施麗莉,胡志超,顧峰瑋,吳 峰,吳朋來(lái)
?
耙齒式壟作花生殘膜回收機(jī)設(shè)計(jì)及參數(shù)優(yōu)化
施麗莉,胡志超※,顧峰瑋,吳 峰,吳朋來(lái)
(農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
為解決壟作花生收獲后殘膜回收問(wèn)題,針對(duì)耙齒式殘膜回收機(jī)進(jìn)行試驗(yàn)研究及參數(shù)優(yōu)化使其適用于壟作花生殘膜回收。針對(duì)主要工作部件進(jìn)行研究,確定整機(jī)結(jié)構(gòu)參數(shù)。前、中、后耙齒直徑分別為10、8、8 mm;耙齒材料為65號(hào)錳鋼;耙齒入土角度范圍為10°~35°;3排齒的齒間距分別為120、100、80 mm;對(duì)機(jī)具前進(jìn)速度,耙齒入土深度,耙齒曲率半徑進(jìn)行試驗(yàn)且做了MATLAB四維切片和響應(yīng)面分析,可知3個(gè)因素對(duì)殘膜回收率均有顯著影響,影響程度依次為:機(jī)具前進(jìn)速度>耙齒入土深度>耙齒曲率半徑。應(yīng)用Design expert尋優(yōu)功能進(jìn)行優(yōu)化,優(yōu)化后機(jī)具前進(jìn)速度1.2 m/s,耙齒入土深度11 mm,耙齒曲率半徑222 mm,殘膜回收率為93%。經(jīng)田間試驗(yàn)驗(yàn)證,證明了該優(yōu)化方案的可行性,將為相關(guān)設(shè)備的改進(jìn)提供理論依據(jù)。
農(nóng)業(yè)機(jī)械;塑料薄膜;優(yōu)化;壟作花生殘膜;響應(yīng)面
地膜覆蓋栽培技術(shù)是一種可改善和優(yōu)化栽培條件,具有保溫、保墑、抑制雜草生長(zhǎng)等優(yōu)點(diǎn)的先進(jìn)農(nóng)業(yè)栽培技術(shù)。但此技術(shù)廣泛使用導(dǎo)致的“白色污染”問(wèn)題卻日益嚴(yán)重[1-2]。采用機(jī)械方式回收殘膜能提高生產(chǎn)效率、降低勞動(dòng)成本,研發(fā)改進(jìn)適用的殘膜回收機(jī)已成為農(nóng)業(yè)機(jī)械化發(fā)展的迫切任務(wù)[3-5]。據(jù)中國(guó)統(tǒng)計(jì)年鑒(2015)統(tǒng)計(jì)2014年我國(guó)花生種植面積460.6萬(wàn)hm2(約占全球種植面積的17.9%),全國(guó)花生產(chǎn)量1 648.17萬(wàn)t(約占全球總產(chǎn)量的38.9%)。但田間殘膜會(huì)破壞土地結(jié)構(gòu),導(dǎo)致土壤結(jié)板失去供養(yǎng)能力,影響花生產(chǎn)量和農(nóng)業(yè)機(jī)械的使用順暢性。所以,解決壟作花生殘膜污染問(wèn)題難度高且意義重大[6-9]。
現(xiàn)有殘膜回收機(jī)主要分為滾筒式、鏟鏈?zhǔn)?、鏟篩式、耙齒式等[10]。但卻少有針對(duì)壟作花生殘膜回收的機(jī)具。耙齒式殘膜回收機(jī)回收殘膜效果較好,結(jié)構(gòu)簡(jiǎn)單且工作效率高,對(duì)其進(jìn)行研究并試驗(yàn)優(yōu)化,使其滿足壟作花生殘膜回收的使用效果是目前解決壟作花生殘膜污染行之有效的方法之一[11-13]。
1.1 壟作花生種植模式與殘膜分布特點(diǎn)
花生種植方式分為平作,壟作,畦作,其中尤以壟作使用最為廣泛。壟作是將花生播種在壟上,壟作分為雙行壟作和單行壟作。如圖1所示為花生種植形式示意圖。起壟播種可方便排灌,防止田間積水和爛果;改善種植地土壤團(tuán)粒結(jié)構(gòu),提高地溫和晝夜溫差,在丘陵地上起壟種植還可相應(yīng)加厚土層,擴(kuò)大根系吸收范圍,有利于花生莢果發(fā)育[14-16]。
不同主產(chǎn)區(qū)花生的種植模式并不相同,以河北、山東為例。依據(jù)播種機(jī)具、土壤肥力的不同,河北地區(qū)花生壟距85~90 cm,壟面寬55~60 cm,壟溝寬約30 cm,壟上窄行距25~30 cm。山東地區(qū),壟距75~90 cm,壟面寬55~60 cm,壟上窄行距25~35 cm。
花生覆膜有薄膜、厚膜,收獲作物動(dòng)土或不動(dòng)土?xí)r,殘膜的破壞程度不一,有長(zhǎng)條整膜、短條碎膜等多種形態(tài)。壟作與平作相比殘膜殘留情況有差異,主要為地面高低不平、殘膜碎片多、埋膜深、斷枝斷秧多、秧膜易混合等。
花生壟作殘膜回收的難點(diǎn)是:壟作花生收獲后,地表不平整,殘膜分布于壟面上及壟溝內(nèi),且收獲后殘膜碎片多、埋膜深、斷枝斷秧多、秧膜易混合。所以,必須通過(guò)試驗(yàn)進(jìn)行結(jié)構(gòu)和運(yùn)動(dòng)參數(shù)的優(yōu)化,使耙齒式殘膜回收機(jī)適應(yīng)壟作花生殘膜回收[17-19]。
1.2 整機(jī)結(jié)構(gòu)簡(jiǎn)介與作業(yè)原理
圖2為殘膜回收機(jī)結(jié)構(gòu)示意圖。耙齒式殘膜回收機(jī)由牽引架1、耙齒3等裝置組成。機(jī)架2與牽引架1相連。作業(yè)時(shí),機(jī)具以懸掛方式與拖拉機(jī)相連。作業(yè)時(shí),耙齒與土壤及殘膜接觸,機(jī)具3點(diǎn)懸掛于四輪拖拉機(jī)尾部,拖拉機(jī)驅(qū)動(dòng)殘膜回收機(jī)前進(jìn),并帶動(dòng)耙齒入土收膜。由于地表不平整,埋在兩邊的邊膜略微低于壟表面,要選擇彈性較大的耙齒進(jìn)行殘膜回收作業(yè)并確保其入土深度,使其可以回收壟溝內(nèi)以及壟面較深殘膜。工作時(shí),前、中、后3排摟膜耙齒依次進(jìn)行摟膜,3排耙齒間距不等且交錯(cuò)排列。前排耙齒最先進(jìn)行摟膜,主要對(duì)大塊殘膜進(jìn)行收集;中排耙齒對(duì)前排耙齒的漏膜以及較小的殘膜進(jìn)行收集;前、中排耙齒的漏膜以及小塊的殘膜均由后排耙齒進(jìn)行收集。
本文重點(diǎn)研究的影響機(jī)具性能的因素為:耙齒曲率半徑、耙齒直徑、耙齒材料、耙齒入土角度、耙齒間距排列、機(jī)具前進(jìn)速度、耙齒入土深度。
2.1 耙齒靜態(tài)強(qiáng)度分析
花生收獲后,田間的殘膜、石塊及前茬作物殘留,都會(huì)對(duì)殘膜回收機(jī)工作性能產(chǎn)生影響,所以耙齒設(shè)計(jì)要點(diǎn)之一就是在收膜的基礎(chǔ)上滿足田間工作強(qiáng)度要求。
機(jī)具前進(jìn)為動(dòng)態(tài)過(guò)程,設(shè)計(jì)時(shí)若耙齒在最大極限載荷條件下滿足強(qiáng)度要求,則其他情況就符合受力要求,本文選取耙齒在入土?xí)r的最深極限載荷條件進(jìn)行計(jì)算,通過(guò)靜強(qiáng)度分析,可得知耙齒的最大受力位置,分析其強(qiáng)度以及對(duì)耙齒材料及各種參數(shù)進(jìn)行確定。如圖3所示為耙齒在土壤中變形示意圖,為變形量,本文要求≤10 cm。
根據(jù)分析,耙齒有垂直方向的入土阻力F,水平方向受到的土壤阻力′以及摩擦力1
式中為載荷系數(shù),其取值與耙齒的齒面參數(shù)、殘膜回收機(jī)機(jī)具前進(jìn)速度、土壤情況等有關(guān),因?yàn)?.9~9.8 N/cm2,根據(jù)實(shí)際情況取最大值9.8 N/cm2[20]。為作用面積,F=500~1 000 N,取500 N
式中為土壤與鋼的摩擦系數(shù),tan15°~tan40°。
水平方向的牽引阻力F為
垂直方向的阻力在耙齒根部產(chǎn)生彎矩M1為
耙齒受到的合力作用合為
水平方向的阻力在耙齒根部產(chǎn)生彎矩M2為
靜態(tài)強(qiáng)度校核的檢驗(yàn)條件是
式(4)-(9)中F為水平方向的牽引阻力;M2為水平方向的阻力在耙齒根部產(chǎn)生彎矩,N·M;為應(yīng)力值;W為抗彎截面系數(shù);為耙齒的曲率半徑,mm;[]是材料的許用應(yīng)力,MPa;max是實(shí)際計(jì)算的最大應(yīng)力,MPa;是材料的安全系數(shù),取=2(=1.2~2.5)。公式計(jì)算可得,F'=9.8×3.14×0.25=7.7 N,1=f×F=tan30°×500= 288 N,F=288+7.7=295.7 N,并根據(jù)公式(5)可計(jì)算580 N。所以M1=500×0.073=36.5 N·M,M2=295.7× 0.163=48.2 N·M,=374.4 MPa。
計(jì)算可知,耙齒的最大應(yīng)力出現(xiàn)在耙齒根部,而影響耙齒根部強(qiáng)度最重要的因素為耙齒曲率半徑、直徑、材料。錳鋼強(qiáng)度高,主要用于需承受沖擊、擠壓、物料磨損等惡劣工況條件,是典型的抗磨鋼,其中65號(hào)錳鋼鋼板強(qiáng)度、硬度、彈性和淬透性均較好且經(jīng)濟(jì)性好,故將材料定為65號(hào)錳鋼。
經(jīng)試驗(yàn)可知,耙齒直徑超過(guò)12 mm其彈性會(huì)降低不利于收膜,耙齒直徑小于8 mm其強(qiáng)度不足會(huì)導(dǎo)致耙齒變形失效,所以耙齒適宜的直徑范圍為8~12 mm。根據(jù)機(jī)具作業(yè)原理,前排耙齒在收膜過(guò)程中遇到的阻力最大最易變形,所以前排耙齒的直徑要稍大于后兩排。
鑒于上述情況,本研究設(shè)計(jì)2種直徑排列方式,前、中、后排耙齒直徑排列分別為:12、10、10 mm;10、8、8 mm兩種形式。具體選擇應(yīng)根據(jù)花生產(chǎn)地的實(shí)際土壤硬度等情況。
2.2 耙齒入土角度及形狀分析
耙齒的角度也是影響其工作性能的重要因素之一。耙齒在進(jìn)行受力分析時(shí),不同的入土深度受力是不同的,即耙齒入土前和入土后耙齒的入土角不同,如圖4所示為耙齒前進(jìn)過(guò)程中的受力圖(即入土之后的受力分析),耙齒受到前進(jìn)過(guò)程中的工作阻力、土壤的反作用力、摩擦力,以及纏繞在耙齒上殘膜及土壤的重力對(duì)耙齒均有影響。根據(jù)受力平衡方程可以確定耙齒入土角度的理論值為
式中為耙齒前進(jìn)過(guò)程中所受工作阻力,N;為耙齒受到的土壤及殘膜對(duì)其反作用力,N;為耙齒上纏繞的殘膜和土壤的重力,N;為耙齒前進(jìn)過(guò)程中對(duì)土壤及殘膜的摩擦力,N,其中,,將公式(10)和(11)進(jìn)行合并和化簡(jiǎn),可得(12)
耙齒的入土角度與入土深度、本身結(jié)構(gòu)參數(shù)等多種情況有關(guān),入土角度過(guò)大或過(guò)小都不利于殘膜回收[21-25]。綜合理論分析及田間試驗(yàn)的實(shí)際情況,耙齒入土角度=10°~35°時(shí)殘膜回收效果好。
注:為耙齒與地面之間的夾角;為耙齒前進(jìn)過(guò)程中所受工作阻力;為耙齒受到的土壤及殘膜對(duì)其反作用力;為耙齒上纏繞的殘膜和土壤的重力;為耙齒前進(jìn)過(guò)程中對(duì)土壤及殘膜的摩擦力。
Note:is the angle of the collecting film teeth and ground;is the working resistance when the machine is working;is the opposite reaction of the plastic and the soil;is the gravity of plastic and soil on the collecting film teeth;is the friction of soil and plastic when the machine is working.
圖4 耙齒受力分析
Fig.4 Force analysis of collecting film teeth
2.3 耙齒排列設(shè)計(jì)試驗(yàn)及分析
耙齒作為回收殘膜的重要部件,其形狀尺寸及其排列都會(huì)對(duì)殘膜回收效果起到重要影響。圖5為耙齒排列示意圖。
本研究中,耙齒均采用弧形齒且有一定的入土角度,利于殘膜堆積上升,耙齒的排列與間距采用試驗(yàn)的方法來(lái)確定。耙齒的間距排列設(shè)計(jì)遵循3個(gè)原則:第一,齒的間距過(guò)大會(huì)造成漏膜,間距過(guò)小會(huì)壅土,所以間距要在合理的范圍之內(nèi);第二,采用3排齒進(jìn)行收膜,3排齒交錯(cuò)排列保證收膜效果,且齒的排列為均分,使每一個(gè)齒都能起到收膜的作用;第三,齒的有效收膜幅寬要跟作物的幅寬相匹配以保證收膜效果。
根據(jù)分析,3排耙齒間隙不同且交錯(cuò)排列。前兩排耙齒密度較小,可收集大塊殘膜,最后且能防止物料堆積,最后一排耙齒密度較大,可收集小塊殘膜防止漏膜?,F(xiàn)對(duì)耙齒的每一排調(diào)整不同間隙單獨(dú)進(jìn)行試驗(yàn),挑選出最優(yōu)的間隙。
評(píng)價(jià)收膜部件的指標(biāo)為殘膜回收率高且壅土高度低?,F(xiàn)設(shè)定,總分為100分,殘膜回收率權(quán)重為60,壅土高度權(quán)重為40。將耙齒的間隙設(shè)為不同值,測(cè)出其殘膜回收率1(%)、壅土高度1(mm)。為保持量綱的一致性,定義2為壅土高度占耙齒總離地高度的百分比。采用加權(quán)綜合評(píng)分法進(jìn)行評(píng)價(jià),為綜合評(píng)分。
1、2為2個(gè)衡量指標(biāo),1越大越好,2則越小越好,為方便使用加權(quán)綜合評(píng)分法,現(xiàn)定義值3,3值=1?2。兩者都是越大越好,可以使用加權(quán)綜合評(píng)分法進(jìn)行評(píng)價(jià)。
加權(quán)綜合評(píng)分指標(biāo)可用式(13)來(lái)計(jì)算
式中Z為第號(hào)試驗(yàn)所得計(jì)算值(加權(quán)評(píng)分指標(biāo)),=1,2,3…,6;W為第個(gè)指標(biāo)的“權(quán)”值,=1,2,其中160,240;Y為第個(gè)試驗(yàn)中第個(gè)指標(biāo);Ymax為所有試驗(yàn)中,第個(gè)指標(biāo)的最大值。
通過(guò)分析可知,間距與殘膜回收率1和壅土高度占耙齒總離地高度的百分比2滿足方程(14)、(15)
加權(quán)綜合評(píng)分結(jié)果如表1所示,加權(quán)綜合評(píng)分的結(jié)果最大的結(jié)果分別為90.31、87.87、87.78,最大值分別對(duì)應(yīng)的間隙為100、120、80 mm,所以選擇的最優(yōu)的耙齒間隙從小到大依次即為80、100、120 mm。
表1 加權(quán)綜合評(píng)分結(jié)果
注:1為殘膜回收率,1為壅土高度,2為壅土高度占耙齒總離地高度的百分比,3=1-2,為綜合評(píng)分。
Note:1is residual film recovery rate,1is soil height,2is soil height divided by total height,3=1-2,is comprehensive scoring.
分析可知,3排齒排列時(shí),密度應(yīng)依次加大,既可以防止壅土也可以確保拾膜效果。即3排齒的齒間距分別為:120、100、80 mm。如圖6所示。
通過(guò)上述分析,可確定部分影響殘膜機(jī)具作業(yè)的參數(shù)取值和范圍。根據(jù)試驗(yàn)地的實(shí)際情況,設(shè)計(jì)前、中、后耙齒的直徑分別為10、8、8 mm;耙齒材料為65號(hào)錳鋼;耙齒入土角度的范圍為10°~35°;3排齒的齒間距分別為:120、100、80 mm;耙齒入土深度亦可通過(guò)機(jī)具前端安裝的限深輪進(jìn)行調(diào)節(jié)。
影響殘膜回收效果的另外3個(gè)主要因素:機(jī)具前進(jìn)速度、耙齒入土深度、耙齒曲率半徑則通過(guò)試驗(yàn)的方式進(jìn)行分析優(yōu)化,并進(jìn)行驗(yàn)證試驗(yàn)以確定最優(yōu)的結(jié)構(gòu)和參數(shù)組合,使耙齒式壟作花生殘膜回收機(jī)的機(jī)具工作性能達(dá)到最佳。
3.1 試驗(yàn)設(shè)計(jì)
3.1.1 試驗(yàn)條件及指標(biāo)
本試驗(yàn)地點(diǎn)為錦州,前茬作物為花生,花生收獲后進(jìn)行收膜試驗(yàn)?;ㄉN植方式為壟作,一壟雙行,壟高100 mm;土壤類型為沙土,表層含水率約為10%(0~100 mm)。地膜寬度68 mm,厚度0.010 mm。收獲前壟寬90 mm,覆膜寬度68 mm,收獲后壟高11 mm。試驗(yàn)時(shí),連續(xù)工作長(zhǎng)度對(duì)保證工作效率有影響,長(zhǎng)度過(guò)長(zhǎng)導(dǎo)致殘膜堆積、長(zhǎng)度過(guò)短導(dǎo)致試驗(yàn)結(jié)果不夠準(zhǔn)確,故本試驗(yàn)設(shè)定連續(xù)工作長(zhǎng)度為100 m。具體工作及機(jī)具主要指標(biāo)如表2所示。
表2 機(jī)具主要指標(biāo)
收膜性能良好且不壅土是殘膜回收機(jī)能夠連續(xù)作業(yè)的必要條件,殘膜回收率直接反應(yīng)了機(jī)具的工作效果,其值可用式(16)[26-27]表示
式中為殘膜回收率,%;0為試驗(yàn)地所鋪地膜的總重量,kg;1為使用殘膜回收機(jī)回收殘膜的質(zhì)量,kg。
3.1.2 試驗(yàn)過(guò)程與結(jié)果
在收膜過(guò)程中存在很多影響殘膜回收率的非線性因素,通常需要選用2次或者更高次的模型來(lái)逼近響應(yīng),模型可采用響應(yīng)面法來(lái)建立[28-30]。機(jī)具前進(jìn)速度、耙齒入土深度、耙齒曲率半徑和殘膜回收率分別用1、2、3、表示。
通過(guò)分析和試驗(yàn)可知:機(jī)具前進(jìn)速度過(guò)慢會(huì)導(dǎo)致作業(yè)效率低下及壅土嚴(yán)重,速度過(guò)快會(huì)導(dǎo)致漏膜,所以試驗(yàn)時(shí)機(jī)具前進(jìn)速度選擇應(yīng)在合理范圍,即分別選為0.5、1.0、1.5 m/s;耙齒入土深度過(guò)淺會(huì)降低收膜率,影響機(jī)具收膜效果;過(guò)深會(huì)導(dǎo)致壅土嚴(yán)重和耙齒的劇烈變形,所以試驗(yàn)時(shí)耙齒的入土深度分別為5、10、15 mm;耙齒曲率半徑過(guò)小會(huì)影響整體機(jī)架的高度進(jìn)而導(dǎo)致壅土,過(guò)大會(huì)影響耙齒強(qiáng)度和收膜效果,所以試驗(yàn)時(shí)耙齒的曲率半徑分別為195、225、255 mm。表3為試驗(yàn)因素水平,表4為田間試驗(yàn)結(jié)果。
表3 試驗(yàn)因素水平
表4 田間試驗(yàn)結(jié)果
3.1.3 結(jié)果分析
應(yīng)用軟件Design expert對(duì)表3中數(shù)據(jù)擬合并進(jìn)行方差分析,可得回歸系數(shù)及其顯著性檢驗(yàn)如表5所示。
殘膜回收機(jī)收膜率編碼后的回歸方程為式(17)
如表5所示,模型的顯著性檢驗(yàn)=85.79,<0.0001,說(shuō)明二次回歸方程的檢驗(yàn)達(dá)到高度顯著;且失擬性檢驗(yàn)=2.5,>0.1為不顯著,說(shuō)明在試驗(yàn)范圍內(nèi)模型的擬合性非常好,可以用此模型對(duì)3個(gè)因素的影響效果進(jìn)行分析和預(yù)測(cè)。
表5 模型顯著性檢驗(yàn)
根據(jù)殘膜回收機(jī)收膜率編碼后的回歸方程為式(17),為了更直觀地了解、分析殘膜回收機(jī)機(jī)械性能與機(jī)具前進(jìn)速度、耙齒入土深度、耙齒曲率半徑之間的關(guān)系,借助MATLAB軟件的圖形設(shè)計(jì)技術(shù),編輯代碼可繪制直觀、形象的殘膜回收率與3個(gè)因素的四維切片圖。由圖7可知各影響因素的取值范圍及變化。
3.2 影響因素分析及參數(shù)優(yōu)化
3.2.1 影響因素分析
通過(guò)分析可知,機(jī)具前進(jìn)速度、耙齒入土深度、耙齒曲率半徑對(duì)殘膜回收率均有顯著性影響,且影響強(qiáng)弱次序?yàn)椋簷C(jī)具前進(jìn)速度>耙齒入土深度>耙齒曲率半徑。1·2、1·3、2·3均為顯著。如圖8所示為殘膜回收率的響應(yīng)曲面3D效果。
a. 入土深度和前進(jìn)速度對(duì)殘膜回收率的影響
a. Influence of depth of collecting film teeth and machine operating speed on film recycling rate
b. 耙齒曲率半徑和入土深度對(duì)殘膜回收率的影響
b. Influence of film teeth curvature radius and the embedded depth of film teeth on film recycling rate
3.2.2 參數(shù)優(yōu)化
殘膜回收率是反應(yīng)機(jī)具殘膜回收效果的重要指標(biāo),在試驗(yàn)范圍內(nèi)要求其值越大越好。應(yīng)用Design expert的尋優(yōu)功能對(duì)其進(jìn)行優(yōu)化,可得各參數(shù)的優(yōu)化結(jié)果如表5所示。如表5可知,預(yù)測(cè)的最佳試驗(yàn)條件為:機(jī)具前進(jìn)速度1.2 m/s,耙齒入土深度11.09 mm,耙齒曲率半徑222.33 mm,預(yù)測(cè)殘膜回收率為91%。
表5 優(yōu)化結(jié)果與實(shí)際值對(duì)比
3.3 驗(yàn)證試驗(yàn)
為了驗(yàn)證優(yōu)化結(jié)果的可行性,現(xiàn)按預(yù)測(cè)的數(shù)值進(jìn)行試驗(yàn),為方便機(jī)具的加工,現(xiàn)設(shè)定機(jī)具前進(jìn)速度為1.2 m/s,耙齒入土深度11 mm,耙齒曲率半徑為222.5 mm。試驗(yàn)進(jìn)行三次取平均值,最后得試驗(yàn)殘膜回收率為93%,與預(yù)測(cè)值的相對(duì)誤差為2%。試驗(yàn)結(jié)果與預(yù)測(cè)值很接近,驗(yàn)證了所建模型的準(zhǔn)確性,優(yōu)化后的殘膜回收裝置性能得到改善,完全符合殘膜回收作業(yè)的要求。
1)耙齒的直徑、材料、入土角度、齒間距均會(huì)對(duì)耙齒式壟作花生殘膜回收機(jī)的工作性能產(chǎn)生影響;設(shè)計(jì)前、中、后耙齒的直徑分別為10、8、8 mm;耙齒材料為65號(hào)錳鋼;耙齒入土角度的范圍為10°~35°;三排齒的齒間距分別為120、100、80 mm時(shí)機(jī)具收膜效果好。
2)機(jī)具前進(jìn)速度、耙齒入土深度和耙齒曲率半徑3個(gè)因素對(duì)殘膜回收效果均有顯著性影響,且影響強(qiáng)弱次序?yàn)椋簷C(jī)具前進(jìn)速度>耙齒入土深度>耙齒曲率半徑。應(yīng)用Design expert的尋優(yōu)功能對(duì)其進(jìn)行優(yōu)化,優(yōu)化后機(jī)具前進(jìn)速度為1.2 m/s,耙齒入土深度11 mm,耙齒曲率半徑222 mm,殘膜回收率為93%。
優(yōu)化后的耙齒式殘膜回收機(jī)能基本滿足壟作花生殘膜的回收,但目前制約耙齒式殘膜回收機(jī)大面積推廣使用的是缺少有效的自動(dòng)卸膜裝置,應(yīng)進(jìn)一步研究并開發(fā)其自動(dòng)卸膜裝置。
[1] 嚴(yán)昌榮,梅旭榮,何文清,等. 農(nóng)用地膜殘留污染的現(xiàn)狀與防治[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(11):269-272.
Yan Changrong, Mei Xurong, He Wenqing, et al. Present situation of residue pollution of mulching plastic film and controlling measures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(11): 269-272. (in Chinese with English abstract)
[2] 杜曉明,徐剛,許端平,等. 中國(guó)北方典型地區(qū)農(nóng)用地膜污染現(xiàn)狀調(diào)查及其防治對(duì)策[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(增刊1):225-227.
Du Xiaoming, Xu Gang, Xu Duanping, et al. Mulch film residue contamination in typical areas of North China and counter measures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Supp.1): 225-227. (in Chinese with English abstract)
[3] 張丹,胡萬(wàn)里,劉宏斌,等. 華北地區(qū)地膜殘留及典型覆膜作物殘膜系數(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):1-5.
Zhang Dan, Hu Wanli, Liu Hongbin, et al. Characteristics of residual mulching film and residual coefficient of typical crops in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 1-5. (in Chinese with English abstract)
[4] 馬樹慶,王琪,郭建平,等. 東北地區(qū)玉米地膜覆蓋增溫增產(chǎn)效應(yīng)的地域變化規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(8):66-71.
Ma Shuqing, Wang Qi, Guo Jianping, et al. Geographical change law of effects of corn plastic mulching on increasing temperature and production in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(8): 66-71. (in Chinese with English abstract)
[5] 那明君,董欣,侯書林,等. 殘膜回收機(jī)主要工作部件的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1999,15(2):112-115.
Na Mingjun, Dong Xin, Hou Shulin, et al. Research on main components of the machine for retrieving the used plastic film after harvesting[J]. Transactions of the Chinese Society of Agricultural Engineering, 1999, 15(2): 112-115. (in Chinese with English abstract)
[6] 侯書林,胡三媛,孔建銘,等. 國(guó)內(nèi)殘膜回收機(jī)研究的現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(3):186-190.
Hou Shulin, Hu Sanyuan, Kong Jianming, et al. Present situation of Research on plastic film residue collector in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(3): 186-190. (in Chinese with English abstract)
[7] 李斌,王吉奎,蔣蓓. 新疆棉區(qū)殘膜污染及其治理技術(shù)[J].農(nóng)機(jī)化研究,2012,34(5):228-232.
Li Bin, Wang Jikui, Jiang Bei. The plastic film pollution and treatment technology in Xinjiang cotton area[J]. Journal of Agricultural Mechanization Research, 2012(5): 228-232. (in Chinese with English abstract)
[8] 游兆延,顧峰瑋,吳峰,等. 壟作花生殘膜回收技術(shù)研究[J]. 農(nóng)機(jī)化研究,2016(1):207-211.
You Zhaoyan, Gu Fengwei, Wu Feng, et al. Research on ridged peanut residue plastic film recycling technology[J]. Journal of Agricultural Mechanization Research, 2016(1): 207-211. (in Chinese with English abstract)
[9] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒2015[J]. 北京:中國(guó)統(tǒng)計(jì)出版社.
[10] 徐弘博,胡志超,吳峰,等. 殘膜回收收膜部件研析[J]. 農(nóng)機(jī)化研究,2016,38(8):242-249.
Xu Hongbo, Hu Zhichao, Wu Feng, et al. Study on the collecting component of plastic film residue collector[J]. Journal of Agricultural Mechanization Research, 2016, 38(8): 242-249. (in Chinese with English abstract)
[11] 陳發(fā),史建新,王學(xué)農(nóng),等. 弧型齒殘膜撿拾滾筒撿膜的機(jī)理[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(6):36-41.
Chen Fa, Shi Jianxin, Wang Xuenong, et al. Study on collecting principle of arc-type tooth roller for collecting plastic residue[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(6): 36-41. (in Chinese with English abstract)
[12] 王吉奎,付威,王衛(wèi)兵,等. SMS-1500型秸稈粉碎與殘膜回收機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(7):168-172.
Wang Jikui, Fu Wei, Wang Weibing, et al. Design of SMS-1500 type straw chopping and plastic film residue collecting machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 168-172. (in Chinese with English abstract)
[13] 胡志超,王海鷗,彭寶良,等. 4HLB-2型花生聯(lián)合收獲機(jī)起秧裝置性能分析與試驗(yàn)[J[. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(6):26-31.
Hu Zhichao, Wang Haiou, Peng Baoliang, et al. Performance analysis and experiment on operation process of plant lifting device in 4HLB-2 type peanut combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 26-31. (in Chinese with English abstract)
[14] 陳有慶,王海鷗,胡志超. 半喂入花生聯(lián)合收獲損失致因與控制對(duì)策研析[J]. 中國(guó)農(nóng)機(jī)化,2011(1):72-77.
Chen Youqing, Wang Haiou, Hu Zhichao. Research and analysis on harvest loss causes and control strategies of half-feeding peanut combine harvester[J]. Chinese Agricultural Mechanization, 2011(1): 72-77. (in Chinese with English abstract)
[15] 胡志超,彭寶良,尹文慶,等. 4LH2型半喂入自走式花生聯(lián)合收獲機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(3):148-153.
Hu Zhichao, Peng Baoliang, Yin Wenqing, et al. Design of 4LH2 type half-feed and self-propelled peanut combine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(3): 148-153. (in Chinese with English abstract)
[16] 胡志超,王海鷗,王建楠,等. 4HLB-2型半喂入花生聯(lián)合收獲機(jī)試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(4):79-84.
Hu Zhichao, Wang Haiou, Wang Jiannan, et al. Experiment on 4HLB-2 type half feed peanut combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(4): 79-84. (in Chinese with English abstract)
[17] 侯書林,張淑敏,孔建銘,等. 彈齒式收膜機(jī)的主要結(jié)構(gòu)設(shè)計(jì)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,9(2):18-22.
Hou Shulin, Zhang Shumin, Kong Jianming, et al. Development of spring-tooth plastic fi1m collecting machine[J]. Journal of China Agricultural University, 2004, 9(2): 18-22. (in Chinese with English abstract)
[18] 盧博友,楊青,薛少平,等. 圓弧形彈齒滾筒式殘膜撿拾
機(jī)構(gòu)設(shè)計(jì)及撿膜性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(6):68-71.
Lu Boyou, Yang Qing, Xue Shaoping, et al. Design of arc spring-tooth type collector for collecting mulching plastic film the collecting property analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(6): 68-71.(in Chinese with English abstract)
[19] 畢繼業(yè),王秀芬,朱道林. 地膜覆蓋對(duì)農(nóng)作物產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(11):172-175.
Bi Jiye, Wang Xiufen, Zhu Daolin. Effect of plastic-film mulch on crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(11): 172-175. (in Chinese with English abstract)
[20] 聶理君. 殘膜回收機(jī)弧形挑膜齒的應(yīng)用研究[D]. 烏魯木齊:新疆大學(xué),2006:26-27.
Nie Lijun. Researching the Application of the arc Spring-finger in Plastic Film Residue Collector[D]. Urumqi:Xinjiang University, 2006: 26-27. (in Chinese with English abstract)
[21] 胡凱,王吉奎,李斌,等. 棉稈粉碎還田與殘膜回收聯(lián)合作業(yè)機(jī)研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(19):24-32.
Hu Kai, Wang Jikui, Li Bin, et al. Development and experiment of combined operation machine for cotton straw chopping and plastic film collecting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 24-32. (in Chinese with English abstract)
[22] 李明洋. 分區(qū)式殘膜回收機(jī)的設(shè)計(jì)與試驗(yàn)研究[D]. 新疆阿拉爾:塔里木大學(xué),2015:17-30.
Li Yangming. Design and Experiment Study on Zoning of Residual Film Recycling Machine[D]. Aral City, Xinjiang: TARIM University, 2015: 17-30. (in Chinese with English abstract)
[23] 張佳. 驅(qū)動(dòng)耙殘膜回收聯(lián)合作業(yè)機(jī)的設(shè)計(jì)及試驗(yàn)研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2013:11-20.
Zhang Jia. Design and Experiment Study on Driving Target and Plastic Film Collecting Operation Machine[D]. Urumqi: Xinjiang Agricultural University, 2013: 11-20. (in Chinese with English abstract)
[24] 謝建華,侯書林,付宇,等. 殘膜回收機(jī)彈齒式拾膜機(jī)構(gòu)運(yùn)動(dòng)分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(1):94-99.
Xie Jianhua, Hou Shulin, Fu Yu, et al. Motion analysis and experiment on spring-tooth mulching plastic film collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 94-99. (in Chinese with English abstract)
[25] 張東興. 殘膜回收機(jī)的設(shè)計(jì)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),1999(6):41-43.
Zhang Dongxing. Research and design on collector of used plastic film on farm field[J]. Journal of China Agricultural University, 1999(6): 41-43. (in Chinesewith English abstract)
[26] 李斌,王吉奎,胡凱,等. 殘膜回收機(jī)順向脫膜機(jī)理分析 與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):23-28.
Li Bin, Wang Jikui, Hu Kai, et al. Analysis and test of forward film removing mechanism for polythene film collector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 23-28. (in Chinese with English abstract)
[27] 李文龍,馮江,尹金東. 卷繞式拾膜機(jī)集膜輪的運(yùn)動(dòng)及力學(xué)分析[J]. 農(nóng)機(jī)化研究,2010,32(11):74-77.
Li Wenlong, Feng Jiang, Yin Jindong. Kinematic analysis on the lifter’s winding component of mulch removal[J]. Chinese Agricultural Mechanization, 2010, 32(11): 74-77. (in Chinese with English abstract)
[28] 張澤志,韓春亮,李成未. 響應(yīng)面法在試驗(yàn)設(shè)計(jì)與優(yōu)化中的應(yīng)用[J]. 河南教育學(xué)院學(xué)報(bào):自然科學(xué)版,2011,20(4):34-37.
Zhang Zezhi, Han Chunliang, Li Chengwei. Applicationof response surface method in experimenta and optimization[J]. Journal of Henan Institute of Education: Natural Science Edition, 2011, 20(4): 34-37. (in Chinese with English abstract)
[29] 任露泉. 試驗(yàn)優(yōu)化設(shè)計(jì)與分析[M]. 北京:高等教育出版社,2003:11-16.
[30] 陳魁. 試驗(yàn)設(shè)計(jì)與分析[M]. 北京:清華大學(xué)出版社,1996:22-26.
Design and parameter optimization on teeth residue plastic film collector of ridged peanut
Shi Lili, Hu Zhichao※, Gu Fengwei, Wu Feng, Wu Penglai
(,210014,)
With the increasing use of agricultural plastic film, the pollution it bringing is becoming more and more serious. It has become a problem which needs to be solved urgently. In China, the plant areas of peanut were expanded to 460.6 hm2in 2014, which accounted for about 17.9% of the global area of peanut crops. And its output reached to 16.481 7 million tons in the same year, which accounted for about 38.9 % of the global production of peanut yields. Therefore, design and experiment on plastic film collector of ridged peanut means a great deal to us. The collecting film teeth residue plastic film collector of ridged peanut was designed, and the whole structure and working mechanism of the machine were introduced. Therefore, the main operation components of it were designed and the structure parameters were determined at last. To solve the problem of residual film recycling after peanuts harvest, we designed the plastic film residue collector, and then optimized its parameters. The key structural parameters were determined by mechanism analysis and tests. The collecting film teeth diameter of the first row, the second row, and the third row were set as 10, 8 and 8 mm, respectively. The harrowing tooth was made of No.65 manganese steel, and the harrowing tooth’s lug angle ranges from 10° to 35°. The collecting film teeth space on the first row, the second row, and the third row were 120, 100 and 80 mm, respectively.The four-dimensional slice of MATLAB and response surface analysis was done on the machine speed, the harrowing tooth’s lug depth and its radius of curvature. The quadratic regression model between film removing ratio and machine operating speed,the embedded depth of the rake, tooth curvature radius was built. The optimal structure parameters of plastic film residue collector were obtained by response surface analysis. The response surface analysis of the model was optimized, and the effect of 3 factors on the recovery of the residual membrane was significant. The order of strength is: machine operating speed> embedded depth of the collecting film teeth > collecting film teeth curvature radius. The machine was optimized by parameter optimization. The machine operating speed, depth of collecting film teeth, tooth’s radius of curvature of machine was 1.2 m/s, 11mm, and 222 mm, respectively. And film recycling rate was about 93% through the field test. Its relative error was 2% compared with the predictive value. In conclusion, the optimization scheme was feasible. This paper could provide theoretical basis for optimization of related machines. With the preliminary experiment, the collecting film teeth residue plastic film collector of ridged peanut has good film quality, which meets the design requirements of plastic recycling machine. Removing mechanism on the collecting film teeth residue plastic film collector of ridged peanut is the further research.
agricultural machinery; plastic films; optimization; ridged peanut residue Plastic Film; response surface method
10.11975/j.issn.1002-6819.2017.02.002
S223.5
A
1002-6819(2017)-02-0008-08
2016-05-31
2016-12-28
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)“殘膜污染農(nóng)田綜合治理技術(shù)方案”(201503105_08);中國(guó)農(nóng)業(yè)科學(xué)院創(chuàng)新工程土下果實(shí)收獲機(jī)械。
施麗莉,助理研究員,主要從事農(nóng)機(jī)化裝備研發(fā)。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。Email:1301706961@qq.com
胡志超,博士,研究員,博士生導(dǎo)師,主要從事農(nóng)作物收獲及產(chǎn)后加工技術(shù)與裝備研究。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。Email:nfzhongzi@163.com
施麗莉,胡志超,顧峰瑋,吳 峰,吳朋來(lái). 耙齒式壟作花生殘膜回收機(jī)設(shè)計(jì)及參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):8-15. doi:10.11975/j.issn.1002-6819.2017.02.002 http://www.tcsae.org
Shi Lili, Hu Zhichao, Gu Fengwei, Wu Feng, Wu Penglai. Design and parameter optimization on teeth residue plastic film collector of ridged peanut[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 8-15. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.002 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2017年2期