包鈺婷 郭在培 王小雪 楊北辰
?
芍藥苷抗氧化應(yīng)激機制研究進展
包鈺婷 郭在培 王小雪 楊北辰
大量研究表明芍藥苷具有明顯的抗氧化作用,主要通過抑制氧化亢進、增強抗氧化能力、改善線粒體功能、抑制鈣離子超載、抗凋亡、抑制/活化相關(guān)信號通路等多途徑、多靶點發(fā)揮作用,本文將對其進行綜述。
芍藥苷; 抗氧化應(yīng)激
芍藥苷(paeoniflorin,PF)提取自芍藥的根部,是其主要生物活性物質(zhì)。國內(nèi)外多項體內(nèi)外研究表明,PF是一種有效的抗氧化劑。本文將對PF抗氧化應(yīng)激機制的研究進展進行綜述,為其臨床應(yīng)用提供科學(xué)理論依據(jù)。
1.1 活性氧簇(reactive oxygen species,ROS) 大量研究應(yīng)用不同實驗方法均發(fā)現(xiàn)PF可明顯清除ROS的過度產(chǎn)生。Wankun等[1]應(yīng)用分光光度法發(fā)現(xiàn)PF能明顯減少H2O2誘導(dǎo)的人視網(wǎng)膜色素細胞內(nèi)ROS生成;Yu等[2]應(yīng)用流式細胞術(shù)檢測到PF顯著降低了γ輻射誘導(dǎo)的人EAhy926細胞內(nèi)ROS生成。
1.2 NADPH氧化酶(NOX) 研究發(fā)現(xiàn),PF能顯著抑制多比柔星誘導(dǎo)的心肌細胞NOX2、NOX4 mRNA及蛋白的表達,降低NOX的活性[3];有報道PF能劑量依賴性地降低高糖誘導(dǎo)的腎小球系膜細胞NOX活性[4],從而改善氧化應(yīng)激對組織細胞造成的損傷。
1.3 活性氮簇(reactive nitrogen species,RNS) 部分研究發(fā)現(xiàn)PF可有效抑制RNS的產(chǎn)生。例如,Su等[5]應(yīng)用免疫印跡法發(fā)現(xiàn)PF明顯抑制了脂多糖(LPS)誘導(dǎo)的糖尿病大鼠腎臟蛋白質(zhì)3-NT升高,而該蛋白是·ONOO-產(chǎn)生的一種間接標(biāo)記物;Zhong等[6]應(yīng)用分光光度法檢測到PF能顯著減少β淀粉樣肽1-42[β-amyloid peptide(1-42),Aβ(1-42)]誘導(dǎo)的大鼠海馬組織NO產(chǎn)生。
然而,PF對DPPH·的清除效果尚有爭議。有研究表明PF可顯著清除DPPH溶液中的自由基[7];還有報道認為PF不能清除H2O2誘導(dǎo)的大鼠皮層內(nèi)自由基[8]。這可能與PF對氧化應(yīng)激化學(xué)體系與生物體系的影響存在差異有關(guān)。
1.4 一氧化氮合酶(NOS) 有研究顯示PF能明顯抑制缺血誘導(dǎo)的大鼠腦組織中iNOS蛋白表達[9]以及降低Aβ(1-42)誘導(dǎo)的NOS活性增高,降低NO水平[10]。
1.5 丙二醛(MDA)、乳酸脫氫酶(LDH)、羰基蛋白質(zhì)(carbonyl protein,CP)、髓過氧化物酶(myeloperoxidase,MPO)、過氧心磷脂、8-異前列腺素 F2α等氧化指標(biāo) 研究表明,PF能顯著降低缺氧誘導(dǎo)的乳鼠心肌細胞產(chǎn)生的LDH和MDA[11],還減少了葡聚糖硫酸鈉(dextran sulfate sodium,DSS)誘導(dǎo)小鼠產(chǎn)生的MPO[12],也能明顯抑制Aβ(1-42)誘導(dǎo)大鼠海馬組織產(chǎn)生CP和MDA[6]。還有報道顯示,PF能抑制甲基乙二醛(methylglyoxal,MG)誘導(dǎo)成骨MC3T3-E1細胞線粒體膜心磷脂分子亞油酸成分過氧化[13]。也有學(xué)者發(fā)現(xiàn)PF治療尋常型銀屑病有效,并能夠明顯減少銀屑病患者血清及皮損中8-異前列腺素 F2α 水平[14],認為其治療銀屑病有效與抗該物質(zhì)的氧化作用有關(guān)。
2.1 抗氧化指標(biāo) 谷胱甘肽過氧化物酶(GSH-Px)、過氧化氫酶(CAT)、硫氧蛋白還原酶、超氧化物歧化酶(SOD)、總抗氧化能力(T-AOC)
據(jù)報道,PF能顯著提高糖基化終產(chǎn)物誘導(dǎo)腎小球系膜細胞HBZY-1產(chǎn)生的GSH-Px和CAT[15],還能使抗霉素A誘導(dǎo)成骨MC3T3-E1細胞失活的硫氧蛋白還原酶恢復(fù)其活性[16];此外,有學(xué)者發(fā)現(xiàn)PF能夠顯著升高銀屑病患者血清T-AOC水平及SOD,GSH-Px活性[14],從而增強機體組織抗氧化能力,減輕氧化應(yīng)激對患者組織造成的炎癥反應(yīng)和損傷。
2.2 Kelch樣ECH相關(guān)蛋白1-核因子E2相關(guān)因子2-抗氧化反應(yīng)元件通路(Keap1-Nrf2-ARE通路) 研究發(fā)現(xiàn)Aβ(1-42)可下調(diào)海馬組織 Nrf2 mRNA的表達,進而使其下游抗氧化酶 γ-GCS和OH-1 mRNA表達減少,過氧化脂質(zhì)及蛋白氧化增多,而PF可以活化Nrf2/ARE抗氧化通路,增加 Nrf2及其下游抗氧化酶的表達,從而減輕氧化應(yīng)激作用[17]。據(jù)報道,局灶性大鼠腦缺血再灌注腦組織中SOD活性明顯下降、Nrf2的表達有所增加,而PF處理后Nrf2 mRNA、蛋白分子持續(xù)上調(diào),對局灶性腦缺血損傷有明顯的抗氧化應(yīng)激的保護作用[18]。
研究顯示抗霉素A(線粒體復(fù)合物III抑制劑)誘導(dǎo)成骨MC3T3-E1細胞線粒體膜電位下降,ATP生成減少,呼吸鏈復(fù)合物I和IV失活,細胞色素C釋放,而PF能夠有效改善上述改變[16]。也有研究表明,β淀粉樣肽25-35(β-amyloid peptide (25-35),Aβ(25-35))明顯誘導(dǎo)PC12細胞線粒體膜電位下降,細胞色素C釋放,導(dǎo)致線粒體功能障礙,而PF能扭轉(zhuǎn)這種作用[19]。
4.1 B細胞淋巴瘤2蛋白家族(Bcl-2蛋白家族) 有研究顯示谷氨酸能誘導(dǎo)PC12細胞Bcl-2蛋白水平表達顯著下降,PF可顯著增加其表達并呈劑量依賴性,而對Bax的表達水平其作用正好相反[20];另一研究表明,Aβ(25-35)誘導(dǎo)SH-SY5Y細胞增加促凋亡Bax / Bcl-2蛋白比率,釋放細胞色素C,而用PF能明顯改善這些由Aβ(25-35)誘導(dǎo)的與凋亡緊密相關(guān)的生化改變[21]。
4.2 半胱氨酸天冬氨酸蛋白酶(Caspases) 研究表明PF能顯著抑制Aβ(25-35)誘導(dǎo)SH-SY5Y細胞產(chǎn)生的Caspase-9和Caspase-3活性增強[21],還能明顯降低H2O2誘導(dǎo)的PC12細胞產(chǎn)生的Caspase-3活性增強、PARP增多[22]。以上研究結(jié)果均表明PF可通過多種不同的靶點發(fā)揮抗細胞凋亡作用。
有報道顯示,PF可以阻斷神經(jīng)細胞中L型鈣通道,抑制辣椒堿(capsaicin,CAP)誘導(dǎo)的HaCaT細胞鈣離子內(nèi)流,減少鈣離子超載引起的細胞毒性[23];還能抑制酸敏感離子通道1a(acid-sensing ion channel 1a,ASIC1a),減少1-甲基-4-苯基吡啶(1-methyl-4-phenylpyridinium,MPP+)誘導(dǎo)的PC12細胞鈣離子內(nèi)流[24];也可抑制鈣調(diào)蛋白激酶II(CaM dependent protein kinaseII,CaMKII)的表達,有效防止谷氨酸誘導(dǎo)的PC12細胞內(nèi)鈣離子內(nèi)流[25]。還有研究表明,大鼠全腦缺血時可啟動電壓依賴性和谷氨酸門控通道受體(N-methyl-D-aspartic acid receptor,NMDA受體)相關(guān)的Ca2+通道而導(dǎo)致大量Ca2+內(nèi)流,最終造成神經(jīng)元損傷,而PF可明顯改善上述變化[26]。
6.1 絲裂原活化蛋白激酶通路(MAPKs通路) 研究表明PF可抑制H2O2激活的人視網(wǎng)膜色素上皮細胞P38和ERK1/2通路,而JNK通路未被H2O2激活[1];PF還能抑制大腦中動脈閉塞(middle cerebral artery occlusion,MCAO)誘導(dǎo)的星形膠質(zhì)細胞和小膠質(zhì)細胞JNK和p38通路激活,但增強了ERK通路活化[27];有報道顯示,PF也可抑制γ射線誘導(dǎo)的ERK、JNK和p38通路活化[28]。
6.2 磷脂酰肌醇3-激酶/蛋白激酶B通路(PI3K/ AKT通路) 研究表明PF能夠激活PI3K-Akt信號傳導(dǎo)途徑,抵御H2O2誘導(dǎo)的大鼠神經(jīng)祖細胞凋亡[29]和ANIT誘導(dǎo)的大鼠肝臟細胞凋亡[30]。還有報道稱,PF能夠提高PC12細胞PI3K及Akt磷酸化水平,滅活其下游分子糖原合成酶激酶3(glycogensynthasekinase 3,GSK3),抑制MPP+誘導(dǎo)的細胞凋亡[31]。與之相反,另一研究表明,LPS誘導(dǎo)內(nèi)皮細胞PI3K和Akt的顯著磷酸化,擾亂細胞骨架及細胞通透性,而PF以濃度依賴性抑制了PI3K/AKT通路的活化[32]。以上研究提示,用不同刺激誘導(dǎo)物質(zhì)作用于不同的組織細胞時,PF可能對此通路顯示不同的作用。
6.3 核因子κB通路(NF-κB通路) 研究表明,高糖可誘導(dǎo)大鼠腎臟組織細胞P38和NF-kB信號通路活性增強,而PF抑制了上述通路激活[5];另有研究顯示,PF可以顯著減輕6-OHDA誘導(dǎo)的PC12細胞NF-κB通路活化、蛋白激酶Cd(PKCd)表達增多,但不影響Akt,JNK,p38和ERK1/2磷酸化,作者認為PF至少部分通過抑制ROS/ PKCd /NF-κB信號通路活化而抑制了PC12細胞凋亡[33]。
7.1 抑制內(nèi)質(zhì)網(wǎng)應(yīng)激 研究發(fā)現(xiàn),PF能夠阻斷PERK-eIF2a-ATF4通路,抑制半乳糖胺/TNF-α引起的人L02肝臟細胞的ER應(yīng)激,還能抑制誘導(dǎo)的CHOP/GADD153表達增多、前Caspase-4活化[34]。
7.2 激活腺苷受體 有研究發(fā)現(xiàn),缺血再灌注誘導(dǎo)大鼠原代培養(yǎng)皮層神經(jīng)元損傷,而PF激活腺苷A1受體,降低cAMP水平,導(dǎo)致表皮生長因子受體磷酸化,提高其缺血性損傷后的生存率[35]。
7.3 激活內(nèi)噬途徑 據(jù)報道,PF能夠激活MPP+抑制的PC12細胞CMA途徑,改善線粒體功能障礙,保護神經(jīng)元[24]。
目前,大量體內(nèi)外研究證實:PF抗組織細胞氧化應(yīng)激損傷的機制,與其通過抑制氧化亢進、增強抗氧化能力、改善線粒體功能、抑制鈣離子超載、抗凋亡、抑制/激活相關(guān)信號通路等多途徑、多靶點發(fā)揮其作用相關(guān),具有獨特的抗氧化應(yīng)激優(yōu)勢,值得進一步深入研究,闡明其作用機制并更好地用于指導(dǎo)臨床的應(yīng)用研究。
[1] Wankun X, Wenzhen Y, Min Z, et al. Protective effect of paeoniflorin against oxidative stress in human retinal pigment epithelium in vitro[J]. Mol Vis,2011,17:3512-3522.
[2] Yu J, Zhu X, Qi X, et al. Paeoniflorin protects human EA. hy926 endothelial cells against gamma-radiation induced oxidative injury by activating the NF-E2-related factor 2/heme oxygenase-1 pathway[J]. Toxicol Lett,2013,218(3):224-234.
[3] Li JZ, Yu SY, Wu JH, et al. Paeoniflorin protects myocardial cell from doxorubicin-induced apoptosis through inhibition of NADPH oxidase[J]. Can J Physiol Pharmacol,2012,90(12):1569-1575.
[4] Sun M, Huang L, Zhu J, et al. Screening nephroprotective compounds from cortex Moutan by mesangial cell extraction and UPLC[J]. Arch Pharm Res,2015,38(6):1044-1053.
[5] Su J, Zhang P, Zhang JJ, et al. Effects of total glucosides of paeony on oxidative stress in the kidney from diabetic rats[J]. Phytomedicine,2010,17(3-4):254-260.
[6] Zhong SZ, Ge QH, Li Q, et al. Peoniflorin attentuates Aβ (1-42)-mediated neurotoxicity by regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats[J]. J Neurol Sci,2009,280(1):71-78.
[7] 劉芬,詹文紅.白芍總苷體外抗氧化活性研究[J]. 現(xiàn)代藥物與臨床,2015,(2):132-135.
[8] Kim SH, Lee MK, Lee KY, et al. Chemical constituents isolated from Paeonia lactiflora roots and their neuroprotective activity against oxidative stress in vitro[J]. J Enzyme Inhib Med Chem,2009,24(5):1138-1140.
[9] Guo RB, Wang GF, Zhao AP, et al. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses[J]. PLoS One,2012,7(11):e49701.
[10] Chen G, Guo L, Deng X, et al. Effects of total glucosides of paeony on nitric oxide and inducible nitric oxide synthase production in macrophages and its mechanism[J]. Zhongguo Mian Yi Xue Za Zhi,2008,24:345-347.
[11] 張金艷,李澎,李貽奎,等.丹皮酚,芍藥苷及二者配伍對體外培養(yǎng)心肌細胞缺氧/復(fù)氧損傷的影響[J].中國中西醫(yī)結(jié)合雜志,2012,32(4):510-514.
[12] Zhang J, Dou W, Zhang E, et al. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway[J]. Am Journal Physiol Gastrointest Liver Physiol,2014,306(1):G27-G36.
[13] Choi EM, Suh KS, Rhee SY, et al. Inhibitory effect of paeoniflorin on methylglyoxal-mediated oxidative stress in osteoblastic MC3T3-E1 cells[J]. Phytomedicine,2014,21(10):1170-1177.
[14] 焦曉燕,郭在培,陳濤,等.白芍總苷對輕、中度尋常性銀屑病氧化應(yīng)激狀態(tài)的影響[J]. 中國皮膚性病學(xué)雜志,2012,26(4):287-290.
[15] Zhang MH, Feng L, Zhu MM, et al. Antioxidative and Anti-inflammatory Activities of Paeoniflorin and Oxypaeoniflora on AGEs-Induced Mesangial Cell Damage[J]. Planta Med,2013,79(14):1319-1323.
[16] Choi EM, Lee YS. Paeoniflorin isolated from Paeonia lactiflora attenuates osteoblast cytotoxicity induced by antimycin A[J]. Food Funct,2013,4(9):1332-1338.
[17] 鐘樹志,馬世平,洪宗元.芍藥苷活化Nrf2/ARE通路減輕 Aβ (1-42)誘導(dǎo)的大鼠海馬神經(jīng)元損傷[J]. 藥學(xué)學(xué)報,2013,8:029.
[18] 何錦悅,饒夢琳,唐蜜,等.芍藥苷對局灶性大鼠腦缺血再灌注腦組織中SOD, Nrf2表達的影響及神經(jīng)保護作用[J]. 重慶醫(yī)科大學(xué)學(xué)報,2014,39(2):178-182.
[19] Li J, Ji X, Zhang J, et al. Paeoniflorin attenuates Aβ25-35-induced neurotoxicity in PC12 cells by preventing mitochondrial dysfunction[J]. Folia Neuropathol,2014,52(3):285-290.
[20] Sun R, Wang K, Wu D, et al. Protective effect of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via Bcl-2/Bax signal pathway[J]. Folia Neuropathol,2012,50(3):270-276.
[21] Wang K, Zhu L, Zhu X, et al. Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction[J]. Cell Mol Neurobiol,2014,34(2):227-234.
[22] Li P, Li Z. Neuroprotective effect of paeoniflorin on H2O2-induced apoptosis in PC12 cells by modulation of reactive oxygen species and the inflammatory response[J]. Exp Ther Med,2015,9(5):1768-1772.
[23] Huang J, Qiu L, Ding L, et al. Ginsenoside Rb1 and paeoniflorin inhibit transient receptor potential vanilloid-1-activated IL-8 and PGE2 production in a human keratinocyte cell line HaCaT[J]. Int Immunopharmacol,2010,10(10):1279-1283.
[24] Sun X, Cao YB, Hu LF, et al. ASICs mediate the modulatory effect by paeoniflorin on alpha-synuclein autophagic degradation[J]. Brain Res,2011,1396:77-87.
[25] Wang D, Tan QR, Zhang ZJ. Neuroprotective effects of paeoniflorin, but not the isomer albiflorin, are associated with the suppression of intracellular calcium and calcium/calmodulin protein kinase II in PC12 cells[J]. J Mol Neurosci,2013,51(2):581-590.
[26] 孫蓉,衣銀萍,呂麗莉,等.芍藥苷對大鼠全腦缺血模型的影響[J].中國中藥雜志,2008,32(23):2518-2522.
[27] Guo RB, Wang GF, Zhao AP, et al. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses[J]. PLoS One,2012,7(11):e49701.
[28] Li CR, Zhou Z, Zhu D, et al. Protective effect of paeoniflorin on irradiation-induced cell damage involved in modulation of reactive oxygen species and the mitogen-activated protein kinases[J]. Int J Biochem Cell Biol,2007,39(2):426-438.
[29] Wu YM, Jin R, Yang L, et al. Phosphatidylinositol 3 kinase/protein kinase B is responsible for the protection of paeoniflorin upon H2O2-induced neural progenitor cell injury[J]. Neuroscience,2013,240:54-62.
[30] Chen Z, Ma X, Zhu Y, et al. Paeoniflorin ameliorates ANIT-induced cholestasis by activating Nrf2 through an PI3K/Akt-dependent pathway in rats[J]. Phytother Res,2015,29(11):1768-1775.
[31] Wang D, Wong HK, Feng YB, et al. Paeoniflorin, a natural neuroprotective agent, modulates multiple anti-apoptotic and pro-apoptotic pathways in differentiated PC12 cells[J]. Cell Mol Neurobiol,2013,33(4):521-529.
[32] Xu H, Song J, Gao X, et al. Paeoniflorin attenuates lipopolysaccharide-induced permeability of endothelial cells: involvements of F-actin expression and phosphorylations of PI3K/Akt and PKC[J]. Inflammation,2013,36(1):216-225.
[33] Dong H, Li R, Yu C, et al. Paeoniflorin inhibition of 6-hydroxydopamine-induced apoptosis in PC12 cells via suppressing reactive oxygen species-mediated PKCδ/NF-κB pathway[J]. Neuroscience,2015,285:70-80.
[34] Jiang Z, Chen W, Yan X, et al. Paeoniflorin protects cells from GalN/TNF-α-induced apoptosis via ER stress and mitochondria-dependent pathways in human L02 hepatocytes[J]. Acta Biochim Biophys Sin,2014,46(5):357-367.
[35] Zhong M, Song WL, Xu YC, et al. Paeoniflorin ameliorates ischemic neuronal damage in vitro via adenosine A1 receptor-mediated transactivation of epidermal growth factor receptor[J]. Acta Pharmacol Sin,2015,36(3):298-310.
(收稿:2016-04-18)
·臨床研究·
Update of the oxidative stress mechanism of paeoniflorin
BAOYuting,GUOZaipei,WANGXiaoxue,YANGBeichen.
DepartmentofDermatovenereology,WestChinaHospitalofSichuanUniversity,Chengdu610041,China
GUOZaipei,E-mail:guozp930@163.com
The significantly antioxidant effect of paeoniflorin is reported in many reports recently. The mechanism of antioxidant stress relating to inhibition of the hyperoxidation, enhancing antioxidant capacity, improving mitochondrial function, inhibiting calcium overload, anti-apoptosis, inhibiting or activating relative signaling pathways ect, which is reviewed in this article.
paeoniflorin; oxidative stress
四川大學(xué)華西醫(yī)院皮膚性病科,四川成都,610041
郭在培,E-mail:guozp930@163.com