劉博川, 王麗娟, 喬 夢, 郭 濤, 王彥斌, 曹 巍, 趙 旭*
1.河北工業(yè)大學(xué)土木工程學(xué)院, 天津 300401 2.中國科學(xué)院生態(tài)環(huán)境研究中心環(huán)境水質(zhì)學(xué)實驗室, 北京 100085 3.新興有機污染物控制北京市重點實驗室, 北京 100084
TiO2電極光電催化氧化處理水體中的蒽
劉博川1,2, 王麗娟1*, 喬 夢2,3, 郭 濤2, 王彥斌2, 曹 巍2, 趙 旭2*
1.河北工業(yè)大學(xué)土木工程學(xué)院, 天津 300401 2.中國科學(xué)院生態(tài)環(huán)境研究中心環(huán)境水質(zhì)學(xué)實驗室, 北京 100085 3.新興有機污染物控制北京市重點實驗室, 北京 100084
為了探究光電催化體系對水體中多環(huán)芳烴(PAHs)的降解效果,采用TiO2電極在紫外光照射下進行了光電催化氧化處理多環(huán)芳烴——Ant(蒽)的研究.分別比較了光電催化(PEC)、光催化(PC)和電化學(xué)氧化(EC)體系對Ant的降解效果.并探究了電流密度、初始pH、初始ρ(Ant)和腐植酸(HA)等對Ant降解效果的影響;同時,采用偽一級動力學(xué)對降解反應(yīng)速率進行了擬合分析并對中間產(chǎn)物的含量及Ant的降解機理進行了研究.結(jié)果表明:在相同電流密度和反應(yīng)時間等條件下,PEC體系對Ant的降解率均高于PC和EO體系;電流密度對Ant降解影響不大,在電流密度為0.05 mAcm2條件下,反應(yīng)30 min后,Ant的降解率能達到98.5%,體系中中間產(chǎn)物有蒽酮(AT)、蒽醌(AQ)等物質(zhì),其濃度呈現(xiàn)先增加后降低的趨勢;初始pH對中間產(chǎn)物AQ的生成影響較大;初始濃度對反應(yīng)速率影響較大,初始濃度增加3倍,反應(yīng)速率降低了近44%,但Ant的降解率相差不到1%;HA的存在使得Ant降解率降低了7.5%,反應(yīng)速率降低了近83%.
多環(huán)芳烴; 蒽; 光電催化; 降解
PAHs(polycyclic aromatic hydrocarbons,多環(huán)芳烴)是一類由兩個或兩個以上苯環(huán)組成的稠環(huán)芳香烴化合物,是US EPA(美國國家環(huán)境保護局)制定的129種優(yōu)控污染物中的一類,具有強烈的致癌、致突變和致畸性[1- 2].自然界中PAHs的主要轉(zhuǎn)化降解方式是光解作用[3],但當(dāng)PAHs暴露于紫外光下時,易發(fā)生光修飾反應(yīng),使其毒性顯著提高[4- 5].由于石油精煉、有色金屬冶煉等行業(yè)的快速發(fā)展及各類石油、石化燃料的不完全燃燒等導(dǎo)致PAHs廣泛分布于土壤、大氣及水體中[2,6- 8],又由于PAHs難生物降解和易脂溶性的特點,可通過食物鏈被富集放大,故已成為人類致癌重要起因之一,嚴(yán)重影響了生態(tài)環(huán)境安全和人類健康.
目前PAHs的處理方法主要包括物理法、微生物法和化學(xué)法,如揮發(fā)、吸附、PAHs降解菌、UVH2O2、超聲、光芬頓和UVTiO2等[9- 16].這些方法對水體中的PAHs降解均能取得一定的效果,然而也存在一些不足:揮發(fā)和吸附只是物理轉(zhuǎn)化過程并不能有效解決PAHs的污染問題;微生物法反應(yīng)緩慢且受環(huán)境因素影響較大;光芬頓等均相催化氧化法藥劑費用高且易產(chǎn)生二次污染;粉末催化劑光生電子與空穴分離率低且反應(yīng)后分離繁瑣;電極氧化則會出現(xiàn)電極鈍化現(xiàn)象等.
近年來,PEC(光電催化氧化法)獲得了越來越多的關(guān)注,該方法采用光催化法和電化學(xué)法聯(lián)合的“電助光催化”模式,通過外加偏壓作用實現(xiàn)光生電子和光生空穴的有效分離,促進自由基的生成,從而大大提升對目標(biāo)污染物的降解效果,同時也解決了二次污染和分離繁瑣等問題[17- 18],目前該方法在降解有機廢水和水解制氫等方面具有廣泛的應(yīng)用[19- 20].
Ant(anthracene,蒽)是線形三環(huán)PAHs,是其他復(fù)雜多環(huán)芳烴的母體,并且是與光反應(yīng)最快的PAHs之一,對生物具有很強的光毒性[21- 22],目前單獨對Ant降解進行研究還比較鮮見,因此開展相關(guān)研究具有一定的現(xiàn)實意義.該研究采用TiO2納米管電極在紫外光照射下進行光電催化氧化處理水體中的Ant,并對電流密度、初始pH、初始ρ(Ant)和腐植酸等反應(yīng)條件進行探究,以期為采用該方法降解PAHs提供參考.
1.1 主要試劑及試驗裝置
氫氟酸、硝酸、硫酸銨、氟化銨、丙三醇和無水硫酸鈉均為優(yōu)級純,購自國藥集團化學(xué)試劑有限公司.正己烷、丙酮、二氯甲烷、甲醇和乙腈均為色譜純,購自美國Fisher Scientific公司.Ant(Solid>99.5%)購自百靈威科技J&K.鈦片(50 mm×45 mm×1.5 mm)購自北京恒力鈦公司.
圖1為光電催化氧化試驗裝置示意圖,采用兩電極體系在石英反應(yīng)器(7.0 cm×7.0 cm×6.0 cm)中進行,電源由直流穩(wěn)壓穩(wěn)流電源(DH1765- 1型程控,北京大華無線電儀器廠)提供,紫外光由高壓汞燈提供(波長254 nm,額定功率15 W,光通量2.59×10-3),陽極氧化法得到的TiO2納米管[23]和鈦片分別作為工作電極和對電極.
圖1 光電催化氧化試驗裝置Fig.1 Schematic diagram of the photoelectrocatalytic oxidation system
1.2 試驗流程與檢測方法
根據(jù)文獻[24- 25]報道,煉油廢水、煤焦油廢水等PAHs污染較為嚴(yán)重的廢水中ρ(Ant)為22~295 μgL,為研究高濃度下PAHs的去除效果,將反應(yīng)液初始ρ(Ant)設(shè)定為125 μgL.用超純水將一定體積(125~500 μL)的Ant母液(200 mgL)稀釋成一定濃度(125~500 μgL)的反應(yīng)液,避光攪拌5 min,使反應(yīng)液充分混合.將該反應(yīng)液置于石英反應(yīng)器中,兩電極間施加一定電壓,開啟高壓汞燈開始反應(yīng).于0、1、2、5、10、30和60 min時取樣2 mL,用C18小柱進行萃取.
在PC體系中開啟高壓汞燈不施加電壓,在EO體系只施加電壓而不開啟高壓汞燈;溶液的pH分別用H2SO4(0.1 mmolL)和NaOH(0.1 mmolL)溶液進行調(diào)節(jié);在腐植酸影響試驗中則向超純水中投加2 mL的HA母液(2 gL),最終配制成ρ(HA)為20 mgL的反應(yīng)液.以上試驗ρ(Ant)均為125 μgL,電流密度為0.05 mAcm2,電解質(zhì)Na2SO4濃度為10 mmolL.
ρ(Ant)通過氣相色譜-質(zhì)譜聯(lián)用儀(GC-MS:7890A GC5975C MS,Agilent Technologies,USA)測定;色譜柱(HP-5MS,30 m×0.25 mm×0.25 μm),流動相為高純氦氣.升溫程序:爐內(nèi)初始溫度為80 ℃,停留1 min,以20 ℃min升至200 ℃,再以10 ℃min升至300 ℃,停留5 min.
根據(jù)文獻[13]報道,Ant與羥基自由基及超氧自由基等反應(yīng)首先生成AT(蒽酮)、AQ(蒽醌)等中間產(chǎn)物,然后再發(fā)生開環(huán)反應(yīng).由于該研究中的ρ(Ant)達不到TOC檢測限,因此將c(Ant)、c(AT)與c(AQ)之和的減少量與初始c(Ant)、c(AT)與c(AQ)之和的比值定義為E,通過計算E值可間接反映該體系中目標(biāo)污染物Ant轉(zhuǎn)化為其他小分子有機物及CO2和H2O的情況.計算公式:
E=1-C(Ant+AT+AQ)tC(Ant+AT+AQ)0
(1)
式中:C(Ant+AT+AQ)t為t時刻剩余c(Ant)、c(AT)與c(AQ)之和,molL;C(Ant+AT+AQ)0為初始c(Ant)、c(AT)與c(AQ)之和,molL.
2.1 PEC、EO和PC對Ant降解效果對比
由圖2可見,反應(yīng)結(jié)束后EO體系、PC體系和PEC體系對Ant的降解率分別為22.4%、92.7%和98.5%.其中EO體系反應(yīng)30 min內(nèi)ρ(AT)、ρ(AQ)均維持在較低水平,并且有逐漸上升的趨勢;而PC和PEC體系中的ρ(AT)和ρ(AQ)在反應(yīng)2 min后達到峰值,隨后逐漸被降解.EO、PC和PEC體系下的E值分別為17.9%、77.3%和83.7%.運用偽一級動力學(xué)的Langmuir-Hinshelwood(L-H)公式[26]對結(jié)果進行擬合:
-dCdt=kC? ln(CC0)=-kt
(2)
式中:C為t時刻污染物剩余濃度,μgL;C0為污染物初始濃度,μgL;k為反應(yīng)速率常數(shù),min-1;t為反應(yīng)時間,min.
圖2 PEC、PC和EO體系下Ant的降解Fig.2 Degradation process of Ant under PEC,PC and EO system
分別以-ln(CC0)和反應(yīng)時間t為縱坐標(biāo)和橫坐標(biāo)進行線性擬合,可求出k,結(jié)果如圖2(a)所示,圖2(a)顯示反應(yīng)速率常數(shù)kPEC是kPC的1.35倍.
Duarte等[27]采用電化學(xué)氧化法,以TiPt電極對144 μgL的 Ant進行降解,在電流密度為11 mAcm2,反應(yīng)1 h后,降解率達74%.Lair等[28]采用光催化氧化法,用TiO2粉末(P25)催化劑在紫外光的照射下對40 μmolL的萘進行降解,在30 min后,降解率達72.5%.通過對比發(fā)現(xiàn),PC對PAHs的降解起主要作用,而在該試驗中電流密度僅為Duarte的試驗中的1220,說明PEC體系中在較低電流密度下就能進一步提高目標(biāo)污染物的降解速率和礦化程度.
TiO2光電催化可能的反應(yīng)過程[26,29]:
TiO2+ hν→TiO2-hvb++TiO2-ecb-
(3)
TiO2-hvb++H2O→·OH+H+
(4)
TiO2-hvb++OH-→·OH
(5)
TiO2-ecb-+O2→·O2-
(6)
·O2-+H+→·OOH
(7)
2·OOH→H2O2+O2
(8)
TiO2-hvb++TiO2-ecb-→復(fù)合
(9)
該過程可能的反應(yīng)機理:根據(jù)Miller等[30]的研究結(jié)果,PAHs具有一定的光敏化效果,在紫外光的照射下能激發(fā)PAHs釋放電子,釋放的電子被DO(溶解氧)捕獲生成超氧自由基和單線氧等自由基,自由基與PAHs反應(yīng)生成中間產(chǎn)物并進一步被降解為CO2和H2O.而在PEC體系中,電流的作用能有效抑
制光生電子和光生空穴的復(fù)合〔見式(9)〕,促進了羥基自由基〔見式(5)〕和超氧自由基〔見式(6)〕的生成[30],進而促進了反應(yīng)的進一步進行.
2.2 電流密度對Ant降解效果的影響
由圖3可見,在電流密度為0~0.50mAcm2范圍內(nèi),Ant的降解率隨電流密度的增加呈先增加后降低的趨勢.當(dāng)電流密度為0.10mAcm2時Ant的降解率達到98.6%;而當(dāng)電流密度為0.50mAcm2時Ant的降解率則降為92.1%.究其原因:外加偏壓作用,能使光生電子與光生空穴的分離效果增強,進而促進自由基的生成.但TiO2納米管薄膜電極厚度有限,在光輻射一定的情況下,過大偏壓會擊穿薄膜導(dǎo)致空間電荷層的再分配,使得光生量子產(chǎn)率變低;同時,隨著電流密度的增加,電極析氧等副反應(yīng)逐漸變強,阻礙了污染物向陽極的遷移,因而降解污染物的效果變差[31- 32].LIANG等[31-32]的研究結(jié)果也表明,偏壓過大會抑制自由基的生成,進而影響污染物的降解.由于電流密度為0.10mAcm2時的反應(yīng)速率比0.05mAcm2時稍有提高,但反應(yīng)結(jié)束后對Ant的降解率相差不到0.1%(即當(dāng)電流密度為為0.05mAcm2時Ant的降解率為98.5%),且E值基本相同,為節(jié)約能耗,以下試驗均在電流密度為0.05 mAcm2條件下進行.
電流密度(mAcm2): 1—0; 2—0.05; 3—0.10; 4—0.15; 5—0.50.圖3 電流密度對Ant降解效果的影響Fig.3 Effect of current density on the degradation of Ant
2.3 初始pH對Ant降解效果的影響
由圖4可見,初始pH對Ant降解的影響并不大.但酸性條件下ρ(AQ)比其他條件下高,反應(yīng)30 min后,pH=2.0時ρ(AQ)是pH=12.0時的4.5倍.在酸性條件下的E值也較其他條件小,且隨著pH的升高,E值由65.4%增加到83.7%,但pH超過6.5后E值則相差不大.究其原因:pH能影響溶液中的ρ(DO)[33],隨著pH的升高ρ(DO)上升,從而促進了羥基自由基和超氧自由基的生成〔見式(5)(6)〕,同時在酸性條件下超氧自由基更易于和游離氫離子發(fā)生反應(yīng)生成活性較弱的超氧化氫自由基〔見式(7)〕[30],從而影響中間產(chǎn)物的降解.Frontistis等[26,34]的研究也表明,堿性條件下更有利于羥基自由基的生成,從而促進污染物的降解.
pH: 1—2.0; 2—4.0; 3—6.5; 4—10.0; 5—12.0.圖4 初始pH對Ant降解效果的影響Fig.4 Effect of initial pH on the degradation of Ant
2.4 初始ρ(Ant)和腐殖酸對降解效果的影響
由圖5(a)可見,隨著初始ρ(Ant)的增加,Ant的降解率逐漸降低,但在30 min后Ant的降解率相差不到1%.當(dāng)初始ρ(Ant)為125、250和500 μgL時,kPEC分別為0.350、0.293和0.194 min-1,初始ρ(Ant)
增加3倍,反應(yīng)速率降低了近44%.究其原因:該反應(yīng)為界面反應(yīng),即表面反應(yīng)為速度控制步驟[17],當(dāng)目標(biāo)物初始濃度較高時生成的中間產(chǎn)物會和目標(biāo)物在電極表面活性位點產(chǎn)生競爭吸附作用,從而影響了反應(yīng)的進行[26].
注: 初始ρ(Ant)(μgL): 1—125; 2—250; 3—500.圖5 初始ρ(Ant)對Ant降解效果的影響Fig.5 Effect of initial concentration on the degradation of the Ant
注: 腐殖酸: 1—UPW; 2—HA.圖6 腐植酸對Ant降解效果的影響Fig.6 Effect of humic acid on the degradation of the Ant
a)在EO、PC和PEC體系下Ant降解率分別為22.4%、92.7%和98.5%,間接反映總降解程度的E值分別為17.9%、77.3%和83.7%,可知PEC條件較PC條件對Ant的降解有一定的提升作用.
b)由于目標(biāo)污染物含量較低,在光電催化氧化Ant的過程中,電流密度對Ant的降解效果影響不大;初始pH對Ant的降解效果影響不大,但對中間產(chǎn)物AQ的生成影響較大.
c)初始ρ(Ant)對反應(yīng)速率影響較大,初始ρ(Ant)增加3倍,反應(yīng)速率降低了近44%,但最終降解效果相差不到1%;腐植酸的存在使得Ant降解率降低了7.5%,反應(yīng)速率降低了近83%.
[1] 文晟.水體中多環(huán)芳烴的TiO2光催化降解研究[D].廣州:中國科學(xué)院廣州地球化學(xué)研究所,2002.
[2] MANOLI E,SAMARA C.The removal of polycyclic aromatic hydrocarbons in the wastewater treatment process: experimental calculations and model predictions[J].Environment Pollution,2008,151(3):477- 485.
[3] FASNACHT M P,BLIUGH N V.Kinetic analysis of the photodegradation of polycyclic aromatic hydrocarbons in aqueous solution[J].Aquatic Sciences,2003,65(4):352- 358.
[4] 趙磊.強化表面活性劑投加體系中蒽降解菌活性的研究[D].武漢:武漢大學(xué),2005.
[5] 畢蓉.多環(huán)芳烴-蒽對兩種海洋微藻的種群增長和種間競爭影響的研究[D].青島:中國海洋大學(xué),2009.
[6] GONZALEZ D,RUIZ L M,GARRALIN G,etal.Wastewater polycyclic aromatic hydrocarbons removal by membrane bioreactor[J].Desalination & Water Treatment,2012:42(123),94- 99.
[7] 鄭玫,閆才青,楊巧云,等.北京市公共交通環(huán)境多環(huán)芳烴的個體暴露特征[J].環(huán)境科學(xué)研究,2014,27(9):965- 974. ZHENG Mei,YAN Caiqing,YANG Qiaoyun,etal.Characteristics of personal exposure to polycyclic aromatic hydrocarbons in public transportation environments in Beijing[J].Research of Environmental Sciences,2014,27(9):965- 974.
[8] 丁瀟,白志鵬,韓斌,等.鞍山市大氣PM10中多環(huán)芳烴(PAHs)的污染特征及其來源[J].環(huán)境科學(xué)研究,2011,24(2):162- 171. DING Xiao,BAI Zhipeng,HAN Bin,etal.Pollution characteristics and source analysis of PAHs in PM10in Anshan City[J].Research of Environmental Sciences,2011,24(2):162- 171.
[9] 范波,王曉昌,劉俊建.城市污水中多環(huán)芳烴的吸附去除特性研究[J].安全與環(huán)境學(xué)報,2011,11(5):37- 40.
[10] HARITASH A K,KAUSHIKC P.Biodegradation aspects of polycyclic aromatic hydrocarbons(PAHs):a review[J].Journal of Hazardous Materials,2009,169(123):1- 15.
[11] BELTRAN F J,OVEJERO G,RIVAS J.Oxidation of polynuclear aromatic hydrocarbons in water: 3.UV radiation combined with hydrogen peroxide[J].Industrial & Engineering Chemistry Research,1996,35(3):883- 890.
[12] LITTLE C,HEPHER M J,El-SHARIF M.Thesono-degradation of phenanthrene in an aqueous environment[J].Ultrasonics,2002,40(12345678):667- 674.
[13] ENGWALL M A,PIGNATELLO J J,GRASSO D.Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photo-Fenton reaction[J].Water Research,1999,33(5):1151- 1158.
[14] WOO O T,CHUNG W K,WONG K H.etal.Photocatalytic oxidation of polycyclic aromatic hydrocarbons: intermediates identification and toxicity testing[J].Journal of Hazardous Mater-ials,2009,168(23):1192- 1199.
[15] CORDEIRO D S,CORIO P.Electrochemical and photocatalytic reactions of polycyclic aromatic hydrocarbons investigated by raman spectroscopy[J].Journal of the Brazilian Chemical Society,2009,20(1):80- 87.
[16] 潘海祥,傅家謨,盛國英,等.在TiO2催化劑上菲的光催化氧化反應(yīng)研究[J].環(huán)境科學(xué)研究,2000,13(6):37- 39. PAN Haixiang,F(xiàn)U Jiamo,SHENG Guoying,etal.Photocatalytic oxidation of phenanthrene on TiO2powder[J].Research of Environmental Sciences,2000,13(6):37- 39.
[17] 張峰.光催化水處理技術(shù)[M].北京:化學(xué)工業(yè)出版社,2015.
[18] 白潤英.水處理新技術(shù)、新工藝與設(shè)備[M].北京:化學(xué)工業(yè)出版社,2012.
[19] 陳佩儀,李彥旭,孫楹煌,等.光電催化水處理技術(shù)研究進展[J].工業(yè)水處理,2005,25(12):13- 17. CHEN Peiyi,LI Yanxu,SUN Yinghuang,etal.Progres s in the research on was tewater treatment by photoelectrocatalytic technology[J].Industrial Water Treatment,2005,25(12):13- 17.
[20] 李桂英,安太成,陳嘉鑫,等.光電催化氧化處理高含氯采油廢水的研究[J].環(huán)境科學(xué)研究,2006,19(1):30- 34. LI Guiying,AN Taicheng,CHEN Jiaxin,etal.Photoelectrocatalytic degradation of oilfield wastewater with high content of chlorine[J].Research of Environmental Sciences,2006,19(1):30- 34.
[21] KRYLOV S N,HUANG X D,ZEILER L F,etal.Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons:Ⅰ.physical model based on chemical kinetics in a two-compartment system[J].Environmental Toxicology and Chemistry,1997,16(11):2283- 2295.
[22] MALLAKIN A,MCCONKEY B J,MIAO G,etal.Impacts of structural photomodification on the toxicity of environmental contaminants:anthracene photooxidation products[J].Ecotoxicology & Environmental Safety,2009,43(2):204- 212.
[23] 劉會芳,喬建剛,田世超,等.石墨烯修飾的二氧化鈦納米管電極光電催化去除銅氰絡(luò)合物研究[J].環(huán)境科學(xué)學(xué)報,2016,36(6):2027- 2032. LIU Huifang,QIAO Jiangang,TIAN Shichao,etal.Photoelectrocatalytic removal of copper cyanide complexes using grapheme modified titania dioxide nanotube electrode[J].Acta Scientiae Circumstantiae,2016,36(6):2027- 2032.
[24] 張厚勇.煉油廢水中苯系物和多環(huán)芳烴的分布規(guī)律研究及環(huán)境風(fēng)險評價[D].濟南:山東大學(xué),2008.
[25] 林沖.焦化廢水外排水中殘余組分的環(huán)境行為及臭氧氧化過程分析[D].廣州:華南理工大學(xué),2014.
[26] FRONTISTIS Z,DASKALAKI V M,KATSAOUNIS A,etal.Electrochemical enhancement of solar photocatalysis: degradation of endocrine disruptor bisphenol-A on TiTiO2films[J].Water Research,2011,45(9):2996- 3004.
[27] DUARTE J P S,MARTINEZ-HUITLE C A,SILVA D R D.Electrochemical treatment for removing petroleum polycyclic aromatic hydrocarbons(PAHs)from synthetic produced water using a DSA-type anode:preliminary results[J].Sustainable Environment Research,2011,21(5):329- 335.
[28] LAIR A,F(xiàn)ERRONTO C,CHOVELON J M,etal.Naphthalene degradation in water by heterogeneous photocatalysis:an investigation of the influence of inorganic anions[J].Journal of Photochemistry & Photobiology A:Chemistry,2008,193(23):193- 203.
[29] YAN Xiaoju,BAO Ruiling,YU Shuili,etal.Theroles of hydroxyl radicals,photo_generated holes and oxygen in the photocatalytic degradation of humic acid[J].Russian Journal of Physical Chemistry A,2012,86(9):1479- 1485.
[30] MILLER J S,OLEJNIK D.Photolysis of polycyclic aromatic hydrocarbons in water[J].Water Research,2001,35(1):233- 243.
[31] LIANG Fenfen,ZHU Yongfa.Enhancement of mineralization ability for phenol via synergetic effect of photoelectrocatalysis of g-C3N4film[J].Applied Catalysis B:Environmental,2016,180:324- 329.
[32] 張娟娟,竇遠明,李靜,等.Bi2MoO6薄膜電極光電催化氧化處理氰化物的研究[J].環(huán)境科學(xué)學(xué)報,2015,35(3):738- 744. ZHANG Juanjuan,DOU Yuanming,LI Jing,etal.Photoelectrocatalytic oxidation of cyanides at Bi2MoO6film electrode[J].Acta Scientiae Circumstantiae,2015,35(3):738- 744.
[33] CHEN Wenshing,HUANHG Chipin,etal.Mineralization of aniline in aqueous solution by electrochemical activation of per-sulfate[J].Chemosphere,2015,125:175- 181.
[34] 熊重鐸.蒽醌染料茜素綠模擬廢水的微波無極紫外光催化氧化降解過程的研究[D].上海:東華大學(xué),2015.
[35] WANG Yajie,XU Jing,LI Jinjun,etal.Natural montmorillonite induced photooxidation of As(Ⅲ) in aqueous suspensions: roles and sources of hydroxyl and hydroperoxylsuperoxide radicals[J].Journal of Hazardous Materials,2013,260(18):255- 262.
[36] SU Yuhfan,WANG Guanbo,KUOD T F,etal.Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2Tiphotoanode[J].Applied Catalysis B:Environmental,2016,186(5):184- 192.
Photoelectrocatalytic Degradation of Anthracene in Aqueous Environment by TiO2Electrode
LIU Bochuan1,2, WANG Lijuan1*, QIAO Meng2,3, GUO Tao2, WANG Yanbin2, CAO Wei2, ZHAO Xu2*
1.School of Civil Engineering, Hebei University of Technology, Tianjin 300401, China 2.Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 3.Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
In recent decades, due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environments has attracted much interest. In order to explore the degradation effect of PAHs in aqueous environment under a photoelectrocatalytic system, the destruction of anthracene (Ant) was investigated by using TiO2electrode under the irradiation of UV light. The degradation abilities of Ant in the photoelectrocatalytic (PEC), photocatalytic (PC) and electrochemical oxidation (EO) systems were compared. The effects of various parameters on the degradation of Ant were estimated as well, including applied current density, initial solution pH, initial Ant concentration and humic acid (HA). The reaction rate was analyzed by using the pseudo-first order kinetics. The mechanism of degradation of Ant and the kinds of intermediates were subsequently studied. The results showed that at the same current density and reaction time and other conditions, thedegradation of PEC was higher than those in the PC and EO systems. The current density presented little effect on the degradation of Ant, and the removal efficiency was 98.5% with current density 0.05 mAcm2in 30 min. Anthrone and Anthraquinone were the intermediates, and their concentrations increased first and then decreased. The initial pH had relativel yhigh effect on the generation of Anthraquinone. The initial concentration had high effect on the apparent reaction constant; when the initial concentration increased 3 times, the apparent reaction rate was reduced by nearly 44%,but the degree of the Ant degradation was less than 1%. In the presence of HA, Ant degradation was lower by 7.5%, and the apparent reaction rate was reduced by nearly 83%.
polycyclic aromatic hydrocarbons;anthracene; photoelectrocatalytic; degradation
2016- 08- 18
2016- 10- 08
國家自然科學(xué)基金項目(51438011,51508552)
劉博川(1993-),男,河北邢臺人,liubochuanl@163.com.
*責(zé)任作者:①王麗娟(1972-),女,河北廊坊,高級工程師,博士,主要從事給排水工程系統(tǒng)及優(yōu)化技術(shù)和水處理方面的研究,wlj@hebei.edu.cn;②趙旭(1976-),男,遼寧鞍山人,研究員,博士,博導(dǎo),要從事光電化學(xué)水污染控制方面的研究,zhaoxu@rcees.ac.cn
X52
1001- 6929(2017)02- 0322- 07
A
10.13198j.issn.1001- 6929.2017.01.32
劉博川,王麗娟,喬夢,等.TiO2電極光電催化氧化處理水體中的蒽[J].環(huán)境科學(xué)研究,2017,30(2):322- 328.
LIU Bochuan,WANG Lijuan,QIAO Meng,etal.Photoelectrocatalytic degradation of anthracene in aqueous environment by TiO2electrode[J].Research of Environmental Sciences,2017,30(2):322- 328.