• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RESTORATION OF FLESH FATTY ACID COMPOSITION IN DARKBARBEL CATFISH (PELTEOBAGRUS VACHELLI) USING A FINISHING FISH OIL DIET

    2017-02-15 08:23:49SHAOTingQINChuanJieYUANDengYueWENZhengYongandLIHuaTao
    水生生物學(xué)報(bào) 2017年1期
    關(guān)鍵詞:內(nèi)江大豆油魚(yú)油

    SHAO Ting, QIN Chuan-Jie YUAN Deng-Yue WEN Zheng-Yongand LI Hua-Tao

    (1. Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China; 2. College of Life Science, Sichuan Normal University, Chengdu 610101, China)

    RESTORATION OF FLESH FATTY ACID COMPOSITION IN DARKBARBEL CATFISH (PELTEOBAGRUS VACHELLI) USING A FINISHING FISH OIL DIET

    SHAO Ting1,2, QIN Chuan-Jie1, YUAN Deng-Yue1, WEN Zheng-Yong1and LI Hua-Tao1

    (1. Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China; 2. College of Life Science, Sichuan Normal University, Chengdu 610101, China)

    This study aimed to evaluate the effects of 50%—100% soybean oil on growth performance and flesh fatty acid composition of darkbarbel catfish (Pelteobagrus vachelli), so as to assess the effects of refeeding fish oil (FO) on flesh fatty acid composition. Four isonitrogenous, isolipidic diets, i.e., FO, soybean oil (SO), 50% FO+50% SO (S1), and 25% FO+75% SO (S2), were fed to triplicate groups of 40 juvenile P. vachelli [(1.10±0.12) g] for 80d. At the end of the 80d period, all fish were fed with FO for 30d. The results showed that growth rates, hepatosomatic index (HSI), and proximate composition in darkbarbel catfish were not affected by SO. With increasing SO levels, the percentages of oleic acid, arachidonic acid, and monounsaturated fatty acids significantly increased (P<0.05). However, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), highly unsaturated fatty acid (HUFA) levels and n-3/n-6 ratios significantly reduced with dietary SO (P<0.05). After 30d on FO, flesh levels of DHA, EPA, and Σ n-3 HUFA significantly increased in groups S2 and SO (P<0.05), but not to the same extent as those in the FO-containing groups except S1. The results revealed that it was possible to substitute almost 100% of FO with SO in the diets of darkbarbel catfish without affecting growth performance. A re-feeding period of 30d with 100% FO significantly increased flesh levels of Σn-3 HUFA, 20:5n-3, and 22:6n-3 in fish which were fed diets containing SO in the first stage.

    Pelteobagrus vachelli; Fish oil; Vegetable oil; n-3 high unsaturated fatty acids; Restoration

    In 2002, fish oil (FO) consumption in aquaculture was estimated at 81%, which increased to 88% in 2012[1]. Total FO production in the five main FO-producing countries, i.e., Peru, Chile, Iceland, Norway, and Denmark, was 530000 tons in 2009, a decline of 100000 tons compared to 2008[2]. Global FO supplies are becoming more costly and less available; therefore, aquaculture requires sustainable alternatives to FO[1,3]. Vegetable oils (VOs) are considered to be good lipid sources for fish diets. Several VOs have been used as partial or complete replacements of FO[4,5].

    VOs are rich in linoleic acid (C18:2 n-6) and oleic acids (C18:1 n-9), but devoid of n-3 highly unsaturated fatty acids (n-3 HUFAs). Linoleic and oleic acids are absent from the natural diets of most fish[6,7]. VOs contribute to imbalances in certain dietary fatty acids and affect the n-6/n-3 dietary ratio, which negatively impacts fish growth. In addition, the complete or partial replacement of FO with VOs is likely to negatively impact intestinal and hepatic cellular structure, intestinal function, immune-associated gene expression, humoral immunity, and disease resistance[8]. However, FO is rich in health-promoting n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), especially eicosapentaenoic acid (EPA), which are beneficial for human health[8,9]. Therefore, in aquacul-

    Received date: 2016-03-22; Accepted date: 2016-07-10

    Foundation item: Supported by the National Natural Science Foundation of China (No. 31402305); the Educational Commission of Sichuan Province of China (No. 14ZA0249)

    Brief introduction of author: Shao Ting, E-mail: 991504974@qq.com; Tel +86-83-2341862

    To avoid a reduction in flesh n-3 LC-PUFA levels, VO-fed fish have been switched to FO diets to assess whether seawater fish can recover their n-3 HUFA levels during their final growth phase[6]. These studies, which have been conducted in European sea bass (Dicentrarchus labrax L.), gilthead sea bream (Sparus aurata L.), brown trout (Salmotrutta L), and brook charr (Salvelinus fontinalis)[7,10—12]revealed that introducing FO partly restored docosahexaneoic acid (DHA), arachidonic acid (ArA), and EPA levels in fish[13,14]. In freshwater fish, VOs may induce the activation of ⊿6 and ⊿5 desaturases, which could elongate and desaturate α-linolenic acid (C18: 3n-3) into n-3 HUFA[15]. However, few studies have focused on the effects of VOs and finishing FO diets on the fatty acid composition of freshwater species.

    Darkbarbel catfish, Pelteobagrus vachelli, is a valuable commercial species in China. Due to its high market value, the demand for this species has grown considerably in recent years. This study investigatedthe effects of soybean oil on darkbarbel catfish growth performance and flesh fatty acid composition, and the effects of re-feeding FO on flesh fatty acid composition.

    Tab. 1 Ingredients (g/100 g) and chemical composition of the experimental diets

    1 Materials and methods

    1.1 Fish growth and experimental design

    Juvenile darkbarbel catfish were obtained from Longfeng fish farm (Meishan, Sichuan, China). Prior to the experiment, fish were fed a commercial catfish diet for 2 weeks (Haida, Chengdu, Sichuan, China). A total of 480 fish [mean weight ± SD, (1.10±0.12) g] were randomly assigned to 12300 L fiberglass tanks (40 fish per tank). Three tanks were assigned to one of four experimental diets. The fish lived in 12h∶12h light∶dark cycles at (25±2)℃ with a mean oxygen concentration of 6.1—7.3 mg/L. Ammonia and nitrate concentrations were < 0.1 mg/L.

    1.2 Experimental diets

    Four isonitrogenous, isolipidic, and isoenergetic diets were formulated (Tab. 1): (1) 100% fish oil as control (FO); (2) 100% soybean oil (SO); (3) 75% SO+25% FO (S1); and (4) 50% SO+50% FO (S2). The ingredients were thoroughly mixed, extruded (2-mm diameter), and air-dried. The fatty acid compositions of the diets are shown in Tab. 2.

    Following the 2-week acclimation period, fish were fed the experimental diets to apparent satiation twice daily (at 08:00 and 16:00) for 80d (growth period, GP); feed consumption was recorded weekly. Subsequently, 33 fish from each tank were fed a 100% FO-based diet for 30d (restoration period, RP).

    1.3 Fish performance and sample collection

    Fish were fed the experimental diets for 80d, followed by the FO-diet for 30d. At 80 and 110d, fish were fasted for 24h. Three fish per treatment were anaesthetized; tissues were sampled for the determination of live mass, liver mass, hepatosomatic index (HSI), flesh dry mass, specific growth rate (SGR), lipase activity (LPL and HL), and flesh lipid and fatty acid composition. Live mass was determined by blotting biological material onto filter paper before weighing. HSI, SGR, and feed conversion factor (FCR) were calculated by using the following equations: HSI=liver mass/live mass×100; SGR=[Ln(final weight)-Ln(initial weight)]/number of days×100; FCR=dry feed fed/wet weight gain.

    1.4 Chemical analyses

    Nutritional composition of the flesh and experimental diets were determined by proximate composition analyses (AOAC, 1990). Briefly, moisture content was determined by drying the samples to constant weight at 80℃; protein was determined in anautomated Kjeldahl instrument (SKD-100, Peiou, Shanghai, China) using a protein-nitrogen conversion factor of 6.25; total lipid was determined following chloroform/methanol (2:1 v:v) extraction; and ash was determined by incineration in a muffle furnace at 550℃ for 18h.

    Tab. 2 Fatty acid composition of the experimental diets (% total fatty acids; mean±SD, n=3)

    1.5 Enzymatic assays

    Frozen liver samples were thawed and homogenized in ice-cold 0.9% physiological saline using a Bio-gen Series homogenizer (PRO 200, Oxford, CT, USA). Hepatic homogenates were centrifuged at 15000×g for 15min at 4℃ (Centrifuge 5417R, Eppendorf, Germany). The supernatant, free from lipids, was used to determine the activities of LPL and HL and the soluble protein content. LPL and HL activities were determined using an LPL/HL commercial kit (A067; Nanjing Jiancheng Bioengineering Institute, Nanjing, China) and expressed in units/mg soluble protein. Protein concentration in the homogenates was determined by the Bradford method (1976) using a commercial protein assay kit (Nanjing Jiancheng Bioengineering Institute) with bovine serum albumin as the standard.

    1.6 Fatty acid analysis

    Lipids were extracted using chloroform and methanol (2∶1)[16]. Fatty acids were converted into methyl esters using an acid-catalyzed methylation method (GB/T22223-2008). The fatty acid profile was determined in a capillary gas chromatograph (GC) coupled to an HP6890 flame ionization detector and an SPTM-2380 column (30 mm×0.25 mm×0.20 mm). Separation was performed using nitrogen as the carrier gas. The column temperature was maintained at 120℃ for 5min, then it was heated to 240℃ at 4℃/min and maintained at this temperature for 20min. The detector temperature and split injector (50∶1) were maintained at 260℃. Fatty acids were identified by comparing their retention times with those of fatty acid standards (Sigma, USA). Peak areas were determined using Varian software.

    1.7 Statistical analyses

    Results are presented as mean ± standard deviation (mean±SD). Data were analyzed by ANOVA and Duncan's multiple range test. The growth parameters and flesh fatty acid levels in growth and restoration periods were compared using independent t-tests within the same group; P<0.05 was considered statistically significant. Statistical analyses were performed using SPSS software (SPSS 18.0).

    2 Results

    2.1 Growth performance and proximate composition

    With dietary treatments of 80d, there were no significant differences in body weight. A-700% increase in weight was observed, with no animal deaths or differences in feed consumption (Tab. 3). Among the dietary treatments, there were no significant differences in SGR, which ranged from 1.89±0.49 to 2.28±0.39, or in HSI, which ranged from 1.59±0.34 to 1.83±0.38.

    After the 30d restoration period on FO, fish grew an additional -31% (-3 g) relative to their weights at the end of the 80d growth period (Tab. 3). Final mean weights at the end of the 30d restoration period ranged from (11.42±2.71) g (FO) to (14.65±4.13) g (S1), with no significant differences among the dietary treatments. However, fish previously fed S1 and SO had higher growth rates than fish previously fed FO or S2. There were no significant differences in SGR, HSI, or FCR at the end of the restoration period. In addition, there were no significant differences in SGR, HSI, or FCR between the growth period and restoration period within the same group (Tab. 3).

    Proximate composition analysis of fish fillets revealed no significant differences among the dietary treatments during the growth period or restoration period. During the two periods, fillet lipid levels ranged from (7.83±0.76)% to (8.12±0.68)% and from (7.19±0.97)% to (8.02±0.54)%, respectively (Tab. 4).

    Tab. 3 Growth performance of darkbarbel catfish at the end of growth period (GP) and restoration period (RP; % total fatty acids; mean±SD; n=9)

    2.2 LPL and HL activities

    Tab. 5 shows the effect of SO on hepatic HL and LPL activities. The dietary treatments had no effect on hepatic HL activity, but SO significantly reduced hepatic LPL activity (P<0.05). After re-feeding with FO, LPL activities in groups S2 and SO increased; however, the LPL activity in these groups was significantly lower than those in groups FO and S1 (P<0.05).

    2.3 Flesh fatty acid composition during growth and restoration periods

    During the 80d growth period, flesh fatty acid composition was affected by dietary treatment (Tab. 6). Total saturated fatty acids (∑SFAs) were 17.85% in SO and 28.51% in FO. SFAs were significantly reduced with dietary SO (P<0.05). However, the diet with 100% SO significantly increased (P<0.05) the levels of monounsaturated fatty acids (MUFAs) such as oleic acid (C18:1n-9). Total n-3 HUFA levels, which ranged from 3.04% in S2 to 4.39% in FO, significantly decreased with increasing SO levels (P<0.05). EPA ranged from 0.45% in SO to 0.66% inFO. DHA significantly decreased with increasing SO levels (P<0.05). However, ARA levels were significantly higher in SO (0.49%) than in FO (0.31%) (P<0.05).

    Tab. 4 Proximate composition (%) of darkbarbel catfish at the end of the 80d period on the experimental diets and at the end of the 30d

    The flesh fatty acid composition with the 30d restoration FO diet is shown in Tab. 6. For each group, the flesh fatty acid levels in the growth period were compared with those in the restoration period. In S1, flesh 22:6n-3 levels significantly increased (P<0.05). In S2, flesh C18:1n-9 and Σn-6 levels significantly decreased, while flesh Σn-3 HUFA, C20:5n-3, C22:5n-3, n-3/n-6, and C22:6n-3 levels significantly increased. In SO, flesh Σ n-9, Σ n-6, and 18:3n-6 levels significantly decreased, while flesh Σn-3 HUFA, C20:5n-3, C22:5n-3, and C22:6n-3 levels significantly increased.

    3 Discussion

    This study revealed that darkbarbel catfish fed diets containing SO for 80d had slightly higher growth rates than those fed FO (P>0.05) (Tab. 3). This result was similar to findings reported forsharpsnout sea bream (Diplodus puntazzo), brown trout (S. trutta L.), and brook char (Salvelinus fontinalis)[11,12,14]. The complete or partial replacement of FO with VO did not affect fish growth, possibly because there were no differences in FCR. Moreover, α-linolenic acid (C18:3n-3) was possibly desaturated into n-3 HUFA in the darkbarbel catfish P. vachelli, thereby meeting n-3 HUFA requirements for growth. In addition, previous studies have reported no significant effects of VO on the HSI of turbot (Psetta maxima) or rainbow trout (Oncorhynchus mykiss)[17,18]. Similarly, soybean oil did not significantly increase HSI in darkbarbel catfish P. vachelli. However, soybean oil-based diets significantly increased HSI, compared to FO-based diets in sharpsnout seabream (D. puntazzo)[14].

    Tab. 5 LPL and HL activities at the end of the 80d period on the experimental diets and at the end of the 30d period on the fish oil diet (mean±SD; n=9)

    Tab. 6 Flesh fatty acid composition at the end of growth period (GP) and restoration period (RP; % total fatty acids; mean±SD; n=9)

    In this study, SO diets significantly reduced hepatic LPL activities with decreasing dietary levels of DHA, EPA, and linoleic acid (Tab. 5). Similar results have been reported by Michaud et al.[19], who observed that EPA decreased LPL mRNA levels, but linoleic acid increased LPL mRNA levels. However, Richard et al.[20]reported that the replacement of 60% FO with VO did not significantly affect hepatic lipogenesis or LPL activity in the liver and adipose tissues. Also, VO did not significantly influence hepatic HL activity. In red sea bream (P. major), HL gene expression levels were not affected during fasting or refeeding stages[21].

    In this study, with increasing dietary SO, flesh Σ MUFA and C18:1n-9 levels increased (P<0.05), in accordance with the dietary fatty acid composition (Tab. 6). Similarly, the proportions of C18:1 n-9, C18:2 n-6, and C18:3 n-3 in Atlantic salmon (S. salar) flesh increased with increasing dietary rapeseed oil levels[22]. Meanwhile, C20:5n-3, C22:6n-3, Σ n-3 HUFA, and n-3/n-6 ratios in P. vachelli decreased with the addition of SO (P<0.05), correlating with the dietary levels. Similar results have been reported in marine species and fresh water species, such

    [1]Pike I H. Eco-efficiency in aquaculture: global catch of wild fish used in aquaculture [J]. International Aquafeed, 2005, 8: 38—39

    [2]FAO. The State of World Fisheries and Aquaculture. 2010, as turbot (P. maxima), gilthead sea bream (S. aurata), and sharpsnout seabream (D. puntazzo)[6,14,17]. In Atlantic salmon (S. salar), VO diets (33% of total oil) significantly reduced the flesh levels of C20:5n-3 and C22:6n-3 (by 70% and 75%, respectively), relative to the flesh levels in FO-fed fish[22]. Therefore, flesh fatty acid composition was representative of the dietary fatty acid profile. In addition, there was selective deposition of DHA in darkbarbel catfish P. vachelli, turbot (P. maxima), and Atlantic salmon (S. salar)[17,22]. Flesh C22:6n-3 levels were consistently higher than those in the experimental diets in P. vachelli (Table 6). Bell et al.[23]and Fr?yland et al.[24]reported that this selective deposition was attributable to the high specificity of fatty acyl-transferases for C22:6n-3 and to higher beta oxidation of C22:6n-3, compared to that of C20:5n-3. C20:5n-3 levels in European sea bass (D. labrax) flesh were lower than those in rapeseed, linseed, or soybean oil-containing diets[25]. This result was similar to that obtained in this study (Tab. 6).

    After 30 d with a finishing FO diet, flesh Σn-3 HUFA, C20:5n-3, and C22:6n-3 levels in the S2 and SO groups significantly increased, but not to the extent found in fish fed FO for 110d (Tab. 6). Fountoulaki et al.[11]reported that feeding FO to gilthead sea bream (S. aurata L.) for 120d was not sufficient for the restoration of C20:5n-3 and C22:6n-3 levels. Similar conclusions were reached in European sea bass (D. labrax) fed 60% VO followed by FO for 5 months[25]. However, Izquierdo et al.[6]reported that flesh C22:6n-3 and C20:4n-6 levels in gilthead seabream (S. aurata) were restored after a 7-month feeding trial to levels of 60%—80% following a 3-month re-feeding period with FO. These results revealed that restoration of 20:5n-3 and 22:6n-3 in flesh with FO finishing diets may be different in different fish species; 30d FO finishing diets could significantly increase Σn-3 HUFA, C20:5n-3, and C22:6n-3 in P. vachelli fed with SO in the growth period.

    In summary, the results of this study suggest that in the diets of darkbarbel catfish, soybean oil may substitute for almost 100% of the FO without affecting the growth rates. A re-feeding period of 30 d with 100% FO may significantly increase levels of Σn-3 HUFA, C20:5n-3 and C22:6n-3 in flesh, after feeding diets containing ≥50% SO.

    63

    [3]Tacon A G J. Use of fish meal and fish oil in aquaculture: a global perspective [J]. Aquatic Resources, Culture and Development, 2004, 1(1): 3—14

    [4]Caballero M J, Obach A, Rosenlund G, et al. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2002, 214(S1—4), 253—271

    [5]Bell G, Torstensen B, Sargent J. Replacement of marine fish oils with vegetable oils in feeds for farmed salmon [J]. Lipid Technology, 2005, 17: 7—11

    [6]Izquierdo M S, Montero D, Robaina L, et al. Alterations in fillet fatty acid profile and flash quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding [J]. Aquaculture, 2005, 250(1—2): 431—444

    [7]Mourente G, Bell J G. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on flesh and liver fatty acid composition and effectiveness of a fish oil finishing diet [J]. Comparative Biochemistry Physiology, Part B, 2006, 145(4): 389—399

    [8]Izquierdo M S, Obach A, Arantzamendi L, et al. Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality [J]. Aquaculture Nutrition, 2003, 9(9): 397—407

    [9]Francis D S, Turchini G M, Jones P L, et al. Growth performance, feed efficiency and fatty acid composition of juvenile Murray cod, Maccullochella peelii peelii, fed graded levels of canola and linseed oil [J]. Aquaculture Nutrition, 2007, 13(5): 335—350

    [10]Fountoulaki E, Vasilaki A, Hurtado R, et al. Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile Recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures [J]. Aquaculture, 2009, 289(S3—4): 317—326

    [11]Turchini G M, Mentasti T, Froyland L, et al. Effects of alternative lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L) [J]. Aquaculture, 2003, 225(1—4): 251—267

    [12]Guillou A, Soucy P, Khailil M, et al. Effects of dietary vegetable and marine lipid on the growth and organoleptic quality of flesh of brook charr (Salvelinus fontinalis) [J]. Aquaculture, 1995, 136(3): 351—362

    [13]Mourente G, Good J E, Bell J G. Partial substitution of fish oil with rapeseed, linseed and olive oil for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandin E2 and F2, immune functionsand effectiveness of fish oil finishing diet [J]. Aquaculture Nutrition, 2005, 11(1): 25—40

    [14]Piedecausa M A, Mazón M J, García B, et al. Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo) [J]. Aquaculture, 2007, 263(S1—4): 211—219

    [15]Panserat S, Hortopan G A, Plagnes-Juan E, et al. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver [J]. Aquaculture, 2009, 294(1—2): 123—131

    [16]Folch J M, Lees M, Sloane-Stanley G H. A simple method for the isolation and purification of total lipides from animal tissues [J]. Journal of Biological Chemistry, 1957, 226(1): 497—509

    [17]Regost C, Arzel J, Robin J, et al. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima)-1. Growth performance, flesh fatty acid profile, and lipid metabolism [J]. Aquaculture, 2003, 217(1—4): 465—482

    [18]Panserat S, Hortopan G A, Plagnes-Juan E, et al. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver [J]. Aquaculture, 2009, 294(S1—2): 123—131

    [19]Michaud S E, Renier G. Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs [J]. Diabetes, 2001, 50(3): 660—666

    [20]Richard N, Mourente G, Kaushik S, et al. Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.) [J]. Aquaculture, 2006, 261(3): 1077—1087

    [21]Liang X F, Oku H, Ogata H Y. The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major [J]. Comparative Biochemistry Physiology, Part A, 2002, 131(2): 335—342

    [22]Bell J G, Tocher D R, Henderson R J, et al. Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet [J]. The Journal of Nutrition, 2003, 133(9): 2793—2801

    [23]Bell J, Mcevoy J D, Mcghee F, et al. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism [J]. Journal of Nutrition, 2001, 131(5): 1535—1543

    [24]Fr?yland L, Madsen L, Eckhoff K M, et al. Carnitine palmitoyltransferase I, carnitine palmitoyltransferase Ⅱ, and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar) [J]. Lipids, 1998, 33(9): 923—930

    [25]Montero D, Robaina M J, Caballero R, et al. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: a time-course study on the effect of a re-feeding period with a 100% fish oil diet [J]. Aquaculture, 2005, 248(S1—4): 121—134

    再投喂魚(yú)油對(duì)瓦氏黃顙魚(yú)肌肉脂肪酸組成的影響

    邵 婷1,2覃川杰1袁登越1文正勇1李華濤1

    (1. 內(nèi)江師范學(xué)院生命科學(xué)學(xué)院, 長(zhǎng)江上游魚(yú)類資源保護(hù)與利用四川省重點(diǎn)實(shí)驗(yàn)室, 內(nèi)江 641100; 2. 四川師范大學(xué)生命科學(xué)學(xué)院, 成都 610101)

    為研究植物油替代魚(yú)油對(duì)瓦氏黃顙魚(yú)(Pelteobagrus vachelli)生長(zhǎng)及肌肉脂肪組成的影響及重投喂魚(yú)油對(duì)瓦氏黃顙魚(yú)肌肉脂肪酸組成的影響, 實(shí)驗(yàn)以大豆油分別替代飼料中的0(FO)、50 (S1)、75 (S2)和100% (SO)的魚(yú)油配制等氮、等能的顆粒飼料, 每組設(shè)置3個(gè)平行, 養(yǎng)殖80d后, 再投喂魚(yú)油30d。結(jié)果表明, 飼料中添加豆油不會(huì)顯著影響瓦氏黃顙魚(yú)的增重率、肝體指數(shù)和體成分(P>0.05)。隨著飼料中大豆油含量的增加, S2和SO組肌肉中C18:1n-9、C18:2n-6和單不飽和脂肪酸比例顯著增加(P<0.05), 而C20:5n-3, C22:5n-3及n-3/n-6比例顯著下降(P<0.05)。再投喂魚(yú)油30d后, SO組肌肉中C18:3n-6、C20:4n-6、Σ n-9、Σ n-6和S2組中C18:1n-9、Σ n-6比例顯著下降(P<0.05), 而S2和SO組肌肉中Σn-3多不飽和脂肪酸、C20:5n-3和C22:5n-3比例顯著增加(P<0.05)。在生產(chǎn)中, 可采用先植物油飼料、后魚(yú)油飼料的養(yǎng)殖方式提高瓦氏黃顙魚(yú)肌肉品質(zhì)(增加有益人類健康的多不飽和脂肪酸)。

    瓦氏黃顙魚(yú); 魚(yú)油; 豆油; n-3多不飽和脂肪酸; 脂肪酸修復(fù)

    Qin Chuan-Jie, E-mail: qinchuanjie@126.comture, the substitution of FO with VOs may affect growth and disease resistance, and decrease flesh fatty acid composition.

    10.7541/2017.18

    猜你喜歡
    內(nèi)江大豆油魚(yú)油
    平安內(nèi)江,幸福的港灣
    眾說(shuō)紛紜話“魚(yú)油”
    四川內(nèi)江:青花椒成為增收新引擎
    內(nèi)江本土優(yōu)秀傳統(tǒng)文化傳承發(fā)展問(wèn)題研究
    眾說(shuō)紛紜話“魚(yú)油”
    精煉大豆油回色因素及延緩回色工藝的研究
    中海海洋耕魚(yú)油全產(chǎn)業(yè)鏈
    商周刊(2017年6期)2017-08-22 03:42:51
    微膠囊魚(yú)油蛋黃醬的研究
    食品界(2016年4期)2016-02-27 07:36:48
    大豆油基生物柴油氧化動(dòng)力學(xué)方程研究
    內(nèi)江市中區(qū)聯(lián)社:做“小微”金融服務(wù)專業(yè)銀行
    亚洲精品粉嫩美女一区| √禁漫天堂资源中文www| 国产成人影院久久av| 久热这里只有精品99| 999精品在线视频| 国产成人精品久久二区二区免费| 久久香蕉精品热| 搡老熟女国产l中国老女人| 午夜激情av网站| 日韩中文字幕欧美一区二区| 十八禁人妻一区二区| 久久中文字幕人妻熟女| 国产亚洲精品第一综合不卡| 不卡av一区二区三区| 欧美丝袜亚洲另类 | 黑人操中国人逼视频| 久久ye,这里只有精品| 国产亚洲欧美精品永久| 亚洲第一欧美日韩一区二区三区| x7x7x7水蜜桃| 成年女人毛片免费观看观看9 | 亚洲午夜理论影院| 欧美大码av| 日韩欧美在线二视频 | 亚洲精品久久成人aⅴ小说| 欧美老熟妇乱子伦牲交| 国产亚洲欧美在线一区二区| aaaaa片日本免费| 久久 成人 亚洲| 欧美日韩黄片免| 在线免费观看的www视频| 久久精品91无色码中文字幕| 国产亚洲欧美精品永久| 欧美成人午夜精品| 亚洲精品美女久久久久99蜜臀| 桃红色精品国产亚洲av| 脱女人内裤的视频| 成人特级黄色片久久久久久久| 国产精品国产av在线观看| 久久久久久久久久久久大奶| 伦理电影免费视频| 午夜两性在线视频| 国产一区二区三区综合在线观看| 亚洲人成伊人成综合网2020| 超碰成人久久| 免费黄频网站在线观看国产| 亚洲av欧美aⅴ国产| aaaaa片日本免费| 欧美精品av麻豆av| 久久ye,这里只有精品| 在线观看免费高清a一片| av电影中文网址| 欧美色视频一区免费| 人妻一区二区av| 老司机深夜福利视频在线观看| 一边摸一边抽搐一进一小说 | 国产高清videossex| 国产国语露脸激情在线看| 热99re8久久精品国产| 女人被狂操c到高潮| 日本撒尿小便嘘嘘汇集6| 成人国语在线视频| 欧美日韩亚洲国产一区二区在线观看 | 十八禁网站免费在线| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产成人免费| 亚洲avbb在线观看| 中文亚洲av片在线观看爽 | 午夜日韩欧美国产| 国产在线一区二区三区精| 国产三级黄色录像| 久久久久视频综合| 中文字幕精品免费在线观看视频| 在线观看www视频免费| 少妇粗大呻吟视频| 精品国产亚洲在线| 亚洲精品久久成人aⅴ小说| 国产99久久九九免费精品| 91国产中文字幕| 啦啦啦 在线观看视频| 国产91精品成人一区二区三区| 国产成人系列免费观看| 国产真人三级小视频在线观看| 少妇被粗大的猛进出69影院| 日韩欧美三级三区| 精品人妻熟女毛片av久久网站| 99精品欧美一区二区三区四区| 亚洲精品国产精品久久久不卡| 午夜福利在线免费观看网站| 女警被强在线播放| 大香蕉久久成人网| 99久久国产精品久久久| 可以免费在线观看a视频的电影网站| 精品少妇久久久久久888优播| 女人被狂操c到高潮| 天天躁日日躁夜夜躁夜夜| 无遮挡黄片免费观看| videosex国产| 国产精品偷伦视频观看了| 最近最新中文字幕大全电影3 | 女人高潮潮喷娇喘18禁视频| 狠狠狠狠99中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 在线十欧美十亚洲十日本专区| 无遮挡黄片免费观看| 午夜亚洲福利在线播放| av天堂久久9| 美女视频免费永久观看网站| 黑丝袜美女国产一区| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 美女高潮到喷水免费观看| 老司机午夜十八禁免费视频| 成年版毛片免费区| 久久中文看片网| 如日韩欧美国产精品一区二区三区| 高潮久久久久久久久久久不卡| 久久久久久久国产电影| 国产精品av久久久久免费| 亚洲综合色网址| 欧美日韩精品网址| 成年人免费黄色播放视频| 国产麻豆69| 久久精品亚洲精品国产色婷小说| 少妇被粗大的猛进出69影院| av福利片在线| 成年版毛片免费区| 亚洲精品美女久久av网站| 亚洲人成伊人成综合网2020| 国产精品国产高清国产av | 精品久久久久久电影网| 成年版毛片免费区| 国产主播在线观看一区二区| 免费在线观看黄色视频的| 咕卡用的链子| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片 | 国产真人三级小视频在线观看| 久久精品91无色码中文字幕| 王馨瑶露胸无遮挡在线观看| 国产av一区二区精品久久| 男人的好看免费观看在线视频 | 动漫黄色视频在线观看| 精品国产乱码久久久久久男人| 久久久久国产一级毛片高清牌| 成年人午夜在线观看视频| 两个人免费观看高清视频| 日韩人妻精品一区2区三区| 中文字幕最新亚洲高清| 亚洲欧美激情在线| 五月开心婷婷网| 成人国语在线视频| 免费在线观看影片大全网站| 精品福利永久在线观看| 啦啦啦视频在线资源免费观看| 女人高潮潮喷娇喘18禁视频| 中文欧美无线码| 一区二区三区国产精品乱码| 国产不卡一卡二| 欧美日韩成人在线一区二区| 久久国产精品人妻蜜桃| 色在线成人网| 大香蕉久久成人网| 亚洲va日本ⅴa欧美va伊人久久| 丰满的人妻完整版| 日本撒尿小便嘘嘘汇集6| 老司机在亚洲福利影院| 天天添夜夜摸| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 久久久久久久久免费视频了| 亚洲成人免费电影在线观看| av在线播放免费不卡| 亚洲七黄色美女视频| 久久ye,这里只有精品| 午夜视频精品福利| 亚洲av日韩在线播放| 91大片在线观看| av线在线观看网站| 69av精品久久久久久| 午夜免费鲁丝| 啦啦啦免费观看视频1| 国产精品偷伦视频观看了| 少妇猛男粗大的猛烈进出视频| 亚洲精品在线观看二区| 母亲3免费完整高清在线观看| 国产99久久九九免费精品| 丁香欧美五月| 99精品久久久久人妻精品| 免费日韩欧美在线观看| 国产欧美亚洲国产| 多毛熟女@视频| 美女视频免费永久观看网站| 亚洲av第一区精品v没综合| 丰满人妻熟妇乱又伦精品不卡| 精品电影一区二区在线| 中国美女看黄片| 一级毛片高清免费大全| 欧美午夜高清在线| 日本一区二区免费在线视频| 精品高清国产在线一区| 婷婷成人精品国产| 国产一区二区三区综合在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩高清在线视频| 亚洲精品中文字幕在线视频| www.999成人在线观看| 麻豆国产av国片精品| 色综合欧美亚洲国产小说| 韩国av一区二区三区四区| 不卡一级毛片| 国产又爽黄色视频| 亚洲熟妇熟女久久| 欧美精品一区二区免费开放| 在线av久久热| 一本大道久久a久久精品| 国产成人系列免费观看| 午夜福利免费观看在线| 最新的欧美精品一区二区| 亚洲免费av在线视频| 午夜日韩欧美国产| 国产深夜福利视频在线观看| 亚洲,欧美精品.| 欧美精品人与动牲交sv欧美| 在线av久久热| 中文字幕av电影在线播放| 在线观看免费视频日本深夜| 国产不卡一卡二| а√天堂www在线а√下载 | 一边摸一边抽搐一进一出视频| 99精品欧美一区二区三区四区| x7x7x7水蜜桃| 久久久久久免费高清国产稀缺| 久久中文字幕人妻熟女| 免费一级毛片在线播放高清视频 | 十八禁高潮呻吟视频| 中国美女看黄片| 国产亚洲精品一区二区www | 成年版毛片免费区| 中文字幕人妻丝袜制服| 精品久久久久久久久久免费视频 | 午夜视频精品福利| 人人妻人人澡人人爽人人夜夜| 国产精品秋霞免费鲁丝片| 免费一级毛片在线播放高清视频 | 国产区一区二久久| 免费在线观看日本一区| 一二三四在线观看免费中文在| 天天影视国产精品| 亚洲精品美女久久久久99蜜臀| 亚洲一区二区三区欧美精品| 中文字幕色久视频| 精品久久久精品久久久| 老熟妇仑乱视频hdxx| 亚洲成人国产一区在线观看| 久久久国产成人免费| 9热在线视频观看99| av有码第一页| 人人妻人人添人人爽欧美一区卜| 他把我摸到了高潮在线观看| 国产激情久久老熟女| 99国产极品粉嫩在线观看| 成人手机av| 亚洲va日本ⅴa欧美va伊人久久| 大香蕉久久网| 国产成人av激情在线播放| 国产真人三级小视频在线观看| 操出白浆在线播放| 欧美日韩黄片免| 国产成人精品无人区| 丁香六月欧美| 精品人妻熟女毛片av久久网站| 国产精品欧美亚洲77777| 国产亚洲精品第一综合不卡| 日韩有码中文字幕| 999精品在线视频| 中亚洲国语对白在线视频| 天天躁日日躁夜夜躁夜夜| 国产一区二区三区综合在线观看| 国产激情久久老熟女| av天堂在线播放| 十八禁人妻一区二区| 欧美激情久久久久久爽电影 | 婷婷精品国产亚洲av在线 | 国产一区有黄有色的免费视频| 国产av又大| 一边摸一边抽搐一进一出视频| 国产精品一区二区在线观看99| 成人18禁高潮啪啪吃奶动态图| 国产不卡一卡二| 在线观看日韩欧美| 亚洲中文字幕日韩| 视频在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 久久人妻福利社区极品人妻图片| 欧美日韩国产mv在线观看视频| 国产欧美亚洲国产| av国产精品久久久久影院| 久久天堂一区二区三区四区| 黑人猛操日本美女一级片| 村上凉子中文字幕在线| 亚洲免费av在线视频| 国产欧美日韩一区二区三区在线| 欧美色视频一区免费| 国产精品亚洲一级av第二区| 亚洲aⅴ乱码一区二区在线播放 | 啦啦啦免费观看视频1| 精品无人区乱码1区二区| 身体一侧抽搐| 我的亚洲天堂| 欧美日韩亚洲高清精品| 久久中文字幕人妻熟女| 国内久久婷婷六月综合欲色啪| 老汉色∧v一级毛片| 欧美日韩乱码在线| 欧美日韩国产mv在线观看视频| 一二三四社区在线视频社区8| 熟女少妇亚洲综合色aaa.| 久久精品国产a三级三级三级| 桃红色精品国产亚洲av| 亚洲五月色婷婷综合| 亚洲一码二码三码区别大吗| 色婷婷久久久亚洲欧美| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区激情短视频| 黄片播放在线免费| 亚洲av美国av| 9色porny在线观看| 日韩欧美一区视频在线观看| 亚洲国产中文字幕在线视频| 精品人妻在线不人妻| 中文字幕色久视频| 巨乳人妻的诱惑在线观看| 国产亚洲欧美98| 好男人电影高清在线观看| 一级作爱视频免费观看| 欧美日韩亚洲高清精品| 国产精品美女特级片免费视频播放器 | 老司机福利观看| 免费看a级黄色片| 国产精品秋霞免费鲁丝片| ponron亚洲| 欧美日韩视频精品一区| 一进一出抽搐gif免费好疼 | 窝窝影院91人妻| 亚洲精品一二三| 首页视频小说图片口味搜索| 国产精品影院久久| 久久久久久亚洲精品国产蜜桃av| 欧美av亚洲av综合av国产av| 777米奇影视久久| 色在线成人网| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美亚洲二区| 亚洲一区高清亚洲精品| tube8黄色片| 国产97色在线日韩免费| 国产又爽黄色视频| 亚洲综合色网址| 欧美在线黄色| √禁漫天堂资源中文www| 精品视频人人做人人爽| 高清在线国产一区| 免费在线观看完整版高清| av天堂久久9| 午夜免费观看网址| 久久人妻av系列| 免费在线观看完整版高清| 成人18禁高潮啪啪吃奶动态图| 久久天堂一区二区三区四区| 亚洲在线自拍视频| 日韩三级视频一区二区三区| 热re99久久国产66热| 成年人免费黄色播放视频| 日日夜夜操网爽| 捣出白浆h1v1| 免费一级毛片在线播放高清视频 | 国产深夜福利视频在线观看| 女人精品久久久久毛片| 自线自在国产av| bbb黄色大片| 天天躁夜夜躁狠狠躁躁| 亚洲成a人片在线一区二区| 精品亚洲成a人片在线观看| 两人在一起打扑克的视频| 亚洲伊人色综图| 亚洲成a人片在线一区二区| 精品亚洲成国产av| 欧美日韩亚洲国产一区二区在线观看 | 51午夜福利影视在线观看| av不卡在线播放| 中文字幕人妻丝袜制服| 下体分泌物呈黄色| 亚洲精品自拍成人| 妹子高潮喷水视频| 99香蕉大伊视频| 18禁观看日本| 视频区图区小说| 人人妻,人人澡人人爽秒播| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品第一综合不卡| 久久久国产一区二区| 在线观看免费视频网站a站| 国产精品 欧美亚洲| av视频免费观看在线观看| 高清在线国产一区| www.999成人在线观看| 丁香六月欧美| 久久人妻福利社区极品人妻图片| 曰老女人黄片| 亚洲人成电影观看| 老司机靠b影院| 免费在线观看黄色视频的| 久久精品国产a三级三级三级| 国产区一区二久久| av欧美777| 亚洲精品国产色婷婷电影| 亚洲av美国av| 一区二区三区国产精品乱码| 国产伦人伦偷精品视频| 一级黄色大片毛片| 69精品国产乱码久久久| av线在线观看网站| 人妻久久中文字幕网| 欧美黑人精品巨大| 久久人人爽av亚洲精品天堂| 五月开心婷婷网| 精品久久久精品久久久| av网站免费在线观看视频| 在线观看66精品国产| 久久九九热精品免费| 亚洲国产欧美日韩在线播放| 免费在线观看亚洲国产| av在线播放免费不卡| 亚洲欧洲精品一区二区精品久久久| 亚洲男人天堂网一区| 亚洲精品久久午夜乱码| 91成年电影在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲av日韩在线播放| 侵犯人妻中文字幕一二三四区| 欧美成狂野欧美在线观看| 三上悠亚av全集在线观看| 性少妇av在线| 久久精品aⅴ一区二区三区四区| 中文字幕最新亚洲高清| 大香蕉久久网| 不卡av一区二区三区| 亚洲黑人精品在线| 不卡一级毛片| 国产区一区二久久| 国产av一区二区精品久久| 精品一区二区三区av网在线观看| 亚洲人成77777在线视频| 女性被躁到高潮视频| 麻豆av在线久日| 一级a爱视频在线免费观看| 久久九九热精品免费| 丝瓜视频免费看黄片| 99久久综合精品五月天人人| 亚洲精品一二三| 国产成人免费无遮挡视频| 精品国产一区二区三区久久久樱花| 黄色视频不卡| 国产熟女午夜一区二区三区| 黄网站色视频无遮挡免费观看| 日韩有码中文字幕| 国产又爽黄色视频| 国产在线精品亚洲第一网站| 国产午夜精品久久久久久| 国产成+人综合+亚洲专区| 夜夜爽天天搞| 丝袜在线中文字幕| 少妇的丰满在线观看| 亚洲精品久久成人aⅴ小说| 国产成人av激情在线播放| 亚洲av电影在线进入| 国产精品乱码一区二三区的特点 | 精品国产一区二区三区久久久樱花| a级毛片黄视频| 国产成人影院久久av| 电影成人av| 国产成人欧美| 精品久久蜜臀av无| 欧美黑人欧美精品刺激| 欧美日韩国产mv在线观看视频| 国产精品久久久久久人妻精品电影| 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 91字幕亚洲| 校园春色视频在线观看| 国产精品二区激情视频| 中文字幕精品免费在线观看视频| 亚洲一区二区三区欧美精品| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 一区二区三区精品91| 三上悠亚av全集在线观看| 9热在线视频观看99| 久久久久久久精品吃奶| 国产精品1区2区在线观看. | 嫁个100分男人电影在线观看| 午夜免费成人在线视频| 中国美女看黄片| 久久国产精品影院| 中国美女看黄片| 国产成人欧美| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲欧美98| 伊人久久大香线蕉亚洲五| 国产精品久久久久久人妻精品电影| 午夜福利影视在线免费观看| 亚洲av电影在线进入| 丝袜美足系列| 亚洲精品美女久久久久99蜜臀| 国产激情久久老熟女| 在线观看免费视频日本深夜| 人成视频在线观看免费观看| 搡老熟女国产l中国老女人| 日韩欧美三级三区| 国产男女内射视频| 一区二区日韩欧美中文字幕| √禁漫天堂资源中文www| 久久国产精品男人的天堂亚洲| 婷婷丁香在线五月| 成年动漫av网址| 欧美黄色淫秽网站| 男人舔女人的私密视频| 久久精品亚洲av国产电影网| 成年版毛片免费区| 国产成人精品在线电影| 精品国产乱子伦一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看日韩欧美| 国产精品1区2区在线观看. | 亚洲一码二码三码区别大吗| 欧美乱码精品一区二区三区| 亚洲成人国产一区在线观看| av一本久久久久| 人人妻,人人澡人人爽秒播| 国产精品美女特级片免费视频播放器 | 日韩人妻精品一区2区三区| 国产成人免费无遮挡视频| 天堂√8在线中文| 亚洲国产中文字幕在线视频| 在线观看免费视频日本深夜| 人成视频在线观看免费观看| 女人爽到高潮嗷嗷叫在线视频| 久久久水蜜桃国产精品网| 免费久久久久久久精品成人欧美视频| 无遮挡黄片免费观看| 99精品久久久久人妻精品| 久久久精品区二区三区| 51午夜福利影视在线观看| 午夜91福利影院| 亚洲精品美女久久av网站| 久久久久久久久免费视频了| 美女午夜性视频免费| 久久久久久亚洲精品国产蜜桃av| 999久久久精品免费观看国产| 国产黄色免费在线视频| 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 日日摸夜夜添夜夜添小说| 国产欧美亚洲国产| 欧美精品av麻豆av| 国产精品国产av在线观看| 国产成人免费观看mmmm| 国产在线一区二区三区精| 欧美日韩视频精品一区| 欧美亚洲日本最大视频资源| 国产精品久久久久久人妻精品电影| 欧美不卡视频在线免费观看 | 人人澡人人妻人| 久久国产精品男人的天堂亚洲| 亚洲成a人片在线一区二区| 12—13女人毛片做爰片一| 久9热在线精品视频| 在线观看免费视频日本深夜| 亚洲一区二区三区欧美精品| 久久精品亚洲熟妇少妇任你| 黄色视频,在线免费观看| 日日夜夜操网爽| 美女高潮喷水抽搐中文字幕| 欧美精品av麻豆av| 欧美黑人精品巨大| svipshipincom国产片| tube8黄色片| 久久久久国产一级毛片高清牌| 国产男靠女视频免费网站| 99热网站在线观看| 亚洲av成人不卡在线观看播放网| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 成人黄色视频免费在线看| 亚洲熟女毛片儿| 桃红色精品国产亚洲av| 国产精品亚洲一级av第二区| 麻豆av在线久日| 成人特级黄色片久久久久久久| 一级,二级,三级黄色视频| 久久国产精品影院| av网站免费在线观看视频| 久久亚洲精品不卡| av网站在线播放免费| 日韩精品免费视频一区二区三区| 国产精品 欧美亚洲| 日韩欧美三级三区| 成人影院久久| 天堂动漫精品| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人欧美精品刺激| 国产日韩一区二区三区精品不卡|