張廣宇, 賈世峰, 曹旭華, 張曉煒, 焦保華
(1.河北醫(yī)科大學(xué)第二醫(yī)院 神經(jīng)外科, 河北 石家莊 050000; 2.華北理工大學(xué)附屬醫(yī)院 腫瘤科, 河北 唐山 063000)
?
氯離子通道蛋白-3對膠質(zhì)瘤細(xì)胞增殖和侵襲的影響
張廣宇1, 賈世峰2, 曹旭華1, 張曉煒1, 焦保華1
(1.河北醫(yī)科大學(xué)第二醫(yī)院 神經(jīng)外科, 河北 石家莊 050000; 2.華北理工大學(xué)附屬醫(yī)院 腫瘤科, 河北 唐山 063000)
目的: 觀察氯離子通道蛋白-3(ClC-3)對膠質(zhì)瘤BT-235細(xì)胞增殖和侵襲的影響的子機(jī)制。方法: 采用siRNA技術(shù)構(gòu)建ClC-3表達(dá)沉默的人膠質(zhì)瘤BT-235細(xì)胞株,設(shè)為siClC-3組,并設(shè)置空白對照組和空載體組;采用Western bolting檢測3組細(xì)胞中ClC-3的表達(dá),CCK8法檢測細(xì)胞增值活性,ranswell實(shí)驗(yàn)用于測定細(xì)胞侵襲能力,通過測量細(xì)胞容積檢測細(xì)胞調(diào)控性容積下降率,流式細(xì)胞術(shù)用于測定細(xì)胞周期;采用Western bolting檢測cyclin D1、MMP-2和MMP-9的表達(dá)。結(jié)果: 相對于空白對照組,siClC-3組ClC-3表達(dá)明顯降低(P<0.01),細(xì)胞增殖活性明顯降低(P<0.01),細(xì)胞遷移率明顯降低(P<0.01);空白對照組細(xì)胞調(diào)控性容積下降率為(79.35±2.31)%,而siClC組僅為(19.46±1.76)%,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);培養(yǎng)48 h的空白對照組BT-235細(xì)胞G0/G1期占比率為(57.2±3.1)%,而siClC-3組G0/G1期占比率提升至 (71.3±4.0)%,產(chǎn)生明顯的G0/G1期阻滯,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);相對于空白對照組,siClC-3組G1期調(diào)控蛋白cyclin D1、侵襲相關(guān)蛋白MMP-2和MMP-9表達(dá)水平明顯降低(P<0.01)。結(jié)論: ClC-3能明顯增強(qiáng)膠質(zhì)瘤BT-235細(xì)胞增殖和侵襲能力,其作用機(jī)制與增加細(xì)胞調(diào)控性容積下降率,誘導(dǎo)cyclin D1、MMP-2和MMP-9表達(dá)有關(guān)。
氯離子通道蛋白-3; 神經(jīng)膠質(zhì)瘤; 增殖; 侵襲
膠質(zhì)瘤是最常見的腦部惡性腫瘤,具有高度的異型性、較強(qiáng)的侵襲能力及對放化療抵抗的特點(diǎn),是中樞神經(jīng)系統(tǒng)致死率最高的惡性腫瘤,中位存活時(shí)間低于1.5年[1]。膠質(zhì)瘤細(xì)胞過度增殖和廣泛的組織浸潤是膠質(zhì)瘤治療困難的主要原因,尋找有效的阻斷膠質(zhì)瘤細(xì)胞惡性增殖和侵襲的分子靶點(diǎn)是其研究的熱點(diǎn)[2]。氯離子通道蛋白3(chloride channel-3,ClC-3)是電壓依賴氯通道(chloridechannel of the CLCgene family,CLC)家族的一員,參與細(xì)胞調(diào)節(jié)性容量變化,與細(xì)胞增殖、分化、凋亡等細(xì)胞周期事件有密切的關(guān)系[3]。ClC-3在胸部腫瘤[4]、腦部腫瘤[5]和結(jié)直腸癌[6]等多種惡性腫瘤中呈現(xiàn)高表達(dá),并且ClC-3在腦部腫瘤的高表達(dá)與其侵襲能力和惡性程度呈正相關(guān)關(guān)系,這種高表達(dá)的生物學(xué)意義和機(jī)制值得深入研究。本研究使用siRNA技術(shù)建立ClC-3表達(dá)敲除的腦膠質(zhì)瘤細(xì)胞,擬探究ClC-3對腦膠質(zhì)瘤細(xì)胞增殖和侵襲影響及其分子機(jī)制。
1.1 實(shí)驗(yàn)細(xì)胞及試劑
膠質(zhì)瘤細(xì)胞株BT-325購自中科院上海細(xì)胞庫,由本室保存。胎牛血清和DMEM高糖培養(yǎng)基購自美國Gibco公司,胰蛋白酶、青霉素和鏈霉素購自美國Sigma公司,CCK-8(cell counting kit-8)試劑盒購自上海銘睿生物科技有限公司,siRNA引物和pLKO.1-Puro質(zhì)粒購自南京建成生物技術(shù)有限公司,ClC-1和cyclin D1抗體購自南京凱基生物科技公司,MMP-2和MMP-9抗體購自北京索萊寶生物科技公司。
1.2 方法
1.2.1 分組 采用siRNA技術(shù)構(gòu)建ClC-3表達(dá)沉默的人膠質(zhì)瘤BT-235細(xì)胞株,設(shè)為siClC-3組,并設(shè)置空白對照組和空載體組。
1.2.2 膠質(zhì)瘤BT-325 培養(yǎng) 膠質(zhì)瘤BT-325細(xì)胞培養(yǎng)于25 cm2細(xì)胞培養(yǎng)瓶中,每瓶加5 mL 10%熱滅活的胎牛血清、25 mg/L-1青霉素和25.000 U/L鏈霉素的DMEM高糖培養(yǎng)基,在37 ℃、5% CO2和100%飽和濕度的CO2培養(yǎng)箱中培養(yǎng)。當(dāng)細(xì)胞融合達(dá)到80%以上,胰蛋白酶消化傳代。
1.2.3 siRNA靶序列設(shè)計(jì)及細(xì)胞篩選 根據(jù)PubMed的GeneBank數(shù)據(jù)庫中ClC-3基因的序列以及siRNA的設(shè)計(jì)原則,設(shè)計(jì)人ClC-3 cDNA不同區(qū)域的RNAi,由Invitrogen公司設(shè)計(jì)合成,其序列為: 5′-AUAAUAGCUAACCUCCUCCAAACUA-3′,化學(xué)合成siClC-3克隆入pLKO.1-Puro質(zhì)粒中,交由上海生工公司鑒定。預(yù)先培養(yǎng)于75 cm2細(xì)胞培養(yǎng)瓶中,待80%細(xì)胞融合時(shí),經(jīng)利用脂質(zhì)體lipofectAMINE2000瞬時(shí)轉(zhuǎn)染膠質(zhì)瘤細(xì)胞。轉(zhuǎn)染48 h后使用潮霉素篩選陽性克隆,陽性克隆即ClC-3基因表達(dá)沉默的BT-325細(xì)胞,并擴(kuò)大培養(yǎng)。
1.2.4 CCK8法測定藥物敏感性 收集對數(shù)期BT-325細(xì)胞,以2×108/L密度接種于96孔板,經(jīng)過上述技術(shù)路線處理方法處理后,按照操作說明,加入CCK8試劑10 μL,放置于5% CO2培養(yǎng)箱中孵育2 h,于酶聯(lián)免疫儀器上用波長450 nm處測定光密度值,OD值的大小反映活細(xì)胞的線粒體活性,細(xì)胞的線粒體活性=處理組的OD值/空白組的OD值×100%。
1.2.5 細(xì)胞容積測量 對數(shù)生長期的BT-325細(xì)胞用胰蛋白酶消化后,接種于含10%胎牛血清的DMEM培養(yǎng)基的24孔板中,置37 °C、5% CO2孵箱中培養(yǎng)3~4 h;置于等滲溶液中3 min,然后置于低滲液中25 min,最后重新回到等滲液中5 min;在倒置顯微鏡下連續(xù)拍照,每60 s/次,獲取的細(xì)胞圖像采用Imageproplus分析軟件進(jìn)行分析,測量細(xì)胞容積方程:V = 4/3×S×(S/π)1/2,S指細(xì)胞面積,計(jì)算調(diào)控性細(xì)胞容積下降率[調(diào)控性細(xì)胞容積下降率(%)=Vmax-Vmin/Vmax-V0×100% ]。
1.2.6 流式細(xì)胞術(shù)觀察細(xì)胞周期 用PI染色區(qū)分細(xì)胞周期的變化。膠質(zhì)瘤細(xì)胞,細(xì)胞消化后600 g離心5 min,冰冷PBS漂洗2次,離心后棄上清。用體積分?jǐn)?shù)為70%冰乙醇制備成單細(xì)胞懸液,4 ℃固定24 h,PBS離心洗去乙醇加PI染液(含50 mg/L PI,10 mg/L RNAseA,0.1% TritonX-100,1%檸檬酸鈉和0.5% NaCl),室溫下避光染色30 min,用EPICS XL型流式細(xì)胞儀收集20 000個(gè)細(xì)胞,記錄激發(fā)波長488 nm處紅色熒光強(qiáng)度,分析DNA周期,計(jì)算出細(xì)胞各期比例。
1.2.7 細(xì)胞侵襲實(shí)驗(yàn) 用無血清培養(yǎng)基調(diào)細(xì)胞密度為2×108/L,在transwell小室(transwell chamber)上槽腔內(nèi)加入100 μL無血清含0.2% BSA的2×104個(gè)膠質(zhì)瘤細(xì)胞或者2×104個(gè)ClC-3敲除膠質(zhì)瘤細(xì)胞,transwell小室下槽腔內(nèi)加入600 μL含10% FBS的培養(yǎng)基,在37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)12 h。用棉簽小心擦除transwell小室上槽腔內(nèi)細(xì)胞,90%酒精固定30 min,0.1%結(jié)晶紫染色10 min,用PBS漂洗3次,每次10 min。倒置顯微鏡下隨機(jī)拍照,計(jì)算紫色細(xì)胞個(gè)數(shù)。
1.2.8 Western bloting檢測蛋白表達(dá)水平 取對數(shù)生長期3組細(xì)胞,收集蛋白樣品,加入等體積上樣緩沖液和10% DTT,95 ℃加熱變性5 min,8% SDS-PAGE電泳后,電轉(zhuǎn)移至PVDF膜上。5%脫脂牛奶室溫封閉2 h, 按照1∶1 000比例加入人ClC-3多克隆抗體及β-actin單克隆抗體,4 ℃孵育過夜,TBST洗滌30 min,每10 min換液1次。分別加入1∶2 000稀釋辣根過氧化物酶標(biāo)記的二級抗體,室溫孵育1 h(或37 ℃ 30 min),TBST洗滌30 min,每10 min換液1次。在暗室中壓X片,完成結(jié)合信號顯影,凝膠成像系統(tǒng)分析實(shí)驗(yàn)結(jié)果。
1.3 統(tǒng)計(jì)學(xué)分析
2.1 siClC-3對膠質(zhì)瘤BT-325細(xì)胞增殖的影響
Western bloting結(jié)果顯示,經(jīng)siClC-3轉(zhuǎn)染后,BT-325細(xì)胞中ClC-3蛋白表達(dá)被明顯抑制,siClC-3組細(xì)胞ClC-3蛋白表達(dá)明顯低于空白對照組和空載體組(P<0.01),見圖1。CCK-8法顯示,以空白對照組24 h細(xì)胞存活率為100%,經(jīng)siClC-3轉(zhuǎn)染后,siClC組細(xì)胞24 h細(xì)胞存活率僅為5%,差異具有統(tǒng)計(jì)學(xué)意義(P<0.01)。
注:A為空白對照組,B為空載體組,C為siClC-3組圖1 siClC-3轉(zhuǎn)染對BT-325細(xì)胞中 ClC-3蛋白表達(dá)的影響Fig.1 Influence of siCIC-3 transfection on CIC-3 protein in BT-325 cell
2.2 siClC-3對膠質(zhì)瘤BT-325細(xì)胞調(diào)控性容積的影響
細(xì)胞容積測量結(jié)果顯示,經(jīng)siClC-3轉(zhuǎn)染后,siClC-3組細(xì)胞調(diào)控性容積下降率明顯降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.01),見表1。
表1 siDNA-PKcs對膠質(zhì)瘤BT-325細(xì)胞 耐藥的逆轉(zhuǎn)作用±s)Tab.1 Conversing effect of siDNA-PKcs on glioma U251 cell resistance
(1)與空白對照組比較,P<0.05
2.3 siClC-3對膠質(zhì)瘤BT-325細(xì)胞侵襲的影響
細(xì)胞侵襲結(jié)果顯示,經(jīng)siClC-3轉(zhuǎn)染后,siClC-3組細(xì)胞遷移能力明顯低于對照組(P<0.01),見圖2和表2。
2.4 siClC-3對膠質(zhì)瘤BT-325細(xì)胞周期的影響
流式細(xì)胞術(shù)結(jié)果顯示,培養(yǎng)48 h的空白對照組BT-325細(xì)胞G0/G1期占比率為(57.2±3.1)%,S期細(xì)胞占比為(31.8±1.8)%,G2/M期細(xì)胞所占為(11.2±1.5)%;空載體組細(xì)胞G0/G1期占比率為(57.3±2.9)%,S期細(xì)胞占比為(31.5±2.1)%,G2/M期細(xì)胞所占為(l1.7±1.4)%,兩者間差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。而siClC-3組G0/G1期占比率提升至 (71.3±4.0)%,S期細(xì)胞占比下降至(24.1±2.1)%,G2/M期細(xì)胞占比降低至(6.2±1.1)%,相對于空白對照組均差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。這提示ClC-3蛋白表達(dá)沉默可使細(xì)胞周期停滯在G0/G1期。
注:A為空白對照組,B為空載體組,C為siClC-3組圖2 siClC-3轉(zhuǎn)染對BT-325細(xì)胞遷移能力的影響Fig.2 Influence of siCIC-3 transfection on BT-325 cell migration表2 siClC-3轉(zhuǎn)染對BT-325細(xì)胞 遷移能力的影響±s)Tab.2 Influence of siCIC-3 transfection on BT-325 cell migration
遷移細(xì)胞比率(%)空白對照組100±631空載體組9733±896siClC?3組1568±423(1)
(1)與空白對照組比較,P<0.05
2.5 siClC-3抑制膠質(zhì)瘤BT-325細(xì)胞cyclin D1蛋白表達(dá)的影響
Western bloting檢測結(jié)果顯示,siClC-3轉(zhuǎn)染后,cyclin D1蛋白表達(dá)被明顯抑制,siClC-3組細(xì)胞ClC-3蛋白表達(dá)明顯低于空白對照組和空載體組(P<0.01),見圖3。
注:A為空白對照組,B為空載體組,C為siClC-3組圖3 siClC-3轉(zhuǎn)染對BT-325細(xì)胞cyclin D1 蛋白表達(dá)的影響Fig.3 Influence of siCIC-3 transfection on BT-325 cell cyclin D1 protein expression
2.6 siClC-3對膠質(zhì)瘤BT-325細(xì)胞遷移相關(guān)蛋白表達(dá)的影響
Western bloting檢測結(jié)果顯示,siClC-3轉(zhuǎn)染后,siClC-3組MMP-2和MMP-9蛋白表達(dá)被明顯抑制,明顯低于空白對照組和空載體組(P<0.01),見圖4。
注:A為空白對照組,B為空載體組,C為siClC-3組圖4 siClC-3轉(zhuǎn)染對BT-325細(xì)胞遷移 相關(guān)蛋白表達(dá)的影響Fig.4 Influence of siCIC-3 transfection on BT-325 cell migration related protein expression
膠質(zhì)瘤是高度的異型性、侵襲能力和放化療抵抗較強(qiáng)的惡性腫瘤,迄今為止,其發(fā)病機(jī)制尚不明確,高增值和高轉(zhuǎn)移是其重要的特征。在腫瘤的轉(zhuǎn)移過程中,細(xì)胞形態(tài)變化是維持細(xì)胞進(jìn)行遷移的物質(zhì)基礎(chǔ)[7]。腫瘤細(xì)胞增殖則有賴于細(xì)胞是否進(jìn)入分裂周期以及分裂周期能否完成,G1/S和G2/M轉(zhuǎn)換在其中發(fā)揮關(guān)鍵作用[8]。近年來研究人員發(fā)現(xiàn),容積調(diào)節(jié)性氯通道參與調(diào)控細(xì)胞容積的變化,可能在細(xì)胞增殖中起重要作用;且其活性隨細(xì)胞周期進(jìn)程改變而變化,當(dāng)細(xì)胞靜止在G0期時(shí)活性較低,進(jìn)入細(xì)胞周期G1后開始升高,G1/S轉(zhuǎn)換時(shí)其活性最高[9]。ClC-3是電壓依賴氯通道家族的一員,可表達(dá)在細(xì)胞膜上,從而可發(fā)揮氯離子通道功能,參與細(xì)胞調(diào)節(jié)性容量變化[10]。本研究通過siClC-3轉(zhuǎn)染敲除了腦膠質(zhì)瘤細(xì)胞BT-325的ClC-3表達(dá),發(fā)現(xiàn)ClC-3的表達(dá)沉默導(dǎo)致BT-325細(xì)胞調(diào)控性容積下降率的降低。ClC-3通過容積調(diào)節(jié)性氯通道參與調(diào)控細(xì)胞容積的變化,這表明ClC-3表達(dá)缺失導(dǎo)致BT-325細(xì)胞形變能力的缺失。而對細(xì)胞增殖和侵襲的研究發(fā)現(xiàn),ClC-3的缺失導(dǎo)致BT-235細(xì)胞細(xì)胞增殖活性下降,并且細(xì)胞遷移能力同樣降低。
Ganapathi等[11]研究發(fā)現(xiàn),當(dāng)ClC-3高表達(dá)時(shí),平滑肌細(xì)胞周期從G0/G1期向S期轉(zhuǎn)換加快,DNA合成增加;而siRNA沉默ClC-3則阻止細(xì)胞從G0/G1期進(jìn)入S期,認(rèn)為ClC-3參與與細(xì)胞周期G1/S轉(zhuǎn)換。在本研究中,ClC-3的缺失導(dǎo)致BT-235細(xì)胞阻滯于G0/G1期,提示ClC-3在膠質(zhì)瘤細(xì)胞G1/S轉(zhuǎn)換發(fā)揮關(guān)鍵作用。對細(xì)胞周期相關(guān)蛋白的檢測發(fā)現(xiàn),ClC-3的缺失導(dǎo)致cyclin D1表達(dá)下調(diào)。Cyclin D1是調(diào)控Gl期的重要的細(xì)胞周期蛋白,可以促進(jìn)Gl/S期轉(zhuǎn)換而加速細(xì)胞周期過程,在包括膠質(zhì)瘤在內(nèi)的多種腫瘤中過表達(dá)[12]。Rohrbough等[13]的研究報(bào)道,鼻咽癌CNZ-2Z細(xì)胞中ClC-3的表達(dá)沉默抑制cyclin D1, cyclin E的表達(dá),增加p27Kip1,p21Waf1表達(dá)。這些結(jié)果提示ClC-3蛋白可在信號通路較上游位置作為細(xì)胞周期促進(jìn)因子調(diào)節(jié)細(xì)胞G1/S轉(zhuǎn)換。MMP-2 和 MMP-9,是基質(zhì)金屬蛋白酶家族的成員,兩者可作為膠質(zhì)瘤患者腫瘤轉(zhuǎn)移中的重要參與者。Larrouture等[14]研究報(bào)道,應(yīng)用特異性抑制劑 IAA94 阻斷 ClC-1 通道可以抑制結(jié)腸癌細(xì)胞DLD-1的容積調(diào)節(jié)氯通道活性和氯通道電流,進(jìn)一步western bloting分析顯示DLD-1細(xì)胞MMP-2 和 MMP-9表達(dá)下調(diào)。本研究對細(xì)胞遷移相關(guān)蛋白的檢測發(fā)現(xiàn),ClC-3的表達(dá)缺失導(dǎo)致MMP-2 和 MMP-9表達(dá)下調(diào),提示ClC-3對膠質(zhì)瘤BT-235細(xì)胞的侵襲能力增強(qiáng)不僅涉及到細(xì)胞調(diào)控性容積下降率的增大,也與MMP-2 、MMP-9等侵襲相關(guān)蛋白上調(diào)相關(guān)。
綜上所述,本研究證實(shí)ClC-3通過調(diào)節(jié)細(xì)胞增殖而影響膠質(zhì)瘤生長,為從氯通道角度為開發(fā)防治膠質(zhì)瘤的藥物提供實(shí)驗(yàn)依據(jù);并且可為探索膠質(zhì)瘤的防治提供一條新的思路,將有良好的臨床應(yīng)用前景,對患者治療對策的制定和預(yù)后的判斷將起到積極的指導(dǎo)作用。
[1] Liang J, Piao Y, Holmes L, et al. Neutrophils promote the malignant glioma phenotype through S100A4[J]. Clinical Cancer Research, 2014(1): 187-198.
[2] Reardon DA, Groves MD, Wen PY, et al. A phase I/II trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma[J]. Clinical Cancer Research, 2013(4): 900-908.
[3] Cuddapah VA, Turner KL, Seifert S, et al. Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3. 1 and ClC-3[J]. The Journal of Neuroscience, 2013(4): 1427-1440.
[4] Qin C, He B, Dai W, et al. Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes[J]. Molecular pharmaceutics, 2014(10): 3233-3241.
[5] 鄒麗莉, 葉東, 呂瑞玲, 等. 敲低 IK1 鉀通道抑制 ClC-3 氯通道的表達(dá)和功能[J]. 中國病理生理雜志, 2015(12): 2113-2119.
[6]王艷萍, 姬林松, 樊宏偉, 等. 阻斷 CLC-3 氯通道對結(jié)直腸癌細(xì)胞株生存率和侵襲轉(zhuǎn)移能力的影響及其分子機(jī)制[J]. 中國腫瘤臨床, 2016(9): 361-365.
[7] Hubbi ME, Semenza GL. An essential role for chaperone-mediated autophagy in cell cycle progression[J]. Autophagy, 2015(5): 850-851.
[8] Tang HY, Beer LA, Tanyi JL, et al. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer[J]. Journal of proteomics, 2013(1): 165-178.
[9] Chiang PC, Chou RH, Chien HF, et al. Chloride intracellular channel 4 involves in the reduced invasiveness of cancer cells treated by photodynamic therapy[J]. Lasers in surgery and medicine, 2013(1): 38-47.
[10]Kim KH, Choi BK, Song KM, et al. CRIg signals induce anti-intracellular bacterial phagosome activity in a chloride intracellular channel 3-dependent manner[J]. European journal of immunology, 2013(3): 667-678.
[11]Ganapathi SB, Wei SG, Zaremba A, et al. Functional regulation of ClC-3 in the migration of vascular smooth muscle cells[J]. Hypertension, 2013(1): 174-179.
[12]Zhang J, Liu J, Liao YJ, et al. ClC-3 is Involved in NPPB-Induced Apoptosis in DU145 Prostate Cancer Cells[J]. J MolBiomarkDiagn S, 2016(2): 245.
[13]Rohrbough J, Lamb FS, Nguyen HN. Regulation of ClC-3 Cl-/H+ Transport and “Gating” Transients by Chloride Pathway Residues and External Protons[J]. Biophysical Journal, 2015(2): 440-441.
[14]Larrouture QC, Nelson DJ, Robinson LJ, et al. Chloride-hydrogen antiportersClC-3 and ClC-5 drive osteoblast mineralization and regulate fine‐structure bone patterning in vitro[J]. Physiological reports, 2015(11): e12607.
(2016-09-12收稿,2016-11-26修回)
中文編輯: 劉 平; 英文編輯: 趙 毅
The Molecular Mechanism of ClC-3 in the Proliferation and Invasion of Malignant Glioma Cells
ZHANG Guangyu1, JIA Shifeng2, CAO Xuhua1, ZHANG Xiaowei1, JIAO Baohua1
(1.DepartmentofNeurology,SecondHospitalofHebeiMedicalUniversity,Shijiazhuang050000,Hebei,China; 2.DepartmentofOncology,AffiliatedHospitalofNorthChinaUniversityofScienceandTechnology,Tangshan063000,Hebei,China)
Objective: To observe the effects of ClC-3 on the proliferation and invasion of malignant glioma cells, and to explore its molecular mechanism. Methods: ClC-3 knockdown human gliomaBT-235 cell line was constructed by siRNA, and assigned as siCIC-3 group, blank control group and empty vector group were also established; Western blotting was used to detect the expressions of ClC-3; CCK8 method was used to detect the cell proliferation activity; transwell method was used to detect invasive ability; the measure of cell volume was used to detect the decrease of regulatory volume; flow cytometry was used to detected cell cycle; Western blotting was used to detect the expressions of cyclin D1, MMP-2 and MMP-9. Results: Compared with the blank control group, the expression of ClC-3 in siClC-3 group was significantly decreased (P<0.01), the cell proliferation activity was significantly decreased (P<0.01), the cell migration rate was decreased (P<0.01). The regulatory volume decrease rate in normal control group were (79.35±2.31)%, while in siClC-3 group were (19.46±1.76)%, the difference was statistically significant (P<0.01). The percentage of G0/G1 phase in the blank control group were (57.2±3.1)%, but siClC-3 group increased into (71.3±4.0)%, the difference was statistically significant (P<0.01). Compared with the blank control group, the expression of cyclin D1, MMP-2 and MMP-9 were significantly decreased in siClC-3group (P<0.01). Conclusion: ClC-3 could significantly enhance the proliferation and invasion of glioma BT-235 cells, and the underlying mechanism is related to the increasing of cell-regulated volume decrease rate and the up-regulation of cyclin D1, MMP-2 and MMP-9.
chloride channel-3; glioma; proliferation; invasion
時(shí)間:2016-12-15
http://www.cnki.net/kcms/detail/52.1164.R.20161215.1534.018.html
R739.4
A
1000-2707(2016)12-1419-05
10.19367/j.cnki.1000-2707.2016.12.012
貴州醫(yī)科大學(xué)學(xué)報(bào)2016年12期