易翠平
(長沙理工大學化學與生物工程學院,長沙 410114)
我國南方稻米的現(xiàn)狀及對策
易翠平
(長沙理工大學化學與生物工程學院,長沙 410114)
秈稻作為我國南方主食原料,2016年產(chǎn)量2 759億斤,占稻谷總產(chǎn)量的66%。秈稻因儲藏性能穩(wěn)定,一直被國家作為常規(guī)戰(zhàn)略儲備糧。但近年來,南方秈稻大范圍爆發(fā)鎘超標事件、且儲備糧2~3年的輪換制度使得秈米作為口糧食用,其品質(zhì)不如新糧,因此可以考慮將秈稻主要作為食品加工業(yè)的原料。然而統(tǒng)計表明,我國稻谷的工業(yè)用糧在2016年僅為總產(chǎn)量的5.4%,與發(fā)達國家加工食品約為70%的總量差距相當大,因而提倡加大研發(fā)出口,推進秈稻的食品工業(yè)化。研究表明,以鮮濕米粉為代表的發(fā)酵米制品可以自然降鎘;同時作為原料,儲藏后的秈米比新米更為有利于產(chǎn)品品質(zhì)的提升。因此本文擬通過對以鮮濕米粉為代表的特色發(fā)酵米制品的發(fā)酵工藝的研究現(xiàn)狀和發(fā)展趨勢進行綜述介紹,以期為拓寬南方稻米的深加工應用思路提供對策。
南方稻米 鮮濕米粉 現(xiàn)狀 對策
秈稻谷粒細長,直鏈淀粉含量較高,是我國淮河、秦嶺以南地區(qū)和云貴高原的低海拔地區(qū)主要種植品種及主食原料。2016年,我國秈稻總產(chǎn)量2 759億斤,占稻谷總產(chǎn)量的66%。其中早秈稻產(chǎn)量約639億斤[1]。早秈稻米質(zhì)疏松,加工時易產(chǎn)生碎米,出米率低且食味品質(zhì)較差;但脂肪含量相對較少,大米的陳化速度較慢,耐儲藏,是國家儲備糧的首選品種。此外,早秈稻還具有蛋白質(zhì)含量和質(zhì)量明顯優(yōu)于中晚稻,種植期化肥、農(nóng)藥的施用量相對較少,可作為米粉、味精和釀酒等食品工業(yè)用糧等不可替代的優(yōu)點。因此雖然研究報道水稻是鎘積累能力最強的糧食作物[2]以及四川、廣西、貴州、湖南、廣東等地隨后爆發(fā)的大面積鎘超標事件[3],也并不能就此停止秈稻的種植及貯藏。
研究報道,乳酸菌發(fā)酵可以行之有效的降低大米中的鎘含量[4-5];我國傳統(tǒng)的發(fā)酵米制品已有鮮濕米粉、醪糟、紅曲米、米發(fā)糕、米酒、米醋、年糕等多個品種,各種產(chǎn)品發(fā)酵的方法、涉及的微生物菌種、主要的發(fā)酵代謝物、發(fā)酵原料米的理化成分變化、潛在的益生因子及工業(yè)化愿景亦不可同一而論。以下僅以鮮濕米粉為例,對發(fā)酵米制品的研究現(xiàn)狀與發(fā)展對策做一個綜述性介紹。
1.1 自然發(fā)酵對鮮濕米粉品質(zhì)的影響
傳統(tǒng)鮮濕米粉的生產(chǎn),原料大米在磨漿、蒸片、擠絲加工之前,在自然條件下必須浸泡2~5 d,與單純的浸泡作用比較,這種自然條件下的浸泡同時伴隨了發(fā)酵作用[6],浸泡液的pH 值降低,發(fā)酵大米的蛋白質(zhì)、脂肪、灰分含量下降,淀粉和直鏈淀粉、白度升高[6-7];凝膠過濾層析法表明發(fā)酵使大米淀粉的大分子區(qū)DPn從對照的12 597.6 GLU降至發(fā)酵后的12 051.0 GLU,而小分子區(qū)從3 061.5 OLU增加到3 423.1 GLU;淀粉分子分支化程度降低,分子鏈較長的第一區(qū)平均鏈長從55.6 GLU縮短到52.9 GLU,而第二區(qū)平均鏈長增加2.7個葡萄糖苷單位。淀粉顆粒結(jié)構(gòu)及熱特性分析發(fā)現(xiàn),淀粉結(jié)晶類型未變、晶區(qū)比例增大;DSC糊化溫度降低、糊化時間延長,糊化焓增大;RVA最高黏度降低[7]。制備而成的鮮濕米粉拉伸力增強,質(zhì)構(gòu)得到改善,如彈性、硬度和咀嚼性上升、黏性下降[6-7]。
1.2 自然發(fā)酵微生物菌種的分離鑒定
微生物菌群及數(shù)量的演變研究發(fā)現(xiàn),乳酸菌在整個發(fā)酵過程中為優(yōu)勢菌群,最高可達109~1011cfu/mL,占細菌總數(shù)的90%以上;其次是酵母菌,約104~105cfu/mL[6-7]。高通量測序(Illumina Miseq宏基因組測序)的結(jié)果證實發(fā)酵乳桿菌(Lactobacillus fermentum)和德式乳桿菌(Lactobacillus delbrueckii)是大米發(fā)酵過程中的主要菌種。進一步采用純培養(yǎng)技術(shù)從大米自然發(fā)酵液中分離并純化出41株酵母菌和60株乳酸菌。檢測分離菌的發(fā)酵性能,如胞外酶活性(過氧化氫酶、β-葡萄糖苷酶、脂肪酶、α-淀粉酶、蛋白酶)、在不同pH和培養(yǎng)溫度下的生長力、酸化能力及抗菌性等,篩選出11株酵母菌和19株乳酸菌進行ITS序列和16S rRNA gene序列的鑒定,挑選出發(fā)酵性能較好的菌株、結(jié)合鮮濕發(fā)酵米粉的質(zhì)構(gòu)(拉伸應力、硬度、黏性、內(nèi)聚性)和蒸煮性能(蒸煮損失和吸水率)評價,得到最有利于改善鮮濕米粉品質(zhì)的菌種是植物乳桿菌(Lactobacillus plantarum strain CSL 23)[8]。
2.1 力學性能
發(fā)酵菌種影響鮮濕米粉的品質(zhì)[9]。研究報道,乳酸菌可以改善鮮濕米粉的質(zhì)構(gòu)[10],李蕓[11]進一步證明包含植物乳桿菌在內(nèi)的混合菌種對大米粉的感官品質(zhì)有影響;周顯青等[12-13]采用外源性植物乳桿菌在發(fā)酵條件下,研究大米粉與淀粉性質(zhì)及米粉蒸煮和質(zhì)構(gòu)特性的變化。但植物乳桿菌品種繁多,在肉、魚、果蔬、牛奶及谷物制品中均有應用,且對營養(yǎng)、感官、風味和質(zhì)構(gòu)的作用并不可同一而論[14];由此,易翠平等[15]對比研究了從秈米發(fā)酵液中篩選出來的兩株乳酸菌:植物乳桿菌LactobacillusplantarumCSL23、L.fermentumCSL30與兩株酵母SaccharomycescerevisiaeCSY13、TrichosporonasahiiCSY07對鮮濕米粉力學性能的影響,結(jié)果表明L.plantarumCSL23發(fā)酵的米粉拉伸力、硬度、彈性、內(nèi)聚力、咀嚼性、回復性等明顯更好。將L.plantarumCSL23與來源于酸面團的L.plantarum23169和來源于泡菜的L.plantarum22699的3株植物乳桿菌比較,米粉的拉伸力、硬度、彈性和咀嚼性均隨著發(fā)酵時間的延長而逐漸增強,最后均在48 h時達到最大值,但L.plantarumCSL 23極顯著優(yōu)于L.plantarum23169和L.plantarum22699(P<0.05)。3株菌在不同發(fā)酵時間對米粉的黏性和內(nèi)聚力影響不顯著(P>0.05)。感官評價顯示L.plantarumCSL 23發(fā)酵48 h的米粉口感滑爽、筋道最好,說明不同來源的植物乳桿菌對鮮濕米粉力學性能的影響效果不同,其中L.plantarumCSL 23在3株菌中最有利于鮮濕米粉良好力學性能的形成[16]。
2.2 食味品質(zhì)
對比L.plantarumCSL23與L.plantarum23169,L.plantarum22699 3株植物乳桿菌對鮮濕米粉蒸煮、色度和風味的影響。結(jié)果表明,發(fā)酵48 h時,L.plantarumCSL 23和L.plantarum22699組鮮濕米粉的斷條率無顯著差異,均優(yōu)于L.plantarum23169;3組米粉的蒸煮損失率均無顯著差異。白度指標,L.plantarumCSL 23組顯著優(yōu)于其他兩組。電子鼻分析風味指標發(fā)現(xiàn)3株菌發(fā)酵的產(chǎn)品之間存在差異,SPME/GC/MS測定發(fā)現(xiàn)L.plantarumCSL 23發(fā)酵的鮮濕米粉揮發(fā)性風味物質(zhì)中醛類化合物占59.06%、烷烴類化合物占16.48%,最具有米香特色;L.plantarum23169發(fā)酵的鮮濕米粉揮發(fā)性風味物質(zhì)中醛類化合物占44.76%、醇類化合物占22.56%,具有酸面團的風味;L.plantarum22699發(fā)酵的鮮濕米粉揮發(fā)性風味物質(zhì)中酸類化合物占42.64%、酯類化合物占31.22%,有泡菜的痕跡。說明不同的植物乳桿菌可能因代謝途徑和作用對象的不同,產(chǎn)生的風味并不完全一致,綜合考慮食味品質(zhì),內(nèi)源性的L.plantarumCSL 23是3株植物乳桿菌中最適合用于鮮濕米粉發(fā)酵的品種[17]。
研究表明,鮮濕米粉可由植物乳桿菌L.plantarumCSL 23發(fā)酵制備得到良好的產(chǎn)品品質(zhì)。研究報道,植物乳桿菌是益生菌的一種,已經(jīng)發(fā)現(xiàn)這種菌具有多種益生作用[18],比如:1)飼喂含有109cfu/d的植物乳桿菌的飼料,可以降低小鼠肝和腎臟的鎘水平,阻止因鎘的毒害作用導致的抗氧化酶的損傷及恢復[19];當然,乳酸菌產(chǎn)酸亦可以在發(fā)酵階段自然降低原料秈米的鎘含量[5];2)植物乳桿菌的代謝產(chǎn)物中往往含有細菌素,具有抗菌肽的作用,對致病菌有抑制作用,可以應用于食品的防腐保鮮或者抗生素的補充劑[18-20]; 3)每天食用109cfu/mL的植物乳桿菌,可以顯著降低小鼠的血清總膽固醇含量和低密度脂蛋白含量、對血清甘油三酯影響不大且能升高高密度脂蛋白含量。因而有潛在預防心血管疾病的作用[18-21];4)維持腸道內(nèi)菌群平衡,比如調(diào)節(jié)不同的感染性腹瀉、抗生素相關(guān)性腹瀉、應激性結(jié)腸綜合癥、 腸炎等[18]。此外,還有鮮濕米粉利用其他菌種發(fā)酵過程中產(chǎn)生γ-氨基丁酸(GABA)等營養(yǎng)物質(zhì)以利于過敏性人群進行營養(yǎng)補充的報道[22-23]。至于植物乳桿菌L.plantarumCSL 23具有哪種潛在的益生作用,還有待于進一步研究。
目前為止,鮮濕米粉的發(fā)酵工藝基本處于自然發(fā)酵或者優(yōu)勢菌種混菌發(fā)酵階段,發(fā)酵的裝備水平落后,開放式發(fā)酵方式的效果隨環(huán)境影響很大,導致產(chǎn)品質(zhì)量極不穩(wěn)定,甚至可能因為前段的雜菌污染而容易腐敗變質(zhì)。鮮濕米粉發(fā)酵工藝的工業(yè)化推進,可以通過持續(xù)研究相關(guān)發(fā)酵微生物的技術(shù)性能、發(fā)酵方式,制備發(fā)酵劑,提高發(fā)酵裝備的現(xiàn)代化水平,對發(fā)酵工藝進行標準化管理來逐步實現(xiàn)。
由鮮濕米粉為代表的發(fā)酵米制品案例可見,在傳統(tǒng)發(fā)酵米制品的生產(chǎn)中,產(chǎn)品的質(zhì)量標準和操作控制還非常依賴操作工的經(jīng)驗,產(chǎn)品質(zhì)量不穩(wěn)定、偶爾還會因為有害微生物的爆發(fā)導致產(chǎn)品的大量損失和食物中毒。但總體來講,傳統(tǒng)發(fā)酵米制品的研究不失為我國南方稻米未來的一個發(fā)展方向,科研的投入和技術(shù)創(chuàng)新對于傳統(tǒng)發(fā)酵米制品的改進賦予了更為重要的意義,它可以克服食品安全和質(zhì)量控制的瓶頸問題,使產(chǎn)品的感官、營養(yǎng)和健康因子最大化,并逐漸形成標準化的規(guī)模生產(chǎn)。優(yōu)勢菌種的篩選、分離、純化和鑒定將會是一項長期的研究工作。鮮濕米粉、米發(fā)糕、紅曲米、醪糟、米酒、米醋等傳統(tǒng)發(fā)酵米制品雖然已經(jīng)吸引了眾多研究者和工業(yè)界的眼光,但發(fā)酵工藝的可控性并不理想;亦還有糄粑、炸辣椒等多種地方特色產(chǎn)品尚遠離市場化需求。將來可以持續(xù)挖掘有價值的傳統(tǒng)發(fā)酵米制品中的益生菌種,制備發(fā)酵劑,提高裝備水平,形成工業(yè)化的控制手段,探討其中的食品安全問題,研究有工業(yè)創(chuàng)新價值的發(fā)酵代謝產(chǎn)物的作用機理,提高自然混菌發(fā)酵系統(tǒng)中有益健康的微量成分的含量。
[1]中華糧網(wǎng),http://www.cngrain.com/Publish/qita/201607/609848.shtml
[2]龔偉群, 李戀卿, 潘根興. 雜交水稻對Cd的吸收與籽粒積累:土壤和品種的交互影響[J]. 環(huán)境科學, 2006, 27(8): 1647-1654
Gong Weiqun, Li Lianqing, Pan Genxing. Cd uptake and accumulation in grains by hybrid rice in two paddy soils: interactive effect of soil type and cultivars[J]. Environmental Science, 2006, 27(8): 1647-1654
[3]http://www.baike.com/wiki/大米鎘超標事件
[4]劉也嘉, 林親錄, 肖冬梅, 等. 大米乳酸菌發(fā)酵降鎘工藝優(yōu)化[J]. 農(nóng)業(yè)工程學報, 2016(7): 276-282
Liu Yejia, Lin Qinlu, Xiao Dongmei, et al. Process optimization for lactic acid bacteria fermentation to reduce cadmium in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016(7): 276-282
[5]傅亞平,吳衛(wèi)國,王巨濤. 乳酸菌發(fā)酵脫除大米粉中重金屬鎘的機理[J]. 食品與發(fā)酵工業(yè), 2016,42(3): 104-108
Fu Yaping, Wu Weiguo, Wang Jutao. Study on mechanism of removal of cadmium in rice powder by lactic acid bacteria fermentation[J]. Food and Fermentation Industries, 2016,42( 3): 104-108
[6]Yi Cuiping, Yang Youwang, Zhou Sumei, et al. Role of lactic acid bacteria in the eating qualities of fermented rice noodles. Cereal Chemistry, doi: http://dx.doi.org/10.1094/CCHEM-07-16-0187-R
[7]魯戰(zhàn)會.生物發(fā)酵米粉的淀粉改性及凝膠機理研究[D].北京:中國農(nóng)業(yè)大學,2002
Lu Zhanhui. Study on starch modification and gel mechanism of fermented rice flour [D]. Beijing: China Agricultural University, 2002
[8]楊有望. 鮮濕米粉自然發(fā)酵的研究[D]. 長沙: 長沙理工大學, 2016: 40-63
Yang Youwang. The study of natural fermentation process for instant fresh rice noodle[D]. Changsha: Changsha Science and Technology University, 2016
[9]易翠平, 周慧, 佟立濤. 鮮米粉加工過程中的發(fā)酵工藝研究進展[J]. 食品與機械, 2013,29(5): 223-225
Yi Cuiping, Zhou Hui, Tong Litao. Advances on fermentation in rice noodle production[J]. Food and Machinery, 2013,29( 5): 223-225
[10]閔偉紅.乳酸菌發(fā)酵改善米粉食用品質(zhì)機理的研究[D].北京:中國農(nóng)業(yè)大學,2003
Min Weihong. Study on the mechanism of improving eating quality of rice noodle by lactic acid bacteria fermentation [D]. Beijing: China Agricultural University, 2003
[11]李蕓. 發(fā)酵米粉生產(chǎn)過程中的菌相變化及發(fā)酵對米粉品質(zhì)的影響[D]. 北京: 中國農(nóng)業(yè)大學, 2015
Li Yun. Microbial succession during rice noodle processing and influence of fermentation on quality of rice noodle[D]. Beijing: China Agricultural University, 2015
[12]周顯青, 張玉榮, 李亞軍. 植物乳桿菌發(fā)酵大米粉及其淀粉特性變化[J]. 糧食與飼料工業(yè), 2012(8): 18-22, 25
Zhou Xianqing, Zhang Yurong, Li Yajun. Changes of rice flour and starch properties duringLactobacillusplantarumfermentation[J]. Cereal & Food Industry, 2012(8): 18-22, 25
[13]周顯青, 張玉榮, 李亞軍. 植物乳酸菌發(fā)酵對米粉蒸煮和質(zhì)構(gòu)特性的影響[J]. 河南工業(yè)大學學報(自然科學版), 2011(02): 15-18
Zhou Xianqing, Zhang Yurong, Li Yajun. Effects ofLactobacillusplantarumfermentation on cooking and textural properties of rice noodles[J]. Journal of Henan University of Technology (natural science edition), 2011(02):15-18
[14]Todorov S D, Franco B D G D M. Lactobacillus Plantarum: Characterization of the Species and Application in Food Production[J]. Food Reviews International, 2010, 26(3): 205-229
[15]易翠平, 任夢影, 周素梅, 等. 純種發(fā)酵對鮮濕米粉品質(zhì)的影響[J]. 食品科學, 2017, 38(4): 20-25
Yi Cuiping, Ren Menying, Zhou Sumei, et al. Qualities of rice noodle fermented on pure strain[J]. Food Science, 2017, 38(4): 20-25
[16]易翠平, 樊振南, 祝紅, 等. 植物乳桿菌發(fā)酵對鮮濕米粉品質(zhì)的影響: I.力學性能. 中國糧油學報,錄用
Yi Cuiping, Fan Zhennan, Zhu Hong, et al. Quality of fresh rice noodles fermented withLactobacillusplantarum: I. Mechanical properties. Journal of the Chinese Cereals and Oils Association, Accepted
[17]樊振南, 易翠平, 祝紅, 等. 植物乳桿菌發(fā)酵對鮮濕米粉品質(zhì)的影響: II.食味品質(zhì). 中國糧油學報,錄用
Yi Cuiping, Fan Zhennan, Zhu Hong, et al. Quality of fresh rice noodles fermented withLactobacillusplantarum: Ⅱ. Eating quality. Journal of the Chinese Cereals and Oils Association, Accepted
[18]Seddik H A, Bendali F, Gancel F, et al. Lactobacillus plantarum and Its Probiotic and Food Potentialities[J]. Probiotics Antimicrob Proteins, 2017, 9(2): 111-122. Doi: 10.1007/s12602-017-9264-z
[19]Jafarpour D, Shekarforoush S S, Ghaisari H R, et al. Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats[J]. BMC Complementary and Alternative Medicine, 2017, 17 (1), doi: 10.1186/s12906-017-1803-3
[20]Geeta, Yadav A S. Antioxidant and antimicrobial profile of chicken sausages prepared after fermentation of minced chicken meat with Lactobacillus plantarum and with additional dextrose and starch[J]. LWT-Food Science and Technology, 2017, 77: 249-258. Doi: 10.1016/j.lwt.2016.11.050
[21]Liu D M, Guo J, Zeng X A, et al. The probiotic role of Lactobacillus plantarum in reducing risks associated with cardiovascular disease[J]. International Journal of Food Science & Technology, 2017, 52(1): 127-136. Doi:10.1111/ijfs.13234
[22]Phromraksa P, Nagano H, Kanamaru Y, et al. Characterization ofBacillussubtilisisolated from Asian fermented foods[J]. Food Science and Technology Research, 2009, 15(6): 659-666
[23]Kradangar P, Songsermpong S. Optimization of fermentation process on the GABA content and quality of fermented rice flour and dry fermented rice noodles[J]. Journal of Food Processing and Preservation, 2015, 39(6): 1183-1191. Doi: 10.1111/jfpp.12334.
Thoughts on the Current and Potential Uses of Rice in Southern China
Yi Cuiping
(School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114)
Indicarice is the staple food in southern China. In 2016, the yield ofindicarice was 275.9 billion kilograms, accounting for 66% of the total grain yield. Becauseindicarice shows stable storage performance, it is regularly used as a strategic grain reserve by the state. The widespread cadmium contamination of southernindicarice in recent years and the 2-3 years rotation system of grain reserves means that theindicarice now being consumed as food is of poorer quality than fresh grains. Therefore,indicarice is one of the main raw materials used in the food processing industry. However, the statistics show that processed rice accounted for only about 5.4% of the total rice
yield in China in 2016, compared with approximately 70% of the grain yield that is processed in developed countries. Thus, it is important to advance research and development on processing to promote the industrialization ofindicarice. Studies have shown that fermented rice products, for example, fresh fermented rice noodles, show reduced cadmium content. Compared with new rice grains, storedindicarice has more potential for an increase in quality by processing. In this paper, therefore, we use fresh rice noodle as example describe the status and development of research on processed foods made from rice in order to highlight some strategies for further processing of rice in southern China.
southern rice, current situation, countermeasure
TS213
A
1003-0174(2017)09-0178-05
國家自然科學基金(31301404),公益性行業(yè)(農(nóng)業(yè))科研專項經(jīng)費(201303070)
2017-04-20
易翠平,女,1973年出生,教授,糧食深加工