侯美,喻春明
(中國(guó)農(nóng)業(yè)科學(xué)院麻類研究所,長(zhǎng)沙410205)
綜述
植物NRT1.1的研究進(jìn)展及其在苧麻研究中的展望
侯美,喻春明*
(中國(guó)農(nóng)業(yè)科學(xué)院麻類研究所,長(zhǎng)沙410205)
在自然條件下,硝酸鹽是非固氮植物生長(zhǎng)過程中從外界環(huán)境吸收的主要氮源。植物通過一系列硝酸鹽轉(zhuǎn)運(yùn)蛋白實(shí)現(xiàn)對(duì)硝態(tài)氮的吸收與利用。NRT1.1(硝酸鹽轉(zhuǎn)運(yùn)蛋白nitrate transporter1.1,NRT1.1)是植物根系吸收硝酸鹽后第一個(gè)發(fā)揮作用的蛋白,其通過氨基酸序列中第101位蘇氨酸是否發(fā)生磷酸化修飾而表現(xiàn)雙親和性轉(zhuǎn)運(yùn)功能;NRT1.1可作為一種信號(hào)分子,調(diào)控側(cè)根的生長(zhǎng)與發(fā)育;NRT1.1除了參與硝酸鹽響應(yīng)和轉(zhuǎn)運(yùn)過程,還參與植物對(duì)重金屬的吸收。文章結(jié)合最新的研究報(bào)道,綜述了植物硝酸鹽轉(zhuǎn)運(yùn)蛋白NRT1.1的研究進(jìn)展,并對(duì)其在苧麻研究中的作用進(jìn)行展望,以期為提高苧麻氮同化效率與逆境抗性能力研究提供參考,并為苧麻育種提供理論依據(jù)與方向。
硝酸鹽;NRT1.1;轉(zhuǎn)運(yùn)蛋白;信號(hào)分子;苧麻
氮是植物生長(zhǎng)必需的大量元素之一,在自然條件下,硝酸鹽是非固氮植物從外界吸收的主要氮源。此外,硝酸鹽不僅作為植物生長(zhǎng)所需的營(yíng)養(yǎng)物質(zhì),還可以作為一種信號(hào)分子調(diào)節(jié)植物生長(zhǎng)[1]。在打破種子休眠、調(diào)節(jié)葉片氣孔運(yùn)動(dòng)、調(diào)控側(cè)根發(fā)育和誘導(dǎo)相關(guān)基因表達(dá)等方面具有關(guān)鍵作用,另外,硝酸鹽還可以影響植物開花周期[2]。植物根系通過膜蛋白對(duì)硝酸鹽的吸收是植物獲得氮素的第一個(gè)關(guān)鍵步驟[3],由于植物固著生長(zhǎng)的特性,在其進(jìn)化過程中形成了復(fù)雜的硝酸鹽轉(zhuǎn)運(yùn)系統(tǒng)來適應(yīng)外界環(huán)境中硝酸鹽濃度的變化[4]。擬南芥中的NRT1.1(nitrate transporter1.1)是高等植物中第一個(gè)被鑒定出的硝酸鹽轉(zhuǎn)運(yùn)蛋白[5],其在氮素積累和信號(hào)傳導(dǎo)方面都具有重要作用;在小麥中發(fā)現(xiàn)經(jīng)氮饑餓處理后TaNRT1.1表達(dá)受到顯著抑制[6];在水稻中發(fā)現(xiàn)NRT1.1B是一個(gè)高氮利用率基因,在育種中有著重要的應(yīng)用價(jià)值[7]。另外,在白菜、茶樹、菊花等作物中成功克隆出NRT1.1基因,并對(duì)其進(jìn)行功能鑒定[8-10]。NRT1.1是一個(gè)雙親和轉(zhuǎn)運(yùn)蛋白,在不同的硝酸鹽濃度下,都可對(duì)其進(jìn)行轉(zhuǎn)運(yùn)[11]。NRT1.1可作為一種信號(hào)分子,調(diào)控NO-3信號(hào)響應(yīng)過程[12-13];NRT1.1除了參與硝酸鹽吸收和轉(zhuǎn)運(yùn)過程,還參與到植物對(duì)逆境脅迫的響應(yīng)[14]。
植物中有NRT1和NRT2兩個(gè)硝酸鹽轉(zhuǎn)運(yùn)蛋白(nitrate transporter,NRT)基因家族[15]。其中NRT1轉(zhuǎn)運(yùn)蛋白屬于PTR(peptide transporters)家族成員,PTR家族是一類可轉(zhuǎn)運(yùn)氨基酸、寡肽和NO-3等含氮化合物的膜轉(zhuǎn)運(yùn)蛋白。到目前為止,在擬南芥中,經(jīng)鑒定有8個(gè)PTR家族蛋白(NAXT1,NRT1.1,1.2,and 1.4-8)具有硝酸鹽轉(zhuǎn)運(yùn)蛋白功能[16-20],這些蛋白在硝酸鹽轉(zhuǎn)運(yùn)過程中各自發(fā)揮著獨(dú)特的作用。NRT1.1和NRT1.2在根部吸收硝酸鹽[21-23],NAXT1(nitrate excretion transporter1)在硝酸鹽流出到外部介質(zhì)中發(fā)揮重要作用[24],NRT1.4將NO-3轉(zhuǎn)運(yùn)到葉柄中[25],NRT1.5和NRT1.8分別在根木質(zhì)部和根中柱中裝載和卸載硝酸鹽[19,26],NRT1.6將硝酸鹽轉(zhuǎn)運(yùn)到胚胎中[18],NRT1.7將硝酸鹽轉(zhuǎn)運(yùn)到韌皮部[20]。目前擬南芥中已發(fā)現(xiàn)的NRT1轉(zhuǎn)運(yùn)體共有53個(gè)[27]。
NRT2轉(zhuǎn)運(yùn)蛋白屬于NNP(nitrate-nitrite-porter)家族成員,是MFS超家族(major facilitator superfamily)之一[28]。1996年,在大麥(Hordeum vulgare)中第一次分離得到高等植物的NRT2基因HvNRT2.1和HvNRT2.2[29];2001年,利用T-DNA插入突變體分離得到了擬南芥高親和性硝酸鹽轉(zhuǎn)運(yùn)蛋白AtNRT2.1[30]。進(jìn)一步研究表明AtNRT2.1定位在根系質(zhì)膜,是主要的高親和硝酸鹽轉(zhuǎn)運(yùn)蛋白[30-32]。在擬南芥中發(fā)現(xiàn)NRT2家族中共有7個(gè)成員,半定量PCR試驗(yàn)表明,AtNRT2.1、At-NRT2.4、AtNRT2.5和AtNRT2.6主要在根中表達(dá),AtNRT2.7主要在地上部表達(dá)[33]。所有的NRT2家族成員都在硝酸鹽濃度較低時(shí)發(fā)揮作用,且硝酸鹽是其作用的唯一底物[34]。
2.1 植物對(duì)硝酸鹽吸收利用的機(jī)制
植物對(duì)硝酸鹽的吸收和分配在氮的有效利用上起著關(guān)鍵作用[35]。根系對(duì)硝酸鹽的吸收是硝酸鹽發(fā)揮功能的第一步,根系吸收NO-3主要依賴其主動(dòng)吸收系統(tǒng)[36]。負(fù)責(zé)轉(zhuǎn)運(yùn)NO-3的載體稱為硝酸鹽轉(zhuǎn)運(yùn)蛋白(nitrate transporter,NRT)[37],硝酸鹽轉(zhuǎn)運(yùn)蛋白屬于膜轉(zhuǎn)運(yùn)蛋白MFS家族,參與并介導(dǎo)植物根系對(duì)NO-3的吸收與轉(zhuǎn)運(yùn)[16]。為了適應(yīng)外界硝酸鹽濃度的變化,植物在進(jìn)化過程中形成了對(duì)NO-3親和力不同的轉(zhuǎn)運(yùn)系統(tǒng),根據(jù)對(duì)其親和力的不同,NO-3吸收系統(tǒng)分為高親和力轉(zhuǎn)運(yùn)系統(tǒng)(High-affinity nitrate transport system,HATS)和低親和力轉(zhuǎn)運(yùn)系統(tǒng)(Low-affinity nitrate transport system,LATS)[1,35],其中高親和力轉(zhuǎn)運(yùn)系統(tǒng)根據(jù)其功能的不同可以進(jìn)一步分成組成型高親和力轉(zhuǎn)運(yùn)系統(tǒng)(constitutive HATS,cHATS)和誘導(dǎo)性高親和力轉(zhuǎn)運(yùn)系統(tǒng)(inducible HATS,iHATS)。當(dāng)硝酸鹽濃度高于1 mmol/L時(shí),低親和力轉(zhuǎn)運(yùn)系統(tǒng)優(yōu)先起作用;低于1 mmol/L時(shí),高親和力轉(zhuǎn)運(yùn)系統(tǒng)發(fā)揮主導(dǎo)作用[38],與兩個(gè)硝酸鹽轉(zhuǎn)運(yùn)系統(tǒng)對(duì)應(yīng)的兩個(gè)家族基因NRT1和NRT2已經(jīng)得到確認(rèn),它們分別編碼硝酸鹽的低親和力和高親和力轉(zhuǎn)運(yùn)系統(tǒng)?,F(xiàn)在的研究普遍認(rèn)為與低親和吸收系統(tǒng)相對(duì)應(yīng)的是NRT1家族,而與高親和吸收系統(tǒng)相對(duì)應(yīng)的是NRT2家族[39]。隨著分子生物學(xué)研究技術(shù)和生物信息學(xué)的發(fā)展,很多參與硝酸鹽轉(zhuǎn)運(yùn)的基因已經(jīng)被相繼分離、克隆出來,并對(duì)其功能進(jìn)行了較為深入的鑒定[35]。其中擬南芥硝酸鹽轉(zhuǎn)運(yùn)蛋白基因AtNRT1.1是第一個(gè)被分離、克隆出來的硝酸鹽轉(zhuǎn)運(yùn)蛋白基因[5,40],AtNRT1.1蛋白是目前在植物中研究最為清楚的硝酸鹽轉(zhuǎn)運(yùn)體[41]。
2.2 NRT1.1在植物吸收利用硝酸鹽過程中的作用
NRT1.1基因于1978年第一次在擬南芥中被分離出來[40]。1993年,Tsay等[5]用T-DNA插入突變體中發(fā)現(xiàn)其(CHL1)具有轉(zhuǎn)運(yùn)硝酸鹽的功能。2004年,通過轉(zhuǎn)錄組分析,在擬南芥突變體中發(fā)現(xiàn)NRT1.1具有信號(hào)功能[42]。NRT1.1在低硝酸鹽濃度下影響側(cè)根原基的成熟與伸長(zhǎng),并且在不同的硝酸鹽濃度下,NRT1.1影響初級(jí)根起始階段的生長(zhǎng)[43],NRT1.1主要在根部表達(dá)[44],其表達(dá)量與pH高低[21]或是否存在生長(zhǎng)素有關(guān)[45]。NRT1.1是一種硝酸鹽轉(zhuǎn)運(yùn)蛋白,也是一種硝酸鹽傳感器,可調(diào)控植物對(duì)硝酸鹽的初級(jí)響應(yīng)過程,并且證明NRT1.1對(duì)硝酸鹽的轉(zhuǎn)運(yùn)功能與信號(hào)傳感功能是相互獨(dú)立的[12]。近年來發(fā)現(xiàn)其也可以在葉片的保衛(wèi)細(xì)胞中表達(dá)[46]。
最新研究[47]發(fā)現(xiàn),水稻OsNRT1.1基因有兩種不同的拼接產(chǎn)物OsNRT1.1a和OsNRT1.1b,在以硝酸鹽為氮源的情況下,高濃度時(shí)它們超表達(dá)植株都能引起植株中氮素的累積并增加地上部干物質(zhì)重量,同時(shí)發(fā)現(xiàn)OsNRT1.1b蛋白比OsNRT1.1a蛋白具有更高的氮素親和性。經(jīng)序列分析后發(fā)現(xiàn)秈稻與粳稻中OsNRT1.1B蛋白發(fā)生了單核苷酸多肽性,粳稻中的Thr327殘基在秈稻中變成了Met327,這導(dǎo)致秈稻比粳稻具有更高的氮素利用效率[48]。由此可知,OsNRT1.1B基因序列的變化是造成粳稻和秈稻對(duì)硝態(tài)氮利用差異的原因。
2.3 NRT1.1對(duì)硝酸鹽的雙親和性轉(zhuǎn)運(yùn)
目前擬南芥中已發(fā)現(xiàn)的NRT1轉(zhuǎn)運(yùn)體有53個(gè)[27]。其中,擬南芥AtNRT1.1和苜蓿MtNRT1.3是雙親和性轉(zhuǎn)運(yùn)體,在低濃度下具有高親和性,高濃度下具有低親和性,而其它都是低親和性轉(zhuǎn)運(yùn)體[34,49-50]。研究表明,NRT1.1通過Thr101殘基是否被磷酸化,實(shí)現(xiàn)NRT1.1在高親和性和低親和性功能之間的轉(zhuǎn)換,此蘇氨酸發(fā)生磷酸化修飾受外界NO-3濃度誘導(dǎo)的轉(zhuǎn)錄調(diào)控[12],并且在爪膽卵母細(xì)胞中發(fā)現(xiàn),當(dāng)NRT1.1中Thr101殘基被磷酸化,其變?yōu)楦哂H和性轉(zhuǎn)運(yùn)體,此時(shí)Km值約為50μmol/L;而當(dāng)Thr101去磷酸化后變?yōu)榈陀H和性轉(zhuǎn)運(yùn)體,其Km值約為4 mmol/L[51]。由于NRT1.1對(duì)硝酸鹽的轉(zhuǎn)運(yùn)具有雙親和性,因此無論外界硝酸鹽濃度高還是低,NRT1.1都可對(duì)其進(jìn)行吸收轉(zhuǎn)運(yùn)。
最近,在NRT1.1晶體結(jié)構(gòu)中發(fā)現(xiàn)了NRT1.1是如何通過氨基酸序列中第101位蘇氨酸發(fā)生磷酸化修飾而表現(xiàn)雙親和轉(zhuǎn)運(yùn)功能的。NRT1.1晶體由兩個(gè)非常相似的不對(duì)稱分子構(gòu)成[51-52],具有12個(gè)跨膜結(jié)構(gòu),N端具有6個(gè)(TM1-TM6),C端具有6個(gè)(TM7-TM12)[53-54]。體外生化研究和細(xì)胞基熒光共振能量轉(zhuǎn)移(FRET)試驗(yàn)表明,NRT1.1的雙親和轉(zhuǎn)運(yùn)功能與晶體二聚體結(jié)構(gòu)有關(guān)[55]。另外,NRT1.1磷酸化修飾影響NRT1.1低聚狀態(tài),關(guān)鍵殘基Thr101位于二聚體右側(cè)相鄰的疏水區(qū)域,預(yù)測(cè)是由于其附近的靜電和構(gòu)象變化,引起Thr101磷酸化,從而干擾二聚體的構(gòu)象。相關(guān)研究[51]表明,磷酸化依賴NRT1.1的二聚化“搖臂開關(guān)”實(shí)現(xiàn)雙親和轉(zhuǎn)運(yùn)功能:未干擾的NRT1.1結(jié)構(gòu)耦合的二聚體表現(xiàn)低親和力的轉(zhuǎn)運(yùn)功能,而磷酸化的NRT1.1使二聚體解耦,表現(xiàn)高親和力的轉(zhuǎn)運(yùn)功能。NRT1.1通過二聚體是否解耦實(shí)現(xiàn)低親和力與高親和力轉(zhuǎn)運(yùn)功能之間的轉(zhuǎn)化,當(dāng)硝酸鹽濃度較高時(shí),NRT1.1去磷酸化,具有二聚體結(jié)構(gòu),靈活性較低,執(zhí)行低親和力轉(zhuǎn)運(yùn)功能;硝酸鹽濃度較低時(shí),NRT1.1磷酸化,二聚體結(jié)構(gòu)被干擾,靈活性較高,執(zhí)行高親和力轉(zhuǎn)運(yùn)功能[56]。
3.1 NRT1.1的底物識(shí)別特點(diǎn)
NRT1.1的大多底物結(jié)合位點(diǎn)是疏水的,除了位于第7個(gè)跨膜結(jié)構(gòu)上的His356,這對(duì)NRT1.1識(shí)別硝酸鹽是至關(guān)重要的,而His356在NRT1/PTR家族中并不保守,這揭示了NRT1/PTR家族中的其它成員具有除硝酸鹽外的不同底物識(shí)別機(jī)制,因此結(jié)合位點(diǎn)的序列差異導(dǎo)致NRT/PTR的不同成員識(shí)別不同的底物[55]。
3.2 NRT1.1調(diào)控NO-3對(duì)NRT2.1的誘導(dǎo)表達(dá)
首次發(fā)現(xiàn)NRT1.1具有信號(hào)功能是在chl1突變體中,同時(shí)發(fā)現(xiàn)該突變體中NRT2.1基因的表達(dá)受到明顯的抑制[13,42]。NRT2.1在植物根中表達(dá),編碼高親和轉(zhuǎn)運(yùn)系統(tǒng)的重要組分[30,32,57],其表達(dá)受NO-3的誘導(dǎo),并且在高N情況下其表達(dá)受抑制[58-59],研究發(fā)現(xiàn)[42]NRT1.1突變體阻止了NRT2.1在高氮條件下的抑制表達(dá)。而NRT2.1并不是受NRT1.1調(diào)控的唯一基因,在擬南芥chl1突變體中發(fā)現(xiàn),NO-3誘導(dǎo)的100多個(gè)基因表達(dá)受損[60],其中包括NIA1,NiR和CIPK8[12]等,因此NRT1.1參與NO-3信號(hào)響應(yīng)的多個(gè)過程。
3.3 NRT1.1對(duì)生長(zhǎng)素的調(diào)控作用
生長(zhǎng)素是植物生長(zhǎng)所需的重要植物激素,調(diào)控植物生長(zhǎng)和發(fā)育,如促進(jìn)側(cè)根形成、器官衰老、維管束組織的形成和分化發(fā)育、頂端優(yōu)勢(shì)以及植物的向地和向光反應(yīng)等[61-63]。在根中,NRT1.1蛋白可作為一種信號(hào)分子,調(diào)控生長(zhǎng)素在側(cè)根中的積累,當(dāng)NO-3較低時(shí),NRT1.1促進(jìn)生長(zhǎng)素的向基運(yùn)輸,使側(cè)根中生長(zhǎng)素濃度降低,抑制側(cè)根生長(zhǎng);NO-3濃度增加時(shí),NRT1.1抑制生長(zhǎng)素的向基運(yùn)輸,使側(cè)根中生長(zhǎng)素濃度增加,促進(jìn)側(cè)根生長(zhǎng)[64],因此,在一定范圍內(nèi),當(dāng)硝酸鹽濃度較低時(shí)(≦0.2 mmol/L),抑制側(cè)根生長(zhǎng);較高時(shí)(1 mmol/L),促進(jìn)側(cè)根生長(zhǎng),這是通過調(diào)節(jié)NRT1.1參與的ANR1基因表達(dá)的信號(hào)途徑來完成[65]。也有假設(shè)認(rèn)為,NRT1.1既可以轉(zhuǎn)運(yùn)硝酸鹽也可以轉(zhuǎn)運(yùn)生長(zhǎng)素[66-67],但是并沒有發(fā)現(xiàn)這兩種物質(zhì)的結(jié)構(gòu)相似性。而在油菜中發(fā)現(xiàn),與NRT1.1同源性很高的NRT1.2在非洲爪蟾卵母細(xì)胞中既可以轉(zhuǎn)運(yùn)NO-3,又可以轉(zhuǎn)運(yùn)氨基酸[68],故NRT1.1究竟能否直接轉(zhuǎn)運(yùn)生長(zhǎng)素還有待于進(jìn)一步研究證明。此外還有研究[69]表明,生長(zhǎng)素可促進(jìn)擬南芥AtNRT1.1基因表達(dá),從而增強(qiáng)硝酸鹽吸收。
3.4 NRT1.1與谷氨酸的相互作用
對(duì)于NO-3,谷氨酸(L-glutamate)可作為一種信號(hào)分子調(diào)控植物根系結(jié)構(gòu)[70],研究[71]表明,NRT1.1通過與谷氨酸的相互作用調(diào)控植物的根系結(jié)構(gòu),在擬南芥中,谷氨酸抑制初生根的生長(zhǎng),促進(jìn)根形成分枝,正常情況下,在培養(yǎng)基中加入過量的谷氨酸會(huì)抑制這些作用,但在缺失NRT1.1的突變體中卻未發(fā)現(xiàn)這種現(xiàn)象。因此,在擬南芥中NRT1.1作為一種信號(hào)分子,調(diào)控NO-3逆轉(zhuǎn)谷氨酸抑制主根伸長(zhǎng)的過程[70-71]。
為了適應(yīng)不良環(huán)境,植物在進(jìn)化過程中形成了相應(yīng)的抗性機(jī)制,在蛋白及相關(guān)基因的表達(dá)方面發(fā)生相應(yīng)的變化,進(jìn)而激活保護(hù)代謝途徑,維持植物正常的生長(zhǎng)發(fā)育[72],研究[73]發(fā)現(xiàn)植物的抗性與細(xì)胞生物膜系統(tǒng)的逆境蛋白關(guān)系密切。
重金屬污染是當(dāng)今面積最廣、危害最大的環(huán)境問題之一,而鎘是金屬元素中毒性最強(qiáng)的元素之一,會(huì)對(duì)動(dòng)植物產(chǎn)生較大的毒害作用[74]。科學(xué)家對(duì)于植物的耐鎘機(jī)制進(jìn)行了大量的研究,旨在提高植物的耐鎘性,并改善當(dāng)前由鎘及其它重金屬造成的污染現(xiàn)狀。
研究[14]發(fā)現(xiàn),NRT1.1除了參與硝酸鹽響應(yīng)和轉(zhuǎn)運(yùn)過程,還參與到植物對(duì)逆境的響應(yīng)。研究[75]發(fā)現(xiàn),與銨態(tài)氮為氮源相比,硝態(tài)氮為氮源的向日葵根中積累更多的Cd,重金屬離子會(huì)影響植株的氮同化過程,進(jìn)而影響植株的氮素利用率,例如鉛能通過抑制根部生長(zhǎng)來影響植物對(duì)氮素的吸收。Cd能抑制硝酸鹽的吸收、轉(zhuǎn)運(yùn)和同化,導(dǎo)致生物量和蛋白含量的減少[76]。有研究[42]表明突變體(chl1.5)對(duì)NO-3具有較低的吸收能力,并抑制AtIRT基因的表達(dá),IRT能夠轉(zhuǎn)運(yùn)Fe2+、Cd2+等二價(jià)陽離子,因此推測(cè)可能是NRT1.1調(diào)控二價(jià)金屬離子的吸收。另外,毛倩倩等[77]研究表明,與NH+4相比,NO-3能促進(jìn)擬南芥根部對(duì)Cd的吸收;鎘脅迫下,擬南芥根部硝酸鹽含量和吸收速率下降,Cd抑制NO-3吸收的關(guān)鍵原因是NRT1.1活性被抑制,NRT1.1通過離子平衡調(diào)控Cd吸收。
苧麻(Boehmeria nivea L.Gauld)是多年生宿根草本植物,有“中國(guó)草”之稱[78],其蛋白質(zhì)含量高,營(yíng)養(yǎng)豐富,生物產(chǎn)量大,再生能力強(qiáng),是很好的飼用植物蛋白質(zhì)來源[79]。氮素作為苧麻正常生長(zhǎng)發(fā)育過程中不可缺少的元素之一,是其體內(nèi)蛋白質(zhì)及葉綠素的主要成分,合理利用氮素能促進(jìn)苧麻莖和葉片的生長(zhǎng),提高生物產(chǎn)量和經(jīng)濟(jì)效益[80]。苧麻作為南方重要的經(jīng)濟(jì)作物之一,如何提高其氮素利用率一直是苧麻育種工作的研究重點(diǎn)。NRT1.1在植物對(duì)硝酸鹽的吸收與利用過程中具有非常重要的作用,明確其作用機(jī)制,可能有助于提高苧麻的氮素利用率。目前在擬南芥、水稻、小麥等作物中對(duì)于NRT1.1在硝酸鹽吸收利用過程以及植物生長(zhǎng)發(fā)育中的研究已經(jīng)有了重要的進(jìn)展,而在苧麻中尚未見研究報(bào)道。
近年來,在苧麻育種方面,與氮素利用相關(guān)的研究成為熱點(diǎn),其主要通過氮高效品種篩選提高苧麻對(duì)氮素的利用效率,至于苧麻的氮高效分子機(jī)制還在初步探索中。苧麻是多年生作物,其品種選育所需周期較長(zhǎng),工作量大,易受環(huán)境條件影響,如何快速高效地提高苧麻的氮素利用率是苧麻育種工作中亟需解決的問題。另外,苧麻根系發(fā)達(dá),具有較強(qiáng)的耐鎘吸附性,目前雖進(jìn)行了大量與苧麻吸附重金屬鎘有關(guān)的研究,但與其分子機(jī)制有關(guān)的研究較少。NRT1.1可作為一種信號(hào)分子參與植物對(duì)逆境的響應(yīng),苧麻NRT1.1的重金屬吸收機(jī)制與其它作物相比具有怎樣的異同點(diǎn)及優(yōu)勢(shì),是苧麻作物研究中亟需明確的問題。鑒于此,今后NRT1.1在苧麻作物中可進(jìn)行以下相關(guān)研究。
5.1 進(jìn)行苧麻NRT1.1基因的克隆與功能驗(yàn)證
目前NRT1.1基因在擬南芥、水稻等作物中已相繼被克隆出來,并進(jìn)行了功能驗(yàn)證,在苧麻作物中還沒有相關(guān)研究??赏ㄟ^苧麻NRT1.1基因的克隆與功能驗(yàn)證,明確苧麻NRT1.1在硝酸鹽吸收利用過程中的作用,并試圖通過分子生物學(xué)手段提高苧麻的氮素利用率。同時(shí)還應(yīng)通過生物信息學(xué)分析,明確苧麻NRT1.1基因與其它作物中已經(jīng)克隆出來的NRT1.1基因的異同之處,并嘗試將其它作物中利用NRT1.1提高氮素利用率的方法借鑒到苧麻作物中,例如水稻利用單核苷酸多態(tài)性提高其氮素利用率。
5.2 探索NRT1.1與苧麻根系結(jié)構(gòu)的關(guān)系
苧麻具有較復(fù)雜的根系結(jié)構(gòu),其由營(yíng)養(yǎng)根(俗稱蘿卜根)、支根和細(xì)根組成[81],并且苧麻根系具有較高的醫(yī)療保健和藥用開發(fā)價(jià)值[82]。NRT1.1可調(diào)控植物的根系結(jié)構(gòu),因此,可嘗試通過NRT1.1調(diào)控苧麻的根系結(jié)構(gòu),提高苧麻的醫(yī)藥價(jià)值與經(jīng)濟(jì)效益。
5.3 研究硝酸鹽對(duì)苧麻氮素利用率的影響
目前在苧麻對(duì)氮素利用方面進(jìn)行了大量研究,但是對(duì)于氮源形態(tài)對(duì)苧麻生長(zhǎng)的影響還未見相關(guān)報(bào)道。在其它作物中發(fā)現(xiàn)NRT1.1對(duì)硝酸鹽具有雙親和性轉(zhuǎn)運(yùn)功能,今后可側(cè)重研究不同形態(tài)的氮源對(duì)苧麻NRT1.1的基因表達(dá)及苧麻氮素利用率的影響,并提高苧麻對(duì)硝態(tài)氮的利用率,從而提高苧麻的氮素利用率。
5.4 提高苧麻對(duì)鎘的吸附性
苧麻具有較強(qiáng)的耐Cd性[83],NRT1.1參與到植物對(duì)逆境的響應(yīng),如Cd脅迫[14],但是NRT1.1對(duì)苧麻的耐鎘機(jī)理是否具有調(diào)控作用尚不清楚,應(yīng)加強(qiáng)相關(guān)方面研究,試圖通過NRT1.1促進(jìn)苧麻對(duì)硝酸鹽的吸收轉(zhuǎn)運(yùn),提高苧麻對(duì)鎘的吸附性,用于有效治理當(dāng)前的Cd污染。
[1]Crawford N M.Nitrate:Nutrient and Signal for Plant Growth[J].Plant Cell,1995,7(7):859-68.
[2]Castro M I,Loef I,Bartetzko L,etal.Nitrate regulates floral induction in Arabidopsis,acting independently of light,gibberellin and autonomous pathways[J].Planta,2011,233(3):539-552.
[3]Dechorgnat J,Nguyen C T,Armengaud P,etal.From the soil to the seeds:the long journey of nitrate in plants.[J].Journal of Experimental Botany,2011,62(4):1349.
[4]Wang Y Y,Hsu PK,Tsay Y F.Uptake,allocation and signaling of nitrate[M].Current Affairs Pub,House,2012:458-467.
[5]Tsay Y F,Schroeder JI,F(xiàn)eldmann K A,etal.The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter[J].Cell,1993,72(5):705-713.
[6]軒紅梅,王永華,魏利婷,等.小麥幼苗葉片中硝酸鹽轉(zhuǎn)運(yùn)蛋白NRT1和NRT2家族基因?qū)Φ囸I響應(yīng)的表達(dá)分析[J].麥類作物學(xué)報(bào),2014(8):1019-1028.
[7]田孟祥,余本勛,張時(shí)龍,等.一種水稻高氮利用率NRT1.1B基因功能標(biāo)記的開發(fā)與應(yīng)用[J].分子植物育種,2016(2):410-416.
[8]楊學(xué)東.不結(jié)球白菜硝酸鹽轉(zhuǎn)運(yùn)蛋白基因的克隆和功能研究[D].南京:南京農(nóng)業(yè)大學(xué),2012.
[9]楊亦揚(yáng),胡雲(yún)飛,萬青,等.茶樹硝態(tài)氮轉(zhuǎn)運(yùn)蛋白NRT1.1基因的克隆及表達(dá)分析[J].茶葉科學(xué),2016(5):505-512.
[10]顧春筍.菊花Cm NRT s基因的克隆及功能鑒定[D].南京:南京農(nóng)業(yè)大學(xué),2012.
[11]Liu K H,Huang C Y,Tsay Y F.CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved inmultiple phases of nitrate uptake[J].Plant Cell,1999,11(5):865-874.
[12]Ho C H,Lin SH,Hu H C,et al.CHL1 functions as a nitrate sensor in plants[M].2009:1184-1194.
[13]Krouk G,Tillard P,Gojon A.Regulation of the high-affinity NO3-uptake system by NRT1.1-mediated NO3-demand signaling in Arabidopsis[J].Plant Physiol,2006,142(3):1075-1086.
[14]Guo FQ,Young J,Crawford NM.The nitrate transporter At NRT1.1(CHL1)functions in stomatal opening and contributes to drought susceptibility in Arabidopsis[J].Plant Cell,2003,15(1):107-117.
[15]胡廷章,何帥,黃小云,等.植物中硝酸鹽轉(zhuǎn)運(yùn)蛋白的運(yùn)輸和信號(hào)傳輸功能[J].植物生理學(xué)通訊,2009(11):1131-1136.
[16]汪進(jìn),添先鳳,江昌俊,等.茶樹硝酸鹽轉(zhuǎn)運(yùn)蛋白基因的克隆和表達(dá)分析[J].植物生理學(xué)報(bào),2014(7):983-988.
[17]Tsay Y F,Chiu CC,Tsai C B,et al.Nitrate transporters and peptide transporters[J].FEBS Lett,2007,581(12):2290-2300.
[18]Almagro A,Lin SH,Tsay Y F.Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development[J].Plant Cell,2008,20(12):3289-3299.
[19]Lin SH,Kuo H F,Canivenc G,et al.Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J].Plant Cell,2008,20(9):2514-2528.
[20]Fan SC,Lin C S,Hsu PK,et al.The Arabidopsis nitrate transporter NRT1.7,expressed in phloem,is responsible for source-to-sink remobilization of nitrate[J].Plant Cell,2009,21(9):2750-2761.
[21]Tsay Y F,Schroeder JI,F(xiàn)eldmann K A,etal.The herbicide sensitivity gene CHL1 of Arabidopsisencodes a nitrate-inducible nitrate transporter[J].Cell,1993,72(5):705-713.
[22]Touraine B,Glass A D.NO3-and ClO3-fluxes in the chl1-5 mutantof Arabidopsis thaliana.Does the CHL1-5 gene encode a low-affinity NO3-transporter[J].Plant Physiol,1997,114(1):137-144.
[23]Huang N C,Liu K H,Lo H J,etal.Cloning and functional characterization of an Arabidopsis nitrate transporter gene thatencodes a constitutive component of low-affinity uptake[J].Plant Cell,1999,11(8):1381-1392.
[24]Segonzac C,Boyer JC,Ipotesi E,et al.Nitrate efflux at the root plasmamembrane:identification of an Arabidopsis excretion transporter[J].Plant Cell,2007,19(11):3760-3777.
[25]Chiu C C,Lin C S,Hsia A P,et al.Mutation of a nitrate transporter,At NRT1:4,results in a reduced petiole nitrate content and altered leaf development[J].Plant Cell Physiol,2004,45(9):1139-1148.
[26]Li JY,F(xiàn)u Y L,Pike SM,etal.The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J].Plant Cell,2010,22(5):1633-1646.
[27]Tsay Y F,Chiu CC,TsaiC B,etal.Nitrate transporters and peptide transporters[J].Febs Letters,2007,581(12):2290-2300.
[28]李新鵬,童依平.植物吸收轉(zhuǎn)運(yùn)無機(jī)氮的生理及分子機(jī)制[J].植物學(xué)通報(bào),2007(6):714-725.
[29]Trueman L J,Richardson A,F(xiàn)orde B G.Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans[J].Gene,1996,175(1-2):223-231.
[30]Filleur S,Dorbe M F,Cerezo M,et al.An arabidopsis T-DNA mutant affected in NRT2 genes is impaired in nitrate uptake[J].Febs Letters,2001,489(2-3):220-224.
[31]Orsel M,Eulenburg K,Krapp A,et al.Disruption of the nitrate transporter genes At NRT2.1 and At NRT2.2 restricts growth at low external nitrate concentration[J].Planta,2004,219(4):714.
[32]LiW,Wang Y,Okamoto M,et al.Dissection of the At NRT2.1:At NRT2.2 inducible high-affinity nitrate transporter gene cluster[J].Plant Physiology,2007,143(1):425-433.
[33]Orsel M,Krapp A,Daniel-Vedele F.Analysis of the NRT2 nitrate transporter family in Arabidopsis.Structure and gene expression[J].Plant Physiol,2002,129(2):886-896.
[34]Forde B G.Nitrate transporters in plants:structure,function and regulation[J].Biochim Biophys Acta,2000,1465(1-2):219-235.
[35]Wang Y Y,Hsu PK,Tsay Y F.Uptake,allocation and signaling of nitrate[J].Trends in Plant Science,2012,17(8):458-67.
[36]Thibaud JB,Grignon C.Mechanism of nitrate uptake in corn roots[J].Plant Science Letters,1981,22(3):279-289.
[37]Fan SC,Tsay Y F.The Arabidopsis nitrate transporter NRT1.7,expressed in phloem,is responsible for source-to-sink remobilization of nitrate[J].Plant Cell,2009,21(9):2750-2761.
[38]Crawford,Nigel M,Anthony DM.Molecular and physiological aspectsof nitrate uptake in plants[J].Trends in Plant Science,1998,10(10):389-395.
[39]馮素花.茶樹硝酸根轉(zhuǎn)運(yùn)蛋白NRT1.2、NRT1.5和NRT2.5基因的克隆與表達(dá)[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014.
[40]Doddema H,Hofstra JJ,F(xiàn)eenstraW J.Uptake of Nitrate by Mutants of Arabidopsis thaliana,Disturbed in Uptake or Reduction of Nitrate[J].Physiologia Plantarum,1978,43(4):343-350.
[41]張合瓊,張漢馬,梁永書,等.植物硝酸鹽轉(zhuǎn)運(yùn)蛋白研究進(jìn)展[J].植物生理學(xué)報(bào),2016(2):141-149.
[42]Munos S,Cazettes C,F(xiàn)izames C,et al.Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter,NRT2.1[J].Plant Cell,2004,16(9):2433-2447.
[43]Guo FQ,Crawford N M.The Arabidopsis dual-affinity nitrate transporter gene At NRT1.1(CHL1)is activated and functions in nascent organ development during vegetative and reproductive growth.[J].Plant Cell,2001,13(8):1761.
[44]Mounier E,Pervent M,Ljung K,et al.Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability[J].Plant Cell&Environment,2013,37(1):162-174.
[45]Guo FQ,Wang R,Crawford N M.The Arabidopsis dual-affinity nitrate transporter gene At NRT1.1(CHL1)is regulated by auxin in both shoots and roots[J].JExp Bot,2002,53(370):835-844.
[46]Guo W,Zuo Z,Cheng X,et al.The chloride channel family gene CLCd negatively regulates pathogen-associated molecular pattern(PAMP)-triggered immunity in Arabidopsis.[J].Journal of Experimental Botany,2014,65(4):1205.
[47]X F,F(xiàn)eng H,Tan Y.A putative 6 trans-membrane nitrate transporter Os NRT1.1b plays a key role in rice under low nitrogen[J].J Integr Plant Biol,2016,58(6):590-599.
[48]Hu B,WangW,Ou S,et al.Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J].Nat Genet,2015,47(7):834-838.
[49]Liu K H,Huang CY,Tsay Y F.CHL1 isa dual-affinity nitrate transporter of Arabidopsis involved inmultiple phasesof nitrate uptake[J].Plant Cell,1999,11(5):865-874.
[50]Morere-Le PM,Viau L,Hamon A,et al.Characterization of a dual-affinity nitrate transporter Mt NRT1.3 in themodel legume Medicago truncatula[J].JExp Bot,2011,62(15):5595-5605.
[51]Sun J,Bankston JR,Payandeh J,et al.Crystal structure of the plant dual-affinity nitrate transporter NRT1.1[J].Nature,2014,507(7490):73-77.
[52]Parker JL,Newstead S.Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1[J].Nature,2014,507(7490):68-72.
[53]Law C J,Maloney PC,Wang D N.Ins and outs ofmajor facilitator superfamily antiporters[J].Annu Rev Microbiol,2008,62:289-305.
[54]Yan N.Structural advances for themajor facilitator superfamily(MFS)transporters[J].Trends Biochem Sci,2013,38(3):151-159.
[55]Sun J,Zheng N.Molecular Mechanism Underlying the Plant NRT1.1 Dual-Affinity Nitrate Transporter[J].Front Physiol,2015,6:386.
[56]Tsay Y F.Plant science:How to switch affinity[J].Nature,2014,507(7490):44-45.
[57]Cerezo M,Tillard P,F(xiàn)illeur S,etal.Major Alterations of the Regulation of Root NO3-Uptake Are Associated with the Mutation of NRT2.1 and NRT2.2 Genes in Arabidopsis[J],Plant Physiology,2001,127(1):262.
[58]Filleur S,Danielvedele F.Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display[J].Planta,1999,207(3):461.
[59]Lejay L,Tillard P,Lepetit M,et al.Molecular and functional regulation of two NO3-uptake systems by N-and C-status of Arabidopsis plants[J].Plant J,1999,18(5):509-519.
[60]Wang R,Xing X,Wang Y,et al.A Genetic Screen for Nitrate Regulatory Mutants Captures the Nitrate Transporter Gene NRT1.1[J].Plant Physiology,2009,151(1):472.
[61]Guardiola JL.Plant hormones.Physiology,biochemistry and molecular biology:Peter J.Davies(Editor),Kluwer Academic Publishers,Dordrecht,The Netherlands,1995,883 pp.,US$59.50(hardcover)ISBN 0-7923-2 984-8 and(paperback)ISBN 0-7923-2985-6[J].Scientia Horticulturae,1996,66(3):267-270.
[62]Reinhardt D.Vascular Patterning:More Than Just Auxin[J].Current Biology Cb,2003,13(12):485-487.
[63]BenkováE,Michniewicz M,Sauer M,et al.Local,Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation[J].Cell,2003,115(5):591-602.
[64]Krouk G,Crawford NM,CoruzziGM,etal.Nitrate signaling:adaptation to fluctuating environments[J].Curr Opin Plant Biol,2010,13(3):266-273.
[65]Remans T,Nacry P,Pervent M,et al.The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches.[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(50):19206-11.
[66]Guo FQ,Crawford N M.The Arabidopsis dual-affinity nitrate transporter gene At NRT1.1(CHL1)is activated and functions in nascent organ development during vegetative and reproductive growth.[J].Plant Cell,2001,13(8):1761-1777.
[67]Meraviglia G,Romani G,Beffagna N.The chl1 Arabidopsismutant impaired in the nitrate-inducible NO3?transporter has an acidic intracellular pH in the absence of nitrate[J].Journal of Plant Physiology,1996,149(3-4):307-310.
[68]Zhou JJ,Theodoulou F L,Muldin I,et al.Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine[J].Journal of Biological Chemistry,1998,273(20):12017-12023.
[69]鄭冬超,夏新莉,尹偉倫.生長(zhǎng)素促進(jìn)擬南芥At NRT1.1基因表達(dá)增強(qiáng)硝酸鹽吸收[J].北京林業(yè)大學(xué)學(xué)報(bào),2013(2):80-85.
[70]Forde BG,Walch-Liu P.Nitrate and glutamate as environmental cues for behavioural responses in plant roots[J].Plant Cell&Environment,2009,32(6):682-693.
[71]Walch-Liu P,F(xiàn)orde B G.Nitrate signallingmediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture[J].Plant J,2008,54(5):820-828.
[72]Goode JA,Organizers D C.Improving Plant Drought,Salt and Freezing Tolerance by Gene Transfer of a Single Stress-Inducible Transcription Factor[M].John Wiley&Sons,Ltd,2007:176-189.
[73]張亞軍,王麗學(xué),陳超,等.植物對(duì)逆境的響應(yīng)機(jī)制研究進(jìn)展[J].江西農(nóng)業(yè)學(xué)報(bào),2011(9):60-65.
[74]陳愛葵,王茂意,劉曉海,等.水稻對(duì)重金屬鎘的吸收及耐性機(jī)理研究進(jìn)展[J].生態(tài)科學(xué),2013(4):514-522.
[75]趙學(xué)強(qiáng),沈仁芳.提高鋁毒脅迫下植物氮磷利用的策略分析[J].植物生理學(xué)報(bào),2015(10):1583-1589.
[76]Chaffei C,Pageau K,Suzuki A,et al.Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to ametabolic safeguard through an amino acid storage strategy[J].Plant Cell Physiol,2004,45(11):1681-1693.
[77]毛倩倩.NRT1.1和MPK6調(diào)控植物耐鎘脅迫的作用機(jī)制[D].浙江:浙江大學(xué),2014.
[78]熊和平.苧麻多功能深度開發(fā)利用系列報(bào)道之一,苧麻多功能開發(fā)潛力及利用途徑[J].中國(guó)麻業(yè)科學(xué),2001,23(1):23-26.
[79]喻春明,陳建榮,王延周,等.苧麻分子育種與飼料用苧麻研究進(jìn)展[J].中國(guó)麻業(yè)科學(xué),2007(S2):389-392.
[80]譚龍濤.苧麻氮代謝高效基因型篩選及表達(dá)分析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2015.
[81]肖紅松,崔國(guó)賢,曾維愛,等.麻類作物根系研究概述[J].作物研究,2005(S1):359-363.
[82]廖麗萍,肖愛平,冷鵑,等.苧麻根、葉化學(xué)成分及藥用研究概況[J].中國(guó)麻業(yè)科學(xué),2013,35(3):163-166.
[83]王欣.苧麻鎘耐性機(jī)制及應(yīng)用研究[D].長(zhǎng)沙:湖南大學(xué),2011.
Research Progress of NRT1.1 in Plant and its Prospect in Ram ie Research
HOU Mei,YU Chunming*
(Institute of Bast Fiber Crops,Chinese Academy of Agricultural Sciences,Changsha 410205,China)
Under natural conditions,nitrate is themajor nitrogen sources absorbed from the outside in non-nitrogen fixing plants.Plants uptake and utilize nitrate through a series of nitrate transporters,and nitrate transporter 1.1(NRT1.1)is the first protein to play a role in roots after they absorb nitrate. It is shown that the phosphorylation of Thr101 in the amino acid sequence displays the dual-affinity nitrate transporter of NRT1.1.NRT1.1 also can be used as a signalmolecule regulating the growth and development of lateral root.NRT1.1 is notonly involved in responding to nitrate and transporting it,butalso involved in responding to abiotic stress.According to the latest research reports,the paper summarized the research progress of nitrate transporter NRT1.1 in plant and described its prospect in ramie research in order to provide reference for the study of nitrogen assimilation efficiency of ramie and improve ramie stress resistance ability.In addition,it is aimed to provide a theoretical basis and direction for Ramie Breeding.
nitrate;NRT1.1;transport;signal;ramie
S563.1
A
1671-3532(2017)04-0207-08
2017-03-07
國(guó)家麻類產(chǎn)業(yè)技術(shù)體系(CARS-19-E02);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IBFC05)
侯美(1990-),女,在讀碩士,主要從事作物遺傳育種研究。E-mail:qyhoumei@163.com
*通訊作者:喻春明(1964-),男,研究員,主要從事苧麻遺傳育種研究。E-mail:nxycm@163.com