• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-humidity Sensor of a New Trinuclear Ti3-Oxo Cluster①

    2022-04-16 02:59:46SUNShiHaoZHANGQianChongYEXiaoLiang
    結(jié)構(gòu)化學 2022年3期

    SUN Shi-Hao ZHANG Qian-Chong YE Xiao-Liang

    KASHI Chivanje evulub LI Wen-Huab WANG Guan-Eb② XU Gangb

    a (College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China)

    b (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)

    ABSTRACT Crystalline polyoxo-titanium clusters (PTCs), as a molecular model of TiO2 nanomaterials, have attracted unprecedented attention due to their designable structure, tunable band gap, catalysis, and photochromic properties. A new trinuclear Ti3-oxo cluster, [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2]·CH3CN·H2O (Ti3), was synthesized by solvothermal method with a yield of 60% by using 4-aminobenzoic acid as ligand. Single-crystal X-ray diffraction shows that it has a [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2] trinuclear cluster structure. Ti3 crystallizes in monoclinic space group P21/c with a = 11.091(1), b = 22.837(2), c = 22.754(1) ?, β = 90.580(6)°, V = 5763.0(6) ?3, Z = 4, Dc =1.345 g·cm-3, F(000) = 2412, μ = 2.743 mm-1, R = 0.0796, and wR = 0.2260 (I > 2σ(I)). Ti3 shows typical semiconductive behavior determined by temperature-dependent conductivity test. The chemiresistive humidity sensor fabricated by Ti3 showed good performance, including high response (four orders of magnitude current change from 0 to 100% RH) and fast response time (160 s) and recovery time (26 s).

    Keywords: polyoxo-titanium clusters, semiconductor, chemiresistive sensor, humidity sensor;

    1 INTRODUCTION

    Crystalline polyoxo-titanium clusters (PTCs) are still in their infancy stage and have a large room for development compared with other well-developed polyoxometalates[1].Owing to their precise structure, PTCs are a good bridge between TiO2nanoparticles and a precise molecular model. A 3.6 nm Ti52-oxo nanocluster was found byWei-Hui Fanget al[2]. A fullerene-like polyoxotitanium cage [Ti42(μ3-O)60(OiPr)42(OH)12]6-was also synthesized by Mei-Yan Gaoet al[3]. Bandgap engineering regulated based on Ti6core has been systematically studied by Jin Xiu Liuet al[4]. Xi Fanet al.reported the first pair of isomeric titanium-oxo clusters[Ti20(μ2-O)8(μ3-O)20(PA)14(8-OQ)10] and [Ti20(μ2-O)10(μ3-O)16(μ4-O)2(PA)14(8-OQ)10] with anatase model and explored their photocatalytic activity[5]. The photochromic behavior of[Ti6(μ3-O)2(PZ)4(TAZ)2(OiPr)14] and [Ti10(μ2-O)4(μ3-O)8-(PZ)12(OiPr)8] was also studied by Xi Fanet al[6]. Up to now,studies on PTCs are mainly focused on catalysis, photochromic, structure design, and band gap control[1,2,4,6-11]. A great challenge still remains for PTCs to be a gas sensor material with fast responsibility, high sensitivity, and good stability.

    Humidity is one of the most commonly measured physical quantities. Humidity sensor has been used in hospitals, food processing, and other industries and fields[12-15]. At present,many types of humidity sensors have been developed, such as capacitance, impedance, mass-sensitive, and optical sensors.Resistance-type sensors are portable, cheap, and easy to design. Thus, this type of humidity sensor is the most popular one[16]. TiO2-based nanotubes[17], TiO2nanotubes[18], TiO2nanofibers[19], and TiO2slanted nanorod arrays[20]have been explored as humidity sense materials. Although many TiO2materials with different morphologies have been used for sensor materials, cluster-based sensors are rarely reported.Very rare titanium-oxo cluster-based sensors have been reported. Furthermore, owing to the lack of precise information of the adsorption model, exploring the sensing mechanism is still a great challenge. PTCs with a clear structure may become a good structural platform for mechanism investigation.

    In this work, the synthesis and crystal structure of a new PTC, [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2]·CH3CN·H2O (Ti3), and its application in chemiresistive humidity sensor (Habz: 4-aminobenzoic acid;iPrOH: isopropanol) were explored. This work was the first to report a chemiresistive humidity sensor of titanium-oxo clusters. The direct current (DC) chemiresistive sensor of these PTCs showed excellent humidity sensing performance, with a high response of four orders of magnitude enhanced conductivity under 100% RH and fast response time (160 s) and recovery time (26 s).

    2 EXPERIMENTAL

    2. 1 Synthesis of the materials

    All the reagents and solvents employed were purchased commercially and used as received without further treatment.Titanium isopropoxide was purchased from Adamas-beta,and 4-aminobenzoic acid was purchased from Aladdin.Acetonitrile was acquired from Sinopharm Chemical Reagent Beijing. 4-Aminobenzoic acid (0.634 g, 4.693 mmol) was dissolved in 8 mL acetonitrile, and titanium isopropoxide(312.5 μL, 1.057 mmol) was added quickly to obtain a red solution. Then, the red solution was sealed in a 25 mL glass bottle and heated at 85 °C for 3 days. After cooling to room temperature, red-rodlike crystals of Ti3 are obtained (Fig. 1a),washed with excess amount of acetonitrile, and dried under vacuum. The purity of the compounds was proven by powder X-ray diffraction (PXRD) (Fig. 1b). EA, Calcd.: H, 4.74; N,8.38; C, 51.34%. Found: H, 4.43; N, 7.75; C, 48.72%.

    Fig. 1. (a) Crystal photo of Ti3; (b) Experiment PXRD of Ti3 and simulation

    2. 2 Crystal structure determination

    The structure data of Ti3 were collected on a Rigaku Hyoix (293 K) by using graphite-monochromated GaKαradiation (λ= 1.3405 ?). A total of 31351 reflections were collected for Ti3 red crystals, of which 9873 (Rint= 0.0362)were independent in the range of 2.38°≤θ≤53.22° by using anωscan mode. The structure was solved by direct methods and refined by full-matrix least-squares onF2by using SHELX2018 package. All non-hydrogen atoms were refined anisotropically except the O from water molecule. Hydrogen atoms were geometrically generated. The finalR= 0.0796 andwR= 0.2260 (w= 1/[σ2(Fo2) + (0.1138P)2+ 4.9551P],whereP= (Fo2+ 2Fc2)/3), (Δ/σ)max= 0.008,S= 1.025, (Δρ)max= 0.695 and (Δρ)min= -0.530 e/?3. Selected bond lengths and bond angles are shown in Tables 1 and 2. The Ti-O bond lengths are from 1.821(3) to 2.046(3) ? and the bond angles fall in the 78.00(1)~127.88(8)° range.

    2. 3 Characterization

    The data of PXRD were acquired from a MiniFlex II diffractometer using CuKαradiation (λ= 1.540598 ?) at 30 kV and 15 mA. The simulated PXRD patterns of Ti3 were derived from the Mercury Version 3.9 software. UV-vis spectrum was collected on a PerkinElmer Lambda-950 UV/Vis/NIR spectrophotometer. Spectrally pure BaSO4was used as a background. The temperature-dependent I-V curves were measured by KEITH-LEY4200-SCS semiconductor characterization system. The electrode was made using silver paste and 50 μm-diameter gold wires by placing the pressed pellets of the samples between two electrodes.

    Acetonitrile suspension liquid (40 mg/mL) was made using Ti3 powders. Then, 10 μL of the abovementioned liquid was dropped onto an Al2O3-based silver platinum interdigital electrode and dried at 60 °C for 24 h in air. The devices were used for humidity sensing performance test after drying at 60 °C for 48 h. Humidity sensing characterization was conducted using a home-made system previously reported[21,22]at room temperature. Different humidity levels were controlled by mixing dry air with 100% RH moisture in a closed quartz chamber. Dry air with a flow rate of 600 mL·min-1was purged for 5 min, followed by 5 min of different humidity gases for response. A bias voltage of 5 V was applied, and the current was recorded by a Keithley 2602B source meter.

    Table 1. Selected Bond Lengths (?) for Ti3

    Table 2. Selected Bond Angles (°) for Ti3

    3 RESULTS AND DISCUSSION

    3. 1 Structure description

    Single-crystal X-ray diffraction analysis revealed that Ti3 crystallizes in monoclinic groupP21/c. As shown in Fig. 1a,each Ti atom is coordinated by six O atoms to form an isolated octahedron. These octahedra are connected by bridged O atoms to form a Ti3-oxo cluster core. The O atoms on the terminal Ti3-oxo cluster core build five chelating 4-aminobenzoic acids, one 4-aminobenzoic acid, and two isopropanols(Fig. 2a). The Ti3-oxo cluster interacts with two neighboring ones through Van der Waals interactions to form a 1Dsupramolecular chain extending along theaaxis (Fig. 2b), and such 1Dchains are stacked in thebcplane to form a 3Dstructure (Fig. 2c).

    Fig. 2. (a) Structure of the single cluster; (b) Extending along the a axis; (c) Packing model

    3. 2 Spectrum analyses

    Compared with the 4-aminobenzoic acid, the peak intensity at 1720~1706 cm-1(-C=O) was reduced for the coordination of Ti and carboxylic acid in the benzene ring.The peak at 3500~3100 cm-1for -NH remains, indicating that the amino group has not been coordinated to Ti (Fig. 3a).These results are consistent with the single-crystal structure through single-crystal X-ray diffraction. Band gaps (Fig. 3b)of Ti3 were 1.97 eV, smaller than that of pure TiO2.

    Fig. 3. (a) FT-IR spectra of Ti3 and 4-aminobenzoic acid; (b) Solid-state UV-Vis diffuse spectrum of Ti3

    3. 3 Thermal stability and semiconductive property

    Ti3 exhibited a weight loss of approximately 5.68%(theoretical value: 5.05%) from 25 to 200 °C, corresponding to the occupancy of solvent and water molecules.The residual concentration was 21.50%, which may be TiO2(theoretical value: 20.05%, Fig. 4a). The I-V curves of Ti3 were tested in the range of 30~120 ℃. As shown in Fig. 4b, the conductivity at 30 ℃ was 2.79 × 10-11S/cm,which increased to 3.78 × 10-9S/cm at 120 ℃. The values and the trend of the conductivity increasing upon raising the temperature revealed its typical semiconductive property (Fig. 4c).

    Fig. 4. (a) Thermogravimetric (TG) analysis curve;(b) I-V curves at different temperature; (c) Arrhenius plot at different temperature

    3. 4 Humidity sensing

    Humidity is the most common physical quantity used to express the content of water vapor in air. Preparing a highperformance humidity sensor remains a challenge. Several sensing devices were produced by dropping a suspension liquid of Ti3 to the interdigital electrode. As shown in Fig. 5a,the Ti3 showed humidity response in the broad RH range from 10% to 100%. The baseline current was 1 × 10-12A under dry air flow. The electrical current rapidly increased when they were exposed to humidity atmosphere, and then gradually reached a relatively stable value. The current dropped quickly back to the baseline current when the dry air was purged in. The value of response was calculated, and the sensing properties of the compound under different water concentrations were revealed. The sensor’s response value in detecting humidity is defined as the resistance ratio between dry air and humidity gas as follows[22]:

    The response of Ti3 was 1166.11 at RH 100%, which was comparable to that in other metal oxides and metalorganic framework-based humidity sensors[23-26]. The repeating dynamic response of Ti3-based sensor to rapid variations in dry air and 60% RH is shown in Fig. 5b. The result indicated that the humidity-sensing process is extremely reversible. Response time is a very important parameter of gas sensor. The response of a single cycle(RH = 60%) was normalized to evaluate the response recovery level of the sensor. The response time (tresponse)was set to 90% of the maximum current value, and the recovery time (trecovery) was set to 10% of the maximum current value (Fig. 5c). The response and recovery time for Ti3 were 160 and 26 s, respectively.

    H2O molecules are easy to adsorb/desorb on the surface of materials, especially with hydrophilic group, indicating that water is mainly gathered on the surface of sensing materials. This situation is beneficial for rapid response and recovery[27]. The mechanism of humidity sensing is mainly surface transmission mechanism. The resistance of sensing material is changed by H2O molecules, which gather on the surface of sense materials through chemical and physical adsorption. The resistance between electrode and materials was reduced by the introduction of surface H+, OH-, H3O+, and water. The grain boundary resistance and potential barrier may also be responsible. Instantaneous polarity reversal was applied on a DC circuit with an operating voltage of 1 V[28]to probe electronic and ionic contributions to the moisture-induced increase in electrical conduction (Fig. 5d). Therefore, the electronic mechanism may be the possible sensing mechanism in this work. When the DC voltage was applied onto the electrodes, the current decayed exponentially. Then, the currents finally stabilized at 0~3 orders of magnitude larger than the baseline value in accordance with different RH%values (Table 3).

    Fig. 5. (a) Response of Ti3 to different RH (10%~100%) at room temperature; (b) Response and recovery curve under 60% RH for 5 cycles;(c) Response and recovery time curve at 60% RH; (d) Curves of current vs. time of Ti3 based sensor at various RH obtained by the DC reverse polarity method

    Table 3. Value of Response under Different RH% for Ti3

    4 CONCLUSION

    In summary, a titanium-oxo cluster semiconductive [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2]·CH3CN·H2O was prepared and characterized. The compound showed typical semiconductive behavior. The corresponding DC humidity sensor based on this compound exhibited fast response and recovery, together with a high response of four orders of magnitude at 100% RH,

    5 AUTHOR CONTRIBUTIONS

    All authors listed have made a substantial, direct, and which demonstrated its great potential for quantitatively detecting humidity.intellectual contribution to the work. The authors declare that they have no conflict of interest, and they approved this manuscript for publication.

    赤兔流量卡办理| 人体艺术视频欧美日本| 久久鲁丝午夜福利片| 午夜视频国产福利| 女人久久www免费人成看片| 波野结衣二区三区在线| 天天躁夜夜躁狠狠久久av| 纵有疾风起免费观看全集完整版| 日产精品乱码卡一卡2卡三| 亚洲成色77777| 永久网站在线| 国产女主播在线喷水免费视频网站| 亚洲熟女精品中文字幕| 亚洲最大成人av| 亚洲va在线va天堂va国产| 麻豆精品久久久久久蜜桃| 欧美高清性xxxxhd video| 欧美97在线视频| 涩涩av久久男人的天堂| 精品酒店卫生间| 国产女主播在线喷水免费视频网站| 免费观看a级毛片全部| 自拍欧美九色日韩亚洲蝌蚪91 | 狂野欧美激情性bbbbbb| 亚洲精品中文字幕在线视频 | 国产高潮美女av| 亚洲成人精品中文字幕电影| 国产成人福利小说| 午夜福利视频1000在线观看| 99久久人妻综合| a级一级毛片免费在线观看| 欧美高清成人免费视频www| 老司机影院毛片| av在线观看视频网站免费| 亚洲国产精品专区欧美| 久久人人爽av亚洲精品天堂 | 精品久久久噜噜| 国产男女超爽视频在线观看| 又大又黄又爽视频免费| 91精品伊人久久大香线蕉| 青春草国产在线视频| 亚洲丝袜综合中文字幕| 神马国产精品三级电影在线观看| 18禁在线播放成人免费| 婷婷色av中文字幕| 久久精品熟女亚洲av麻豆精品| 国产精品.久久久| 亚洲精品久久久久久婷婷小说| 各种免费的搞黄视频| 啦啦啦中文免费视频观看日本| 人妻少妇偷人精品九色| 男女那种视频在线观看| 国产av码专区亚洲av| 人人妻人人爽人人添夜夜欢视频 | 美女cb高潮喷水在线观看| 一级黄片播放器| 又黄又爽又刺激的免费视频.| 国产精品久久久久久久久免| 国产精品一区二区在线观看99| 久久精品久久久久久噜噜老黄| 一区二区三区四区激情视频| 久久久久久久国产电影| 三级经典国产精品| 视频区图区小说| 大片免费播放器 马上看| 熟妇人妻不卡中文字幕| 久久精品国产亚洲av涩爱| 亚洲电影在线观看av| 少妇被粗大猛烈的视频| 亚洲av免费在线观看| 啦啦啦中文免费视频观看日本| 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合| 插逼视频在线观看| 七月丁香在线播放| 性插视频无遮挡在线免费观看| 青春草国产在线视频| 日韩电影二区| 亚洲欧美一区二区三区黑人 | 一级av片app| 男女无遮挡免费网站观看| 三级男女做爰猛烈吃奶摸视频| 国产精品无大码| 久久久精品94久久精品| 热99国产精品久久久久久7| 中文字幕亚洲精品专区| 精品少妇黑人巨大在线播放| 欧美日韩精品成人综合77777| 欧美另类一区| 国产 精品1| 一级爰片在线观看| 在线天堂最新版资源| 视频区图区小说| 校园人妻丝袜中文字幕| 国产成人aa在线观看| 成人综合一区亚洲| 日韩三级伦理在线观看| 一级毛片我不卡| 晚上一个人看的免费电影| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看| 深爱激情五月婷婷| 亚洲精品成人av观看孕妇| 国产精品麻豆人妻色哟哟久久| 网址你懂的国产日韩在线| 亚洲熟女精品中文字幕| 亚洲aⅴ乱码一区二区在线播放| 久久99热6这里只有精品| 高清在线视频一区二区三区| 国产乱人偷精品视频| 亚洲在久久综合| 久久久午夜欧美精品| 九色成人免费人妻av| 免费观看的影片在线观看| 亚洲图色成人| 人体艺术视频欧美日本| 美女国产视频在线观看| 欧美日韩国产mv在线观看视频 | 一级二级三级毛片免费看| 老司机影院成人| 久久精品国产亚洲av天美| 国产成人freesex在线| 亚洲一区二区三区欧美精品 | 久久久久国产精品人妻一区二区| 日韩一区二区视频免费看| 天堂中文最新版在线下载 | 免费大片18禁| 成人二区视频| 内射极品少妇av片p| 亚洲精品日韩在线中文字幕| 一级毛片我不卡| 51国产日韩欧美| 午夜免费男女啪啪视频观看| av免费观看日本| 69av精品久久久久久| 亚洲图色成人| 日韩人妻高清精品专区| 欧美日韩视频高清一区二区三区二| 男人狂女人下面高潮的视频| 国产成人freesex在线| 久久久久精品久久久久真实原创| 美女内射精品一级片tv| 日本一本二区三区精品| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩卡通动漫| av专区在线播放| 日本与韩国留学比较| 免费观看无遮挡的男女| 亚洲av中文av极速乱| 校园人妻丝袜中文字幕| 日韩视频在线欧美| 汤姆久久久久久久影院中文字幕| av卡一久久| 日本一本二区三区精品| 97人妻精品一区二区三区麻豆| 18禁在线无遮挡免费观看视频| 国产成人a区在线观看| 亚洲精品乱码久久久久久按摩| 午夜亚洲福利在线播放| 亚洲人成网站高清观看| 日本与韩国留学比较| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 交换朋友夫妻互换小说| 欧美激情在线99| 亚洲天堂国产精品一区在线| 久久99蜜桃精品久久| 大片免费播放器 马上看| 日韩电影二区| 久久99精品国语久久久| 日本一二三区视频观看| 久久鲁丝午夜福利片| 色吧在线观看| 亚洲成人一二三区av| .国产精品久久| 国产精品三级大全| 直男gayav资源| 午夜福利网站1000一区二区三区| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂| 中文天堂在线官网| 91精品伊人久久大香线蕉| 大又大粗又爽又黄少妇毛片口| 国产亚洲5aaaaa淫片| 99精国产麻豆久久婷婷| 中文欧美无线码| 亚洲婷婷狠狠爱综合网| 久久亚洲国产成人精品v| 国产精品秋霞免费鲁丝片| 亚洲四区av| 久久亚洲国产成人精品v| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 人妻一区二区av| 国产伦精品一区二区三区视频9| 五月天丁香电影| 欧美激情国产日韩精品一区| 精品久久国产蜜桃| 乱码一卡2卡4卡精品| 男人舔奶头视频| 亚洲国产精品成人综合色| 免费黄频网站在线观看国产| 国产精品成人在线| 亚洲精品国产av成人精品| 在线播放无遮挡| 99久久精品热视频| 少妇 在线观看| 国产精品一区二区在线观看99| 久久久久久国产a免费观看| 久久久久久久大尺度免费视频| 寂寞人妻少妇视频99o| 一级毛片久久久久久久久女| 国产探花在线观看一区二区| 亚洲国产av新网站| 性色av一级| 五月开心婷婷网| 少妇的逼好多水| 成人亚洲精品av一区二区| 成人毛片60女人毛片免费| 一级二级三级毛片免费看| 国产亚洲av片在线观看秒播厂| 亚洲av中文av极速乱| 国模一区二区三区四区视频| 十八禁网站网址无遮挡 | 久久久久久九九精品二区国产| 丝袜美腿在线中文| 伦精品一区二区三区| 97超视频在线观看视频| 超碰97精品在线观看| 国产免费福利视频在线观看| 国精品久久久久久国模美| 男人添女人高潮全过程视频| 亚洲国产精品专区欧美| 中文字幕制服av| 男的添女的下面高潮视频| 国产成人免费无遮挡视频| 日韩一区二区视频免费看| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站 | 边亲边吃奶的免费视频| 插阴视频在线观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人av在线免费| av一本久久久久| 国产在线一区二区三区精| 国产极品天堂在线| 在线 av 中文字幕| 人体艺术视频欧美日本| 男男h啪啪无遮挡| 另类亚洲欧美激情| 大码成人一级视频| av在线app专区| 亚洲欧美精品专区久久| 狂野欧美白嫩少妇大欣赏| 亚洲经典国产精华液单| 午夜亚洲福利在线播放| 人人妻人人看人人澡| 一级毛片 在线播放| 久久久久性生活片| 亚洲精品aⅴ在线观看| 美女内射精品一级片tv| 国产一区二区三区综合在线观看 | 国模一区二区三区四区视频| 尾随美女入室| 亚洲内射少妇av| 麻豆乱淫一区二区| 国产老妇女一区| 亚洲精品久久午夜乱码| 国产精品国产av在线观看| 久久久久久久久大av| 欧美3d第一页| 国产黄色免费在线视频| 国产美女午夜福利| 寂寞人妻少妇视频99o| 男男h啪啪无遮挡| 亚洲国产精品999| 自拍欧美九色日韩亚洲蝌蚪91 | 韩国高清视频一区二区三区| 亚洲精品亚洲一区二区| av女优亚洲男人天堂| .国产精品久久| 黄色怎么调成土黄色| 国产欧美日韩精品一区二区| 五月玫瑰六月丁香| 国产精品麻豆人妻色哟哟久久| 又大又黄又爽视频免费| 女的被弄到高潮叫床怎么办| av播播在线观看一区| 午夜爱爱视频在线播放| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频 | 美女主播在线视频| 欧美3d第一页| 亚洲av中文av极速乱| 五月天丁香电影| 最近中文字幕2019免费版| av国产精品久久久久影院| 校园人妻丝袜中文字幕| 91狼人影院| 国产一区二区亚洲精品在线观看| 青春草视频在线免费观看| 亚洲怡红院男人天堂| 欧美丝袜亚洲另类| 制服丝袜香蕉在线| 好男人视频免费观看在线| 内射极品少妇av片p| 亚洲国产欧美人成| 久久精品熟女亚洲av麻豆精品| av免费在线看不卡| 亚洲不卡免费看| 亚洲欧美日韩无卡精品| 99热这里只有是精品在线观看| 男的添女的下面高潮视频| 国产亚洲av嫩草精品影院| 黄色日韩在线| 色播亚洲综合网| 人人妻人人爽人人添夜夜欢视频 | 亚洲av中文av极速乱| 男人爽女人下面视频在线观看| 夜夜看夜夜爽夜夜摸| 天天躁日日操中文字幕| 国产精品一区二区在线观看99| av国产精品久久久久影院| 97超碰精品成人国产| 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 丰满人妻一区二区三区视频av| 九九爱精品视频在线观看| 欧美精品人与动牲交sv欧美| 丝袜脚勾引网站| 午夜福利在线观看免费完整高清在| 亚洲,一卡二卡三卡| 国产成人一区二区在线| 亚洲精品国产成人久久av| 国产色婷婷99| 久久久国产一区二区| 国产成人精品一,二区| 亚洲av.av天堂| 久久久久久久国产电影| 欧美bdsm另类| 在线亚洲精品国产二区图片欧美 | 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 乱系列少妇在线播放| 国内精品美女久久久久久| 一本久久精品| 全区人妻精品视频| 国产亚洲av嫩草精品影院| 国产有黄有色有爽视频| videossex国产| 波野结衣二区三区在线| 午夜老司机福利剧场| 波野结衣二区三区在线| 插阴视频在线观看视频| 永久网站在线| av女优亚洲男人天堂| 成人毛片60女人毛片免费| 久久久色成人| 国产免费一级a男人的天堂| 亚洲四区av| 制服丝袜香蕉在线| 简卡轻食公司| 亚洲激情五月婷婷啪啪| 青春草国产在线视频| 汤姆久久久久久久影院中文字幕| 美女高潮的动态| 亚洲欧美精品专区久久| 香蕉精品网在线| 亚洲精品日韩av片在线观看| 国产爽快片一区二区三区| 黄片wwwwww| 午夜精品国产一区二区电影 | 亚洲欧美日韩另类电影网站 | 亚洲美女视频黄频| 97在线人人人人妻| 成人国产av品久久久| 免费播放大片免费观看视频在线观看| 99久久人妻综合| 久久久成人免费电影| 国产久久久一区二区三区| 国产伦精品一区二区三区视频9| 亚洲图色成人| 丰满人妻一区二区三区视频av| 丝袜喷水一区| 国产男女内射视频| 午夜免费男女啪啪视频观看| 一级毛片久久久久久久久女| 少妇高潮的动态图| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人 | 亚洲高清免费不卡视频| 国产老妇女一区| 男插女下体视频免费在线播放| 国产精品久久久久久久电影| 亚洲精品日本国产第一区| 人妻夜夜爽99麻豆av| 午夜爱爱视频在线播放| 久久99精品国语久久久| 欧美日韩亚洲高清精品| www.色视频.com| 欧美 日韩 精品 国产| 2021天堂中文幕一二区在线观| 欧美3d第一页| 最新中文字幕久久久久| 直男gayav资源| 97超视频在线观看视频| 亚洲三级黄色毛片| 搡老乐熟女国产| 久久亚洲国产成人精品v| 综合色丁香网| 三级经典国产精品| 免费观看的影片在线观看| 人妻夜夜爽99麻豆av| 乱系列少妇在线播放| 亚洲av国产av综合av卡| 香蕉精品网在线| 亚洲欧美成人综合另类久久久| 亚洲精品一区蜜桃| xxx大片免费视频| 成年女人在线观看亚洲视频 | 久久久久国产网址| 能在线免费看毛片的网站| 天堂中文最新版在线下载 | 九九在线视频观看精品| 一本一本综合久久| 国产乱人视频| 亚洲精品456在线播放app| 97人妻精品一区二区三区麻豆| 如何舔出高潮| 亚洲综合色惰| 一级毛片aaaaaa免费看小| 97在线视频观看| 久久久欧美国产精品| 观看美女的网站| 国产成人精品福利久久| 久久久久九九精品影院| 日本-黄色视频高清免费观看| 最近手机中文字幕大全| 日韩人妻高清精品专区| 嘟嘟电影网在线观看| 国内揄拍国产精品人妻在线| 99热这里只有是精品50| av一本久久久久| 在线精品无人区一区二区三 | 亚洲av在线观看美女高潮| 亚州av有码| 成人欧美大片| 黄色怎么调成土黄色| 人人妻人人澡人人爽人人夜夜| 亚洲va在线va天堂va国产| 永久免费av网站大全| 一级黄片播放器| 美女主播在线视频| 日本三级黄在线观看| av又黄又爽大尺度在线免费看| 久热这里只有精品99| 久久影院123| 麻豆成人av视频| 国产免费视频播放在线视频| 日本免费在线观看一区| 97精品久久久久久久久久精品| 久久国产乱子免费精品| 国产大屁股一区二区在线视频| 国产成人福利小说| 搞女人的毛片| 亚洲va在线va天堂va国产| 亚洲av欧美aⅴ国产| 精品久久久久久久久亚洲| 久久久久久久国产电影| 亚洲精品乱久久久久久| 97超碰精品成人国产| 久久6这里有精品| 中文天堂在线官网| 国产精品一二三区在线看| 免费播放大片免费观看视频在线观看| 欧美一级a爱片免费观看看| 搡老乐熟女国产| 国产成人精品福利久久| 色婷婷久久久亚洲欧美| 蜜臀久久99精品久久宅男| 如何舔出高潮| 黑人高潮一二区| 成人午夜精彩视频在线观看| 国产综合精华液| 色网站视频免费| 水蜜桃什么品种好| 99热国产这里只有精品6| 99热这里只有是精品50| 美女xxoo啪啪120秒动态图| 99久久九九国产精品国产免费| 国内精品宾馆在线| 街头女战士在线观看网站| 免费黄网站久久成人精品| 国产一区亚洲一区在线观看| 麻豆成人av视频| 丰满少妇做爰视频| 91午夜精品亚洲一区二区三区| 亚洲国产成人一精品久久久| 777米奇影视久久| 国产伦在线观看视频一区| 欧美成人一区二区免费高清观看| 久久热精品热| 亚洲久久久久久中文字幕| 18禁裸乳无遮挡动漫免费视频 | 六月丁香七月| 天天躁夜夜躁狠狠久久av| 18禁动态无遮挡网站| 亚洲自偷自拍三级| 国产伦在线观看视频一区| 日韩欧美精品免费久久| 亚洲精品亚洲一区二区| 国产久久久一区二区三区| 精品久久久久久久久av| 人妻制服诱惑在线中文字幕| 毛片女人毛片| 2021天堂中文幕一二区在线观| av黄色大香蕉| 国产视频首页在线观看| 成人亚洲精品一区在线观看 | 国产v大片淫在线免费观看| 日韩三级伦理在线观看| 搞女人的毛片| 一本一本综合久久| 亚洲成人中文字幕在线播放| 国产成人精品一,二区| 一级毛片久久久久久久久女| 亚洲电影在线观看av| 美女高潮的动态| 国产精品国产三级国产av玫瑰| kizo精华| 欧美成人一区二区免费高清观看| 久久久午夜欧美精品| 国产在线一区二区三区精| 国产高潮美女av| 又爽又黄无遮挡网站| 国产一区亚洲一区在线观看| 十八禁网站网址无遮挡 | 欧美日韩一区二区视频在线观看视频在线 | 美女视频免费永久观看网站| 亚洲国产欧美在线一区| 国产一区二区三区综合在线观看 | 成人综合一区亚洲| av在线播放精品| 纵有疾风起免费观看全集完整版| 午夜精品国产一区二区电影 | 乱码一卡2卡4卡精品| 国产精品精品国产色婷婷| 在线a可以看的网站| 久久久久性生活片| 亚洲一级一片aⅴ在线观看| 尾随美女入室| 99久国产av精品国产电影| 精品人妻视频免费看| 国产色婷婷99| 国产成人免费无遮挡视频| 国产乱人视频| 日日啪夜夜爽| 欧美性感艳星| 制服丝袜香蕉在线| 成人亚洲精品av一区二区| 色哟哟·www| 三级经典国产精品| 99热6这里只有精品| 日韩制服骚丝袜av| 97超碰精品成人国产| 亚洲欧美清纯卡通| 国产真实伦视频高清在线观看| 男女那种视频在线观看| av国产精品久久久久影院| 国产爱豆传媒在线观看| 伊人久久国产一区二区| 一级毛片久久久久久久久女| av在线蜜桃| 中文字幕免费在线视频6| 精品久久国产蜜桃| 国产男女超爽视频在线观看| 成人高潮视频无遮挡免费网站| 亚洲欧美清纯卡通| av免费观看日本| 可以在线观看毛片的网站| 亚洲婷婷狠狠爱综合网| 自拍偷自拍亚洲精品老妇| 免费少妇av软件| 欧美激情在线99| 男人舔奶头视频| 国产色爽女视频免费观看| 91在线精品国自产拍蜜月| 中文字幕av成人在线电影| 涩涩av久久男人的天堂| 日本爱情动作片www.在线观看| 男的添女的下面高潮视频| 伊人久久国产一区二区| 欧美日韩视频高清一区二区三区二| av在线蜜桃| 久久精品国产亚洲av天美| 欧美性感艳星| 纵有疾风起免费观看全集完整版| 99久久人妻综合| 免费大片18禁| 欧美精品一区二区大全| 又爽又黄a免费视频| 超碰av人人做人人爽久久| 人妻夜夜爽99麻豆av| 亚洲av在线观看美女高潮| 国产综合精华液| 亚洲av欧美aⅴ国产| 涩涩av久久男人的天堂| 久久精品久久精品一区二区三区| 日韩一本色道免费dvd| 久久久a久久爽久久v久久| av在线播放精品| 午夜福利在线在线| 日韩视频在线欧美| 欧美xxxx黑人xx丫x性爽| 欧美日韩在线观看h|