免费永久观看网站| 美女国产视频在线观看| 一级毛片aaaaaa免费看小| 久久午夜综合久久蜜桃| av有码第一页| 美女cb高潮喷水在线观看| 中文天堂在线官网| 男人狂女人下面高潮的视频| 亚洲综合色惰| 久热这里只有精品99| 人人澡人人妻人| 三级经典国产精品| 成年人午夜在线观看视频| 亚洲精品久久久久久婷婷小说| 香蕉精品网在线| 少妇人妻久久综合中文| 秋霞伦理黄片| 免费观看性生交大片5| 夫妻性生交免费视频一级片| 简卡轻食公司| 久久国产乱子免费精品| 97在线人人人人妻| 夫妻午夜视频| 精品人妻熟女毛片av久久网站| 美女内射精品一级片tv| av网站免费在线观看视频| 国产69精品久久久久777片| 少妇人妻 视频| 久久久a久久爽久久v久久| 国产亚洲午夜精品一区二区久久| 精品人妻熟女毛片av久久网站| 精品国产国语对白av| 国产免费一级a男人的天堂| 人妻系列 视频| 最新中文字幕久久久久| 国产精品麻豆人妻色哟哟久久| 精品久久久久久久久av| 国产av一区二区精品久久| 9色porny在线观看| 国产av精品麻豆| 精品人妻熟女av久视频| 国产熟女午夜一区二区三区 | 亚洲电影在线观看av| 国产精品99久久99久久久不卡 | 亚洲成人手机| 男的添女的下面高潮视频| 欧美丝袜亚洲另类| 一级毛片 在线播放| 80岁老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 免费观看在线日韩| 日韩一区二区三区影片| 极品人妻少妇av视频| 亚洲丝袜综合中文字幕| 久久97久久精品| 成年美女黄网站色视频大全免费 | 国产精品99久久久久久久久| 插阴视频在线观看视频| 久久久午夜欧美精品| 精品99又大又爽又粗少妇毛片| 大码成人一级视频| 久久久久久久久久成人| 春色校园在线视频观看| 国产精品福利在线免费观看| videos熟女内射| 精品一区在线观看国产| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久精品电影小说| 国产黄频视频在线观看| 老女人水多毛片| 久久午夜综合久久蜜桃| 亚洲成人av在线免费| 水蜜桃什么品种好| 日韩精品有码人妻一区| 99久久精品一区二区三区| 亚洲色图综合在线观看| 人妻夜夜爽99麻豆av| 一级av片app| 亚州av有码| 国产成人一区二区在线| 一本大道久久a久久精品| 国产亚洲5aaaaa淫片| 高清在线视频一区二区三区| 国产视频首页在线观看| 亚洲av二区三区四区| 欧美精品亚洲一区二区| 少妇人妻 视频| a级一级毛片免费在线观看| av在线播放精品| 国产亚洲一区二区精品| 国产成人免费观看mmmm| 在线播放无遮挡| 欧美日韩国产mv在线观看视频| 男人舔奶头视频| 久久精品国产a三级三级三级| 欧美国产精品一级二级三级 | 乱系列少妇在线播放| 国产欧美日韩综合在线一区二区 | 爱豆传媒免费全集在线观看| 久久久久久久久久成人| 在现免费观看毛片| 国产一区二区在线观看日韩| 免费人成在线观看视频色| 日日爽夜夜爽网站| 男的添女的下面高潮视频| 中文字幕免费在线视频6| 亚洲欧洲日产国产| .国产精品久久| 久久人人爽人人片av| 日韩制服骚丝袜av| 欧美老熟妇乱子伦牲交| 美女cb高潮喷水在线观看| 91aial.com中文字幕在线观看| 久久久久久久亚洲中文字幕| 观看美女的网站| 三级国产精品欧美在线观看| 三上悠亚av全集在线观看 | 少妇高潮的动态图| 国内精品宾馆在线| 日韩中字成人| 99久久精品一区二区三区| 国产精品久久久久久av不卡| 婷婷色麻豆天堂久久| videos熟女内射| 欧美日韩视频高清一区二区三区二| 国产成人精品久久久久久| 欧美日韩亚洲高清精品| 欧美国产精品一级二级三级 | 亚洲精品成人av观看孕妇| 日韩制服骚丝袜av| 国产毛片在线视频| 老司机影院成人| 欧美日韩精品成人综合77777| 精品一品国产午夜福利视频| 18禁在线无遮挡免费观看视频| 日产精品乱码卡一卡2卡三| av在线老鸭窝| 人人妻人人添人人爽欧美一区卜| 永久免费av网站大全| 国产深夜福利视频在线观看| 亚洲av.av天堂| 精品少妇黑人巨大在线播放| 麻豆成人午夜福利视频| 亚洲怡红院男人天堂| 亚洲国产精品999| 色婷婷久久久亚洲欧美| 视频区图区小说| a级片在线免费高清观看视频| 精品少妇内射三级| 欧美xxⅹ黑人| 久久久久久人妻| 久久影院123| 亚洲国产精品一区二区三区在线| 久久久久久人妻| 成人18禁高潮啪啪吃奶动态图 | 国产 一区精品| 午夜免费观看性视频| 午夜老司机福利剧场| 久久国产乱子免费精品| 80岁老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 欧美日韩精品成人综合77777| 欧美变态另类bdsm刘玥| 我要看黄色一级片免费的| 看非洲黑人一级黄片| 午夜免费男女啪啪视频观看| 国产精品久久久久成人av| 日韩伦理黄色片| 日韩成人伦理影院| 麻豆成人午夜福利视频| 久久久久久久久大av| 成年人免费黄色播放视频 | 两个人的视频大全免费| 亚洲国产精品国产精品| 视频中文字幕在线观看| 久久免费观看电影| 国产高清三级在线| 91精品伊人久久大香线蕉| 国产精品成人在线| 99久久精品一区二区三区| 日韩免费高清中文字幕av| 精品国产乱码久久久久久小说| 欧美老熟妇乱子伦牲交| 亚洲国产精品成人久久小说| 七月丁香在线播放| 国产精品一区二区三区四区免费观看| 麻豆精品久久久久久蜜桃| 国产男女内射视频|