顧玉露, 章曉燕,2,3*
1. 上海市腎病與透析研究所,上海 200032 2. 復(fù)旦大學(xué)附屬中山醫(yī)院腎內(nèi)科,上海 200032 3. 上海市腎病與血液凈化重點(diǎn)實(shí)驗(yàn)室,上海 200032
·>綜述·
硫化氫延緩腎臟纖維化作用機(jī)制的研究進(jìn)展
顧玉露1, 章曉燕1,2,3*
1. 上海市腎病與透析研究所,上海 200032 2. 復(fù)旦大學(xué)附屬中山醫(yī)院腎內(nèi)科,上海 200032 3. 上海市腎病與血液凈化重點(diǎn)實(shí)驗(yàn)室,上海 200032
硫化氫(hydrogen sulfide,H2S)在體內(nèi)是一種內(nèi)源性氣體信號(hào)分子,在腎臟中表達(dá)豐富,在不同生理病理?xiàng)l件下發(fā)揮重要調(diào)節(jié)作用。腎臟纖維化時(shí),H2S含量明顯降低,補(bǔ)充外源性H2S可明顯減輕纖維化程度。大量研究表明,H2S在腎臟纖維化過程中發(fā)揮保護(hù)作用,其機(jī)制包括抗炎癥、抗氧化應(yīng)激、抗上皮間質(zhì)轉(zhuǎn)化、調(diào)節(jié)細(xì)胞增殖與凋亡、抑制纖維母細(xì)胞活化等。
硫化氫;腎臟;纖維化;氧化應(yīng)激;表觀遺傳
以往認(rèn)為,硫化氫(hydrogen sulfide,H2S)與其他氫氰化物一樣可抑制細(xì)胞色素C氧化酶,從而被視為一種有毒氣體。20世紀(jì)90年代,H2S被視為繼一氧化碳(carbon monoxide,CO)和一氧化氮(nitric oxide,NO)之后的第3種氣體信號(hào)分子。H2S具有調(diào)節(jié)血管緊張性、炎癥反應(yīng)、氧化應(yīng)激、心肌收縮、胰島素分泌等多種生理功能。近年來研究發(fā)現(xiàn),H2S可延緩多種纖維化疾病的發(fā)展,如肺纖維化、肝臟纖維化、腎臟纖維化等。腎臟纖維化是多種慢性進(jìn)展性腎臟疾病共同的結(jié)果。H2S可通過多種信號(hào)通路和分子機(jī)制延緩腎臟纖維化的發(fā)展。本文就H2S延緩腎臟纖維化的作用機(jī)制作一綜述。
1.1 H2S的來源 H2S在哺乳動(dòng)物體內(nèi)主要通過3種途徑酶促合成:(1) 胱硫醚-β-合酶(cystathionine-β-synthase,CBS)催化L-半胱氨酸和L-同型半胱氨酸脫硫生成H2S;(2) 胱硫醚-γ-裂解酶(cystathionine-γ-lyase,CSE)催化L-半胱氨酸脫硫生成H2S;(3)半胱氨酸轉(zhuǎn)氨酶催化L-半胱氨酸轉(zhuǎn)氨形成3-巰基丙酮酸,而后經(jīng)3-巰基丙酮酸轉(zhuǎn)硫酶(3-MST)催化脫硫形成H2S[1]。30多年前,Stipanuk和Beck[2]發(fā)現(xiàn)腎內(nèi)有豐富的H2S生成酶表達(dá),并首次描述H2S通過半胱氨酸脫硫形成。研究發(fā)現(xiàn),CBS是腎內(nèi)催化主要H2S產(chǎn)生的酶[3],表達(dá)于近端腎小管,而CSE散在表達(dá)于腎小球、間質(zhì)和腎動(dòng)脈[4-6]。
1.2 H2S的代謝 目前已知H2S在體內(nèi)主要通過3種途徑分解代謝:(1)H2S氧化生成硫代硫酸鹽(thiosulfate,S2O32-),然后在硫氰酸酶(thiosulfate:cyanide sulfurtransferase,TST)和亞硫酸鹽氧化酶(sulfite oxidase,SO)催化下形成硫酸鹽(sulfate,SO42-),該過程主要發(fā)生于線粒體中;(2)H2S在硫醇甲基轉(zhuǎn)移酶(thiol S-methyltransferase,TSMT)作用下發(fā)生甲基化,形成甲硫醇和二甲硫醚;(3)H2S與高鐵血紅蛋白結(jié)合形成硫化血紅蛋白[7]。
1.3 H2S在腎臟中的生物學(xué)效應(yīng) H2S對(duì)維持腎功能發(fā)揮重要作用。在多種腎臟病中,血漿或腎內(nèi)H2S水平均有明顯降低,伴隨血肌酐、尿素氮及尿蛋白的增加。Xia等[8]發(fā)現(xiàn),H2S對(duì)腎小球和腎小管功能均發(fā)揮作用,通過向腎動(dòng)脈內(nèi)灌注低劑量硫氫化鈉(NaHS)可顯著增加腎小球?yàn)V過率、尿鈉、尿鉀排泄和腎濾過分?jǐn)?shù);高劑量NaHS增加腎血流量,其機(jī)制可能與擴(kuò)張腎小球動(dòng)脈和抑制腎小管離子通道有關(guān),后者主要通過抑制Na+-K+-ATPase和Na+-K+-Cl2-共轉(zhuǎn)運(yùn)體實(shí)現(xiàn),且H2S對(duì)腎小管的作用強(qiáng)于對(duì)腎血管的作用。
H2S可作為氧傳感器監(jiān)測(cè)腎髓質(zhì)氧濃度及調(diào)節(jié)腎皮質(zhì)的局部血流。在腎缺氧狀態(tài)下,H2S通過增加髓質(zhì)血流量、減少小管運(yùn)輸耗能、抑制線粒體呼吸等作用,維持氧平衡[1]。
2.1 抗炎癥反應(yīng) 持續(xù)性損傷后的炎癥反應(yīng)激活纖維化起始過程,進(jìn)一步引起基質(zhì)細(xì)胞的活化和增殖[9],因此有效的抗炎可緩解腎纖維化的發(fā)展。已發(fā)現(xiàn)H2S可通過減少炎性介質(zhì)、降低細(xì)胞因子水平、抑制促炎酶(如誘導(dǎo)型一氧化氮合酶、環(huán)氧化酶-2)的活性,從而抑制炎癥反應(yīng)[10]。Song等[11]發(fā)現(xiàn),單側(cè)輸尿管梗阻(UUO)大鼠模型血漿H2S水平明顯降低,腎間質(zhì)巨噬細(xì)胞浸潤(rùn)增多;而腹腔注射低劑量NaHS可顯著減少巨噬細(xì)胞浸潤(rùn),降低白細(xì)胞介素-1β(IL-1β)、腫瘤壞死因子-α(TNF-α)和單核細(xì)胞趨化蛋白-1(MCP-1)的mRNA水平,從而緩解小管間質(zhì)損傷,減輕纖維化程度。Jung等[12]在UUO大鼠模型中發(fā)現(xiàn),外源性NaHS能抑制核轉(zhuǎn)錄因子-κB(NF-κB)的活化和降低Ly6G的表達(dá),減少腎內(nèi)白細(xì)胞浸潤(rùn)。由此推測(cè),H2S通過抑制NF-κB的活化及降低炎癥因子的表達(dá),從而發(fā)揮其抗纖維化作用。但也有研究[13]發(fā)現(xiàn)H2S有促炎癥作用。Liu等[14]發(fā)現(xiàn),GYY4137(1種H2S慢釋放劑)可加重順鉑引起的腎毒性損害,并伴有促炎因子如IL-1β的增加。H2S的抗炎或促炎作用可能與炎癥反應(yīng)的不同階段和H2S供體種類(快釋放劑和慢釋放劑)有關(guān)[10]。
2.2 抗氧化應(yīng)激 活性氧(reactive oxygen species,ROS)和氧化應(yīng)激對(duì)腎臟纖維化的進(jìn)展起重要作用,多功能抗氧化清除劑或抗氧化酶模擬物可有效緩解腎臟纖維化[15]。體外實(shí)驗(yàn)[16]發(fā)現(xiàn),H2S可上調(diào)人腎臟系膜細(xì)胞和足細(xì)胞內(nèi)抗氧化酶血紅素加氧酶-1(heme oxygenase,HO-1)的表達(dá)。體內(nèi)實(shí)驗(yàn)[12]發(fā)現(xiàn),UUO模型鼠腎內(nèi)過氧化物、丙二醛生成明顯增多,4-羥基壬烯醛、錳超氧化物歧化酶、過氧化氫酶表達(dá)增加,而給予外源性NaHS后可減輕這些變化,且外源性NaHS可增加腎內(nèi)總谷胱甘肽含量,降低氧化型谷胱甘肽與還原性谷胱甘肽比例。由此可見,H2S抗氧化應(yīng)激的作用主要表現(xiàn)在增加抗氧化酶活性以及調(diào)節(jié)還原性谷胱甘肽與氧化型谷胱甘肽的比例。
核轉(zhuǎn)錄因子NF-E2相關(guān)因子2(nuclear factor-E2 related factor-2 ,Nrf2)是一種調(diào)節(jié)抗氧化酶基因表達(dá)的核轉(zhuǎn)錄因子,在抗氧化應(yīng)激中發(fā)揮重要作用[17]。H2S可能通過活化Nrf2通路發(fā)揮抗氧化應(yīng)激的作用。研究[18]發(fā)現(xiàn),經(jīng)過NaHS處理的糖尿病腎病鼠體內(nèi)Nrf2核表達(dá)增加,其下游目標(biāo)Nrf2、HO-1、醌氧化還原酶1[NAD(P)H: quinine oxidoreductase 1,NQO1]也增加,同時(shí)超氧化物歧化酶和谷胱甘肽過氧化物酶活性增強(qiáng),ROS和丙二醛水平降低。
此外,H2S還可通過解離形成HS-直接清除ROS、其他非酶類抗氧化劑[如硫氧還原蛋白1(thioredoxin-1,Trx-1)]以及通過p66Shc依賴的信號(hào)轉(zhuǎn)導(dǎo)通路抑制線粒體中ROS產(chǎn)生等途徑發(fā)揮抗氧化應(yīng)激作用[17]。
2.3 抑制上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT) EMT是上皮細(xì)胞失去細(xì)胞基底膜接觸性和結(jié)構(gòu)極性的過程,形態(tài)學(xué)上類似于間質(zhì)細(xì)胞或肌成纖維細(xì)胞細(xì)胞表型的改變[19]。盡管EMT對(duì)腎纖維化發(fā)生的作用仍存在爭(zhēng)議[20],但一般認(rèn)為小管上皮細(xì)胞是基質(zhì)細(xì)胞的來源之一[9],且EMT是腎纖維化發(fā)生的潛在機(jī)制[21]。研究[22]發(fā)現(xiàn),GYY4137可抑制細(xì)胞的遷移,下調(diào)UUO模型鼠腎組織轉(zhuǎn)化生長(zhǎng)因子-β1(transforming growth factor-β1,TGF-β1)和其他EMT標(biāo)志物表達(dá),提示H2S可抑制EMT[22]。H2S可通過抑制胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-related kinase,ERK)通路和Wnt/β-連環(huán)蛋白通路,抑制TGF-β1誘導(dǎo)的腎EMT過程[23]。此外,Lv等[24]在研究H2S抗乳腺癌細(xì)胞EMT的作用時(shí)發(fā)現(xiàn),H2S降低p38磷酸化水平是其抑制EMT的潛在機(jī)制。
2.4 調(diào)節(jié)細(xì)胞增殖與凋亡 H2S可抑制腎纖維母細(xì)胞的增殖。Song等[11]研究發(fā)現(xiàn),100 mmol/L的NaHS可以抑制10%胎牛血清(fetal bovine serum,F(xiàn)BS)誘導(dǎo)的NRK-49F細(xì)胞數(shù)量增多,增殖相關(guān)基因增殖細(xì)胞核抗原(proliferating cell nuclear antigen,PCNA)、c-Myc蛋白表達(dá)也減少。可見,H2S能通過抑制DNA合成和下調(diào)增殖相關(guān)蛋白的表達(dá)抑制腎間質(zhì)成纖維細(xì)胞的增殖。
H2S還可促進(jìn)纖維母細(xì)胞的凋亡。研究[25]證實(shí),NaHS處理人肺纖維母細(xì)胞可引起微核形成增加(提示DNA損傷),使細(xì)胞周期停留在G1期,而不影響DNA修復(fù)蛋白如PCNA的表達(dá);穩(wěn)定p53及其下游蛋白如p21、Bax、細(xì)胞色素C,而不上調(diào)抗凋亡蛋白Bcl-2。因此,H2S通過誘導(dǎo)DNA損傷,抑制細(xì)胞增殖、穩(wěn)定凋亡相關(guān)因子,從而促進(jìn)纖維母細(xì)胞的凋亡。但是,H2S可抗實(shí)質(zhì)細(xì)胞凋亡。研究[26]發(fā)現(xiàn),NaHS可減少梗死心肌細(xì)胞的凋亡比例,使Bax表達(dá)減少、Bcl-2表達(dá)增加,從而增加Bcl-2與Bax比例;推測(cè)H2S可能通過增加抗凋亡蛋白與促凋亡蛋白比例來抗腎實(shí)質(zhì)細(xì)胞凋亡。
2.5 抑制纖維母細(xì)胞向肌成纖維細(xì)胞分化 正常情況下,纖維母細(xì)胞產(chǎn)生基線水平的細(xì)胞外基質(zhì)以維持間質(zhì)基質(zhì)平穩(wěn),一旦受到促纖維化因子激活或外源性機(jī)械性刺激時(shí),纖維母細(xì)胞獲得肌成纖維細(xì)胞表型,表達(dá)α-平滑肌肌動(dòng)蛋白(α-SMA),產(chǎn)生大量基質(zhì),導(dǎo)致腎臟纖維化的發(fā)展[9]。研究[11]發(fā)現(xiàn),NaHS可抑制TGF-β1引起的膠原Ⅰ、α-SMA、纖連蛋白mRNA表達(dá),以及Smad3和有絲分裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)的磷酸化作用,提示H2S通過抑制TGF-β1-Smad和MAPK信號(hào)通路,而抑制腎纖維母細(xì)胞分化為肌成纖維細(xì)胞。Pan等[27]用NaHS處理促血管生成素2(angiopoietin2,Ang2)誘導(dǎo)活化的心肌纖維母細(xì)胞,發(fā)現(xiàn)H2S可抑制ERK1/2/NOX4/ROS信號(hào)通路,且可抑制Ang2誘導(dǎo)的心肌纖維母細(xì)胞向肌成纖維細(xì)胞分化,推測(cè)H2S對(duì)ERK1/2/NOX4/ROS信號(hào)通路的抑制作用可能是抑制心肌纖維母細(xì)胞活化的機(jī)制之一。
2.6 H2S的表觀遺傳學(xué)機(jī)制 研究[28]發(fā)現(xiàn),H2S可維持線粒體DNA(mitochondrial DNA,mtDNA)復(fù)制,其通過硫巰基化修飾轉(zhuǎn)錄抑制劑干擾素調(diào)節(jié)因子1(interferon regula-tory factor-1,IRF-1)抑制DNA甲基轉(zhuǎn)移酶3a(DNA methyltransferase 3a,Dnmt3a),引起線粒體轉(zhuǎn)錄因子A(mitochondrial transcription factor A,TFAM)啟動(dòng)子去甲基化,增強(qiáng)TFAM的表達(dá),從而增加mtDNA拷貝數(shù)量和線粒體標(biāo)記基因表達(dá)。mtDNA異常復(fù)制可能損傷線粒體功能和結(jié)構(gòu)。而線粒體功能障礙促進(jìn)腎小管間質(zhì)纖維化,減輕線粒體功能障礙能夠延緩纖維化過程[29]。因此猜測(cè)H2S可能通過TFAM去甲基化維持正常mtDNA復(fù)制,以維持線粒體正常功能,從而發(fā)揮其抗腎臟纖維化作用。另有研究[30]發(fā)現(xiàn),NaHS預(yù)處理可降低脂多糖誘導(dǎo)的炎癥反應(yīng),其機(jī)制可能是抑制IL-6和TNF-α啟動(dòng)子區(qū)組蛋白H3乙?;?,抑制染色質(zhì)開放性,從而下調(diào)IL-6和TNF-α的表達(dá)。
雖然H2S抗腎臟纖維化的作用已明確,但其對(duì)腎臟發(fā)揮保護(hù)作用的劑量范圍仍未清楚。Song等[11]發(fā)現(xiàn),高劑量的NaHS(560 μg·kg-1·d-1,腹腔注射)無抗腎纖維化作用,反而加重纖維化程度,伴腎皮質(zhì)巨噬細(xì)胞浸潤(rùn)增多,MCP-1和TNF-α的mRNA表達(dá)增加,而低劑量組表現(xiàn)為明顯的腎保護(hù)效應(yīng)。
目前,H2S抗腎臟纖維化作用已在多項(xiàng)體內(nèi)體外實(shí)驗(yàn)得到證實(shí),但更深入的分子機(jī)制仍有待探討。尤其是H2S在表觀遺傳學(xué)機(jī)制方面的作用值得深入探討。然而,高劑量的H2S對(duì)人體有害、不能緩解腎臟纖維化;而劑量過低時(shí),其抗纖維化效果較小。因此用于抗腎臟纖維化的外源性NaHS的劑量仍有待明確。另外,NaHS可引起體內(nèi)H2S濃度快速升高,無法持續(xù)維持腎內(nèi)有效的H2S濃度,因此尋找H2S慢釋放劑顯得尤為重要。目前用于腎臟的H2S供體有GYY4137和AP39,其對(duì)于抗腎臟纖維化的作用機(jī)制仍需更進(jìn)一步研究。
[ 1 ] BELTOWSKI J. Hypoxia in the renal medulla: implications for hydrogen sulfide signaling[J]. J Pharmacol Exp Ther, 2010, 334(2):358-363.
[ 2 ] STIPANUK M H, BECK P W. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat[J]. Biochem J, 1982, 206(2):267-277.
[ 3 ] KABIL O, VITVITSKY V, XIE P, et al. The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues[J]. Antioxid Redox Signal, 2011, 15(2):363-372.
[ 4 ] NAGAHARA N, ITO T, KITAMURA H, et al. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis[J]. Histochem Cell Biol, 1998, 110(3):243-250.
[ 5 ] HOUSE J D, BROSNAN M E, BROSNAN J T. Characterization of homocysteine metabolism in the rat kidney[J]. Biochem J, 1997,328( Pt 1): 287-292.
[ 6 ] YAMAMOTO J, SATO W, KOSUGI T, et al. Distribution of hydrogen sulfide (H2S)-producing enzymes and the roles of the H2S donor sodium hydrosulfide in diabetic nephropathy[J]. Clin Exp Nephrol, 2013, 17(1):32-40.
[ 7 ] LOWICKA E, BELTOWSKI J. Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists[J]. Pharmacol Rep, 2007, 59(1):4-24.
[ 8 ] XIA M, CHEN L, MUH R W, et al. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys[J]. J Pharmacol Exp Ther, 2009, 329(3):1056-1062.
[ 9 ] LIU Y. Cellular and molecular mechanisms of renal fibrosis[J]. Nat Rev Nephrol, 2011, 7(12):684-696.
[10] LI L, FOX B, KEEBLE J, et al. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells[J]. J Cell Mol Med, 2013, 17(3):365-376.
[11] SONG K, WANG F, LI Q, et al. Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy[J]. Kidney Int,2014,85(6):1318-1329.
[12] JUNG K J, JANG H S, KIM J I, et al. Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction[J]. Biochim Biophys Acta, 2013, 1832(12):1989-1997.
[13] WHITEMAN M, WINYARD P G. Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising[J]. Expert Rev Clin Pharmacol, 2011, 4(1):13-32.
[14] LIU M, JIA Z, SUN Y, et al. A H2S donor GYY4137 exacerbates cisplatin-Induced nephrotoxicity in mice[J]. Mediators Inflamm,2016,2016:8145785.
[15] KIM J, SEOK Y M, JUNG K J, et al. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice[J]. Am J Physiol Renal Physiol,2009,297(2):F461-F470.
[16] D'ARAIO E, SHAW N, MILLWARD A, et al. Hydrogen sulfide induces heme oxygenase-1 in human kidney cells[J]. Acta Diabetol,2014,51(1):155-157.
[17] XIE Z Z, LIU Y, BIAN J S. Hydrogen sulfide and cellular redox homeostasis[J]. Oxid Med Cell Longev,2016,2016:6043038.
[18] ZHOU X, FENG Y, ZHAN Z, et al. Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model[J]. J Biol Chem,2014,289(42):28827-28834.
[19] HE H, MAGI-GALLUZZI C. Epithelial-to-mesenchymal transition in renal neoplasms[J]. Adv Anat Pathol,2014,21(3):174-180.
[20] LIU Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol,2010,21(2):212-222.
[21] Xiao Y, LIU J, PENG Y, et al. GSTA3 attenuates renal interstitial fibrosis by inhibiting TGF-Beta-induced tubular epithelial-mesenchymal transition and fibronectin expression[J]. PLoS One,2016,11(9):e160855.
[22] LIN S, VISRAM F, LIU W, et al. GYY4137, a slow-releasing hydrogen sulfide donor, ameliorates renal damage associated with chronic obstructive uropathy[J]. J Urol,2016,196(6):1778-1787.
[23] GUO L, PENG W, TAO J, et al. Hydrogen sulfide inhibits transforming growth factor-beta1-Induced EMTviaWnt/catenin pathway[J]. PLoS One,2016,11(1):e147018.
[24] LV M, LI Y, JI M H, et al. Inhibition of invasion and epithelial-mesenchymal transition of human breast cancer cells by hydrogen sulfide through decreased phospho-p38 expression[J]. Mol Med Rep,2014,10(1):341-346.
[25] BASKAR R, LI L, MOORE P K. Hydrogen sulfide-induces DNA damage and changes in apoptotic gene expression in human lung fibroblast cells[J]. FASEB J,2007,21(1):247-255.
[26] ZHANG Y, LI H, ZHAO G, et al. Hydrogen sulfide attenuates the recruitment of CD11b+Gr-1+myeloid cells and regulates Bax/Bcl-2 signaling in myocardial ischemia injury[J]. Sci Rep,2014,4:4774.
[27] PAN L L, LIU X H, SHEN Y Q, et al. Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response[J]. Int J Cardiol,2013,168(4):3770-3778.
[28] LI S, YANG G. Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM[J]. Antioxid Redox Signal,2015,23(7):630-642.
[29] 茅 松. 線粒體功能障礙在慢性腎功能衰竭腎小管間質(zhì)纖維化中的作用及干預(yù)研究[D].南京醫(yī)科大學(xué),2015.
[30] RIOS E C, SZCZESNY B, SORIANO F G, et al. Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling[J]. Int J Mol Med,2015,35(6):1741-1746.
Mechanism of hydrogen sulfide delaying renal fibrosis: research progress
GU Yu-lu1, ZHANG Xiao-yan1,2,3*
1. Shanghai Nephropathy and Dialysis Institute, Shanghai 200032, China 2. Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China 3. Key Laboratory of Nephropathy and Blood Purification of Shanghai, Shanghai 200032, China
As an endogenous gasotransmitter, hydrogen sulfide (H2S) is abundantly expressed in the kidney and plays an important regulatory role under different physiological and pathological conditions. In renal fibrosis, the level of H2S is significantly decreased, while supplement with exogenous H2S mitigates the severity of fibrosis. Many studies reveal that H2S plays a protective role in the development of renal fibrosis, and its mechanism includes anti-inflammation, anti-oxidation, inhibition of epithelial-mesenchymal transition, regulation of cell proliferation and apoptosis, and inhibition of fibroblast activation.
hydrogen sulfide; kidney; fibrosis; oxidative stress; epigenetics
2017-01-25接受日期2017-02-14
國家自然科學(xué)基金(81600579), 科技部國家科技支撐項(xiàng)目(2011BAI10B03), 上海市科學(xué)技術(shù)委員會(huì)自然科學(xué)基金(14ZR1406400). Supported by National Natural Science Foundation of China(81600579),National Key Technology Research and Development Program of Science and Technology Ministry of China(2011BAI10B03), and Natural Science Foundation of Shanghai Science and Techology Committee (14ZR1406400).
顧玉露, 碩士生. E-mail: 16211210007@fudan.edu.cn
*通信作者(Corresponding author). Tel: 021-64041990, E-mail: zhang.xiaoyan@zs-hospital.sh.cn
10.12025/j.issn.1008-6358.2017.20170066
R 692
A
[本文編輯] 姬靜芳