• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode

    2017-01-07 04:18:00LIUWeifengYANGYongzhenLIUXuguangXUBingshe
    新型炭材料 2016年6期
    關(guān)鍵詞:旭光聚苯胺理工大學(xué)

    LIU Wei-feng, YANG Yong-zhen, LIU Xu-guang, XU Bing-she

    (1.Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology),Ministry of Education, Taiyuan030024, China;2.Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan030024, China;3.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, China)

    Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode

    LIU Wei-feng1,2, YANG Yong-zhen1,2, LIU Xu-guang1,3, XU Bing-she1,2

    (1.KeyLaboratoryofInterfaceScienceandEngineeringinAdvancedMaterials(TaiyuanUniversityofTechnology),MinistryofEducation,Taiyuan030024,China;2.ResearchCenteronAdvancedMaterialsScienceandTechnology,TaiyuanUniversityofTechnology,Taiyuan030024,China;3.CollegeofChemistryandChemicalEngineering,TaiyuanUniversityofTechnology,Taiyuan030024,China)

    A polyaniline-carbon microsphere (PANI-CMS) hybrid was prepared by an electrochemical deposition method and used as an electrode for supercapacitors. Field emission scanning electron microscopy and Fourier transform infra-red spectroscopy were used to characterize its morphology and structure. The supercapacitive performance of the hybrid was investigated by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy and cycling tests. Results indicate that polyaniline is uniformly coated on the outer surfaces of the CMSs by the electrochemical deposition. The hybrid has a specific capacitance of 206 F·g-1at a current density of 1 A·g-1. It has a higher specific capacitance and more stable cycle performance than PANI, which is ascribed to a synergistic effect between the PANI and the CMSs.

    Carbon microspheres; Polyaniline; Electrochemical co-deposition; Supercapacitor

    1 Introduction

    Supercapacitor as a new environment-friendly electrochemical energy storage device, has attracted growing attentions owing to its wide range of application in hybrid electric vehicles, mobile electronic devices, backup power sources for computer memory, etc.[1,2]. As electrode materials for supercapacitor, conducting polymers are recognized as typical representatives because of their unique properties, such as fast charge/discharge kinetics, low cost, mild synthesis condition and suitable morphology. In the series of the conducting polymers, polyaniline (PANI) has been considered as one of the most promising electrode materials for supercapacitors because of its easy synthesis, remarkable environmental stability, simplicity in doping, high electrochemical activity and low cost[3-6]. However, irregular granular or flake PANI films obtained by the conventional polymerization methods show poor cycle stability compared with carbon-based electrodes because the redox sites in its polymer backbone are not sufficiently stable and the backbone can be destroyed within a limited number of charge/discharge cycles. Recently, some researchers used carbons as substrate materials to prepare composites to improve the cycle life of PANI, and there is a number of literature on PANI/carbon composite electrodes such as PANI with activated carbon[7], carbon nanotubes[8], carbon fibers[9]and graphene[10]. For example, Zhu et al.[11]synthesized a PANI-MWCNT hybrid with a capacitance of 515 F·g-1compared to 273 F·g-1of pure PANI and a high cycling stability (below 10% capacity loss after 1 000 cycles). Feng et al.[12]reported a graphene-PANI hybrid prepared by the electrochemical reduction method with a high specific capacitance of 640 F·g-1with a capacitance retention of 90% after 1 000 charge/discharge cycles.

    Although above mentioned PANI-carbon material hybrids have improved electrochemical properties[13,14], the difficulties in the preparation of carbon materials (graphene, carbon nanotubes, or carbon nanofibers) in large scale hinder their industrial applications. Among various carbon materials, carbon miscrospheres (CMSs), with fullerenes-like cage structures composed of fairly concentric graphitic shells, have great potential application in many fields such as reinforcing agents, lubrication, and the support of surface molecularly imprinted polymer[15,16]. What is more, CMSs can be prepared continuously by a simple chemical vapor deposition method. However, there are few reports about CMSs as a electrode material for supercapactors. The combination of conducting PANI with CMSs would be an effective way to improve the capacitance and cycling stability of PANI. Wu et al.[5]prepared a PANI-activated mesocarbon microsbead hybrid by an in situ chemical oxidation polymerization method. The hybrid possessed both high specific capacitance and excellent cycle stability. The specific capacitance stabilizes nearly at a fixed value (110.21 F·g-1) at a current density of 250 mA·g-1. Based on the PANI-activated mesocarbon microsbead hybrid, Wu et al.[7]synthesized the nitrogen-enriched carbon materials by carbonization and HNO3treatment, and the specific capacitance was 385 F·g-1at a current density of 1 A·g-1in 6 M KOH electrolyte.

    Herein, the water-soluble CMSs with a high specific surface area were obtained by a combination of acid-oxidation and heat-treatment[15,17]. PANI-CMS hybrid was synthesized through a one-step electrochemical deposition method in H2SO4solution. The physical and electrochemical properties of the PANI-CMS hybrid were studied.

    2 Experimental

    2.1 Instruments and Materials

    All chemicals were of analytical grade and all solutions were prepared using deionized water. CMSs (~350 nm in diameter) were synthesized by chemical vapor deposition. Aniline was distilled under reduced pressure before use and all other chemical reagents were used as received. Electrochemical experiments were conducted at 25 ℃ on a VMP3 Potentiostat (Princeton, USA) controlled with an EC-Lab software. A standard three-electrode system was used for preparation and characterization of the PANI-CMS hybrid. The hybrid film and platinum plate (10 mm × 10 mm × 0.2 mm) served as the working electrode and the counter electrode, respectively. A saturated calomel electrode (SCE) was used as the reference electrode and all potentials reported herein are referenced to SCE. The morphologies and structures of the products were characterized by field emission scanning electron microscopy (FESEM; JSM-6700F, operated at 10 kV) and Fourier transformation infrared spectroscopy (FTIR; FTS-165).

    2.2 Preparation of the PANI-CMS hybrid

    CMSs (0.5 g) were dispersed in an acid mixture (120 mL, 96 wt% H2SO4and 65 wt% HNO3in volume ratio 3∶1) in a flask under ultrasonication for 20 min. To increase the specific surface area, heat-treatment was conducted on the acid-treated CMSs in temperature ranging from 25 ℃ to 800 ℃ at a heating rate of 20 ℃/min in Ar atmosphere. The specific surface area increased to 179 m2·g-1from 9 m2·g-1[17]. Then, the obtained CMSs (20 mg) was added into a mixed solution (20 mL, 0.1 M aniline and 0.5 M H2SO4), and the mixture was sonicated for another 10 min. The PANI-CMS hybrid was electrochemically prepared in the mixed aqueous solution using potentiost at method at 0.9 V for 10 min. The deposition of PANI on CMSs was performed at 25 ℃ under static conditions.

    2.3 Electrochemical measurement

    Electrochemical performance was determined mainly by the cyclic voltammetry (CV) and galvanostatic charge/discharge in a 0.5 M H2SO4aqueous solution, where the three electrode system was equipped with a platinum plate as a counter electrode and a saturated calomel electrode (SCE) as a reference electrode. The PANI-CMS hybrid on the platinum plate was used as the working electrode. Electrochemical impedance spectroscopy (EIS) measurements were carried out in the frequency range from 105to 0.01 Hz at open circuit potential with an alternating perturbation of 5 mV. Galvanostatic charge/discharge curves were measured between 0 and 0.6 V at different current densities (1, 5, 10 and 20 A·g-1). Galvanostatic cycling was performed between 0 and 0.6 V at a current density of 5 A·g-1for 2 000 times.

    3 Results and discussion

    3.1 Electrosynthesis of PANI-CMS hybrid

    The formation of the PANI-CMS hybrid is summarized in Fig. 1. There were oxygen-enriched (e.g. carboxyl) functionalities on the surfaces of CMSs as a result of the acid-oxidation. These functional groups acted as anchor sites and enabled the subsequent electrochemical polymerization of PANI on the surfaces of CMSs. Meanwhile, the π-π electron interaction between the CMSs and the aniline was beneficial to the polymerization of aniline on the surfaces of CMSs. Then, the PANI would gradually grow along the initial nuclei of PANI and extend along CMSs to form a network structure.

    Fig. 1 A schematic representation of the formation of the PANI-CMS hybrid.

    3.2 Structural characterization

    Fig. 2 shows the FESEM images of PANI, the PANI-CMS hybrid and CMSs.

    Fig. 2 FESEM images of (a, b) PANI, (c, d, e) PANI-CMS hybrid and (f) CMSs.

    It can be seen that the PANI film (Fig. 2a and b) was flat and smooth. Besides, there were some holes evenly distributed on the surface of PANI film. Unlike the dense PANI film, it is obviously observed that the PANI-CMS hybrid (Fig. 2c, d and e) had a uniform network structure, and CMSs were with a good spherical shape. Compared with the acid-treated CMSs (Fig. 2f), the surfaces of the PANI-CMS hybrid became rough, indicating that the CMSs had been coated with PANI. The network structure caused by the CMSs is favorable to improve the electrochemical properties of the hybrid.

    Fig. 3 FT-IR spectra of (a) CMSs, (b) PANI and (c) PANI-CMS hybrid.

    3.3 Electrochemical characterization

    To evaluate the electrochemical characteristics of the PANI-CMS hybrid, the CV curves in 0.5 M H2SO4electrolyte at different scan rates were recorded at the potential window of -0.2- 0.6 V versus SCE (Fig. 4).

    Fig. 4 Cyclic voltammograms of (a) PANI and (b) PANI-CMS hybrid.

    Notably, it can be seen that because of the existence of polarization, a positive shift of oxidation peaks and a negative shift of reduction peaks were observed with the increase of the scan rate. Also, the curve shape is steady, indicating the good electrochemical stability of the electrode material. The two couples (at ca. 0/0.2 and 0.4/0.5 V) of apparent redox peaks were attributed to the redox transition of PANI between a semiconducting state (leucoemeraldine form) and a conducting state (polaronic emeraldine form) and the emeraldine-pernigraniline transformation. In addition, the PANI-CMS hybrid electrode exhibited a higher current value and more obvious redox peaks compared with PANI under the same conditions. The results reveal that the electroactivity of PANI was effectively improved by the introduction of CMSs during the quick charge/discharge process.

    For further understanding electrochemical behavior of the PANI-CMS hybrid, the galvanostatic charge/discharge measurements at different current densities within a potential window (-0.2- 0.6 V vs. SCE) were carried out, and the results are shown in Fig. 5. As can be seen, the charge/discharge curves of PANI and the PANI-CMS hybrid were almost linear and presented a typical symmetrical triangle shape, indicating that the hybrid had a good double-layer capacitive behavior[18,19]. Besides, it can be noted that the discharge time increased distinctly with decreasing current density, the reason is that the electrolyte ions could not penetrate well into the inner of active materials as a result of low diffusion at large current density. Although the charge/discharge curves of PANI are similar to those of the PANI-CMS hybrid, but the latter would have much longer charge/discharge duration and larger charge storage capacity than the former.

    Fig. 5 Galvanostatic charge/discharge curves of (a) PANI and (b) PANI-CMS hybrid.

    The specific capacitance (Cs) values may be calculated from the charging and discharging curves according toCs=(I·Δt)/(ΔV·m), whereIis the discharge current,Δtis the discharge time,ΔVis the potential drop in the discharge process (in our experimentsΔV=0.6 V), and m is the mass of active material. Specific capacitances increased from 146 to 206 F·g-1with current densities from 1 to 20 A·g-1for the PANI-CMS hybrid, which were higher than those of PANI (88-135 F·g-1). The highCsof the PANI-CMS hybrid may be attributed to the uniform coating of PANI around CMSs, which could help to provide a large electrolyte-accessible surface area to improve utilization of PANI for redox reactions. Besides, electrical conductivity was increased with the introduction of CMSs, resulting in a increased specific capacitance. In addition, with the increase of current density, the PANI-CMS hybrid has only a 29%Csreduction from 1 to 20 A·g-1, which is less than that of PANI (35%). It suggests that the hybrid exhibited a better electrochemical stability. The capacitances of the PANI-CMS hybrid are even higher than those of previously reported graphene/PANI composite[20]. The reason is that a stable structure was formed by the chemical linking of PANI and CMSs, and CMSs provide a good framework for the hybrid. These results support the formation mechanism of the PANI-CMS hybrid proposed in Fig. 1, and are consistent with the structural characterization (Fig. 2).

    The Nyquist plots of PANI and the PANI-CMS hybrid are demonstrated in Fig. 6. The electrochemical resistances of PANI and the PANI-CMS hybrid electrodes were small, whereas the electrochemical resistance of the pure PANI was larger than that of the hybrid, which may result in the excellent capacitive behaviors of the hybrid. In addition, these plots did not show semicircle regions, probably due to the low faradaic resistances of these films.

    Fig. 6 Nyquist diagrams for the PANI-CMS hybrid and PANI.

    The lack of stability of the capacitors based on conducting polymer films (especially PANI) during long-term charge/discharge cycling is one of their most fatal deficiencies. As shown in Fig. 7, the pure PANI lost 28% (from 129 to 93 F·g-1) of its capacitance after 2 000 charging/discharging cycles at a current density of 5 A·g-1. However, under the same conditions, the capacitance of the PANI-CMS hybrid decreased only 21% (from 192 to 151 F·g-1). In addition, the capacitance of the PANI-CMS hybrid maintained a good stability after 500 cycles while the capacitance for PANI electrode showed a decreasing trend. The enhanced specific capacitance is due to the synergistic effect between PANI and CMSs. On one hand, CMSs undertake some mechanical deformation in the redox process of the PANI-CMS hybrid, which avoids destroying the electrode material and thus benefits a better stability. On the other hand, the pseudocapacitance of PANI in the hybrid film is enhanced by the highly conductive CMSs. The results indicate that the high stability of the PANI-CMS hybrid film and its potential prospect as an electrode active material for long-term supercapacitor applications.

    Fig. 7 Variations of the capacitance with cycle number for PAN and PANI/CMSs.

    4 Conclusions

    A novel PANI-CMS hybrid was prepared by electrochemical deposition method and its supercapacitive performance was systematically investigated. The PANI was grown on the external surfaces of CMSs. And the network structure was formed for the PANI-CMS hybrid. A drastically enhanced gravimetric capacitance of the PANI-CMS hybrid compared with PANI was detected in H2SO4aqueous solution, which could be ascribed to the synergistic effect between CMSs and PANI. A maximum specific capacitance of 206 F·g-1was achieved at a current density of 1 A·g-1, which was much higher than that of PANI at the same current density. Compared with PANI, the PANI-CMS hybrid possessed both a high specific capacitance and excellent cycle stability. The PANI-CMS hybrid is promising for supercapacitor applications.

    [1] Yan Y F, Cheng Q L, Wang G C, et al. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application[J]. J Power Sources, 2011, 196: 7835-7840.

    [2] Liu Y Z, Li Y F, Su F Y, et al. Easy one-step synthesis of N-doped graphene for supercapacitors[J]. Energy Storage Materials, 2016, 2: 69-75.

    [3] WU Ming-bo, LI Ling-yan, LIU Jun, et al. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J]. New Carbon Materials, 2015, 30(5): 471-475.

    [4] Liu W X, Liu N, Song H H, et al. Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors[J]. New Carbon Materials, 2011, 26: 217-223.

    [5] Yan Y F, Cheng Q L, Zhu Z J, et al. Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes[J]. J Power Sources, 2013, 240: 544-550.

    [6] Wang Q, Li J L, Gao F, et al. Activated carbon coated with polyaniline as an electrode material in supercapacitors[J]. New Carbon Materials, 2008, 23: 275-280.

    [7] Wu C, Wang X Y, Ju B W, et al. Supercapacitive performance of nitrogen-enriched carbons from carbonization of polyaniline/activated mesocarbon microbeads[J]. J Power Sources, 2013, 227: 1-7.

    [8] Yoon S B, Yoon E H, Kim K B. Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications[J]. J Power Sources, 2011, 196: 10791-10797.

    [9] Bal Sydulu S, Palaniappan S, Srinivas P. Nano fiber polyaniline containing long chain and small molecule dopants and carbon composites for supercapacitor[J]. Electrochim Acta, 2013, 95: 251-259.

    [10] Li J, Xie H Q, Li Y, et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors[J]. J Power Sources, 2011, 196: 10775-10781.

    [11] Zhu Z Z, Wang G C, Sun M Q, et al. Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications[J]. Electrochim Acta, 2011, 56: 1366-1372.

    [12] Feng X M, Li R M, Ma Y W, et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications[J]. Adv Funct Mater, 2011, 21: 2989-2996.

    [13] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38: 2520-2531.

    [14] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. J Power Source, 2006, 157: 11-27.

    [15] Liu W F, Zhao H J, Yang Y Z, et al. Reactive carbon microspheres prepared by surface-grafting 4-(chloromethyl)phenyltrimethoxysilane for preparing molecularly imprinted polymer[J]. Appl Surf Sci, 2013, 277: 146-154.

    [16] Yang Y Z, Zhang Y, Li S, et al. Grafting molecularly imprinted poly( 2-acrylamido-2-methylpropanesulfonic acid) onto the surface of carbon microspheres[J]. Appl Surf Sci, 2012, 258: 6441-6450.

    [17] Liu W F, Yang Y Z, Luan C H, et al. Thermal stability and surface chemistry evolution of oxidized carbon microspheres[J]. Fullerenes Nanotubes Carbon Nanostruct, 2014, 22, 7: 670-678.

    [18] Chen S, Zhu J W, Wu X D, et al. Graphene oxide-MnO2nanocomposites for supercapacitors[J]. ACS Nano, 2010, 4: 2822-2830.

    [19] An H F, Wang Y, Wang X Y, et al. Polypyrrole/carbon aerogel composite materials for supercapacitor[J]. J Power Sources, 2010, 195: 6964-6969.

    [20] Li Z F, Zhang H Y, Liu Q, et al. Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors[J]. ACS Appl Mater Interfaces, 2013, 5: 2685-2691.

    1007-8827(2016)06-0594-06

    聚苯胺-炭微球復(fù)合材料的制備及其電化學(xué)性能

    劉偉峰1,2, 楊永珍1,2, 劉旭光1,3, 許并社1,2

    (1.新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室(太原理工大學(xué)),山西 太原030024;2.太原理工大學(xué) 新材料工程技術(shù)研究中心,山西 太原030024;3.太原理工大學(xué) 化學(xué)化工學(xué)院,山西 太原030024)

    通過電化學(xué)沉積法制備得到聚苯胺/炭微球(PANI/CMS)復(fù)合電極材料,通過場發(fā)射掃描電子顯微鏡和紅外光譜對PANI/CMS復(fù)合材料進(jìn)行形貌和結(jié)構(gòu)表征。并采用循環(huán)伏安、恒電流充放電、電化學(xué)阻抗譜及循環(huán)壽命測試等技術(shù)考察其電化學(xué)行為。結(jié)果表明:PANI均勻包覆于CMSs表面;在電流密度為1 A·g-1時(shí),復(fù)合材料的比電容達(dá)到206 F·g-1;PANI/CMS復(fù)合材料表現(xiàn)出優(yōu)異的電化學(xué)穩(wěn)定性。說明PANI/CMS復(fù)合材料有望作為電極材料用于超級電容器。

    炭微球; 聚苯胺; 電化學(xué)聚合; 超級電容器

    TB332

    A

    國家自然科學(xué)基金(21176169,51152001);國家國際科技合作專項(xiàng)項(xiàng)目(2012DFR50460);山西省科技創(chuàng)新重點(diǎn)團(tuán)隊(duì)(2015013002-10);山西省自然科學(xué)青年基金(201601D021043);太原理工大學(xué)?;?2014TD015).

    劉旭光,教授,博士生導(dǎo)師. E-mail: liuxuguang@tyut.edu.cn; 楊永珍,教授,博士生導(dǎo)師. E-mail: yyztyut@126.com

    劉偉峰,講師. E-mail: lwf061586@yeah.net

    Foundationitems: National Natural Science Foundation of China (21176169, 51152001); International Science & Technology Cooperation Program of China (2012DFR50460); Shanxi Provincial Key Innovative Research Team in Science and Technology (2015013002-10); Natural Science Foundation of Shanxi Province (201601D021043); Special/Youth Foundation of Taiyuan University of Technology (2014TD015).

    LIU Xu-guang, Ph. D., Professor. E-mail: liuxuguang@tyut.edu.cn; YANG Yong-zhen, Ph. D., Professor. E-mail: yyztyut@126.com.

    Authorintroduction: LIU Wei-feng, Lecturer. E-mail: lwf061586@yeah.net

    10.1016/S1872-5805(16)60035-5

    Receiveddate: 2016-07-26;Reviseddate: 2016-10-29

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    旭光聚苯胺理工大學(xué)
    孫旭光
    昆明理工大學(xué)
    董旭光永濟(jì)調(diào)研農(nóng)牧產(chǎn)業(yè)項(xiàng)目
    城市軌道交通供電系統(tǒng)及電力技術(shù)探析
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    三維鎳@聚苯胺復(fù)合電極的制備及其在超級電容器中的應(yīng)用
    聚苯胺導(dǎo)電復(fù)合材料研究進(jìn)展
    中國塑料(2015年7期)2015-10-14 01:02:34
    聚苯胺復(fù)合材料研究進(jìn)展
    中國塑料(2014年11期)2014-10-17 03:07:18
    十八禁网站网址无遮挡| 曰老女人黄片| 久久韩国三级中文字幕| 观看美女的网站| 午夜福利视频精品| 五月天丁香电影| 一边摸一边抽搐一进一出视频| 国产亚洲一区二区精品| 精品卡一卡二卡四卡免费| 大片免费播放器 马上看| 日韩免费高清中文字幕av| 在现免费观看毛片| 中文乱码字字幕精品一区二区三区| 青春草国产在线视频| 亚洲av综合色区一区| 亚洲熟女毛片儿| 亚洲精品中文字幕在线视频| 女人被躁到高潮嗷嗷叫费观| 国产在线一区二区三区精| 99久久人妻综合| 久久久久久久大尺度免费视频| 18禁观看日本| 国产精品久久久久久精品古装| 如何舔出高潮| 国产欧美日韩一区二区三区在线| 成年av动漫网址| 少妇精品久久久久久久| 成年动漫av网址| 国产伦理片在线播放av一区| 久久久久久久久久久免费av| av.在线天堂| 午夜日本视频在线| 婷婷色综合大香蕉| 国产97色在线日韩免费| 欧美另类一区| 亚洲欧美一区二区三区久久| 国产精品一二三区在线看| av在线老鸭窝| 欧美日本中文国产一区发布| 亚洲国产精品一区二区三区在线| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 精品亚洲成a人片在线观看| 亚洲av电影在线进入| 一区在线观看完整版| 黄片播放在线免费| 中文字幕制服av| 成年人免费黄色播放视频| 青草久久国产| 国产成人免费无遮挡视频| 国产精品久久久久久久久免| 久久鲁丝午夜福利片| 制服诱惑二区| 色视频在线一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲精品一二三| 午夜日本视频在线| 免费观看性生交大片5| 国产一级毛片在线| 久久国产精品大桥未久av| 亚洲国产av新网站| 2021少妇久久久久久久久久久| 亚洲第一av免费看| 国产精品 国内视频| 丰满乱子伦码专区| 丝袜在线中文字幕| 人体艺术视频欧美日本| 国产成人啪精品午夜网站| 97人妻天天添夜夜摸| 日韩一区二区视频免费看| 久久久久久久久久久久大奶| 黑人欧美特级aaaaaa片| 久久久精品区二区三区| 国产精品.久久久| 国产极品粉嫩免费观看在线| 美女福利国产在线| 久久久精品区二区三区| 80岁老熟妇乱子伦牲交| 汤姆久久久久久久影院中文字幕| 最近中文字幕高清免费大全6| 欧美成人精品欧美一级黄| 黄色视频不卡| 最新在线观看一区二区三区 | 最近中文字幕2019免费版| 亚洲欧洲国产日韩| 一本久久精品| 秋霞伦理黄片| 欧美日韩视频精品一区| 国产免费一区二区三区四区乱码| 国产精品香港三级国产av潘金莲 | 天天躁狠狠躁夜夜躁狠狠躁| 99国产综合亚洲精品| 国产精品秋霞免费鲁丝片| 好男人视频免费观看在线| 国产日韩欧美亚洲二区| 你懂的网址亚洲精品在线观看| 亚洲成国产人片在线观看| 热99国产精品久久久久久7| 国产精品香港三级国产av潘金莲 | 男女高潮啪啪啪动态图| 久久久久久久大尺度免费视频| 色94色欧美一区二区| 少妇人妻久久综合中文| 久久久久精品性色| 80岁老熟妇乱子伦牲交| 亚洲美女黄色视频免费看| 免费观看性生交大片5| 天天躁夜夜躁狠狠躁躁| 亚洲欧美精品自产自拍| 亚洲av电影在线观看一区二区三区| 国产精品国产三级国产专区5o| 一本一本久久a久久精品综合妖精| 一区在线观看完整版| 国产成人a∨麻豆精品| 国产乱人偷精品视频| 狠狠婷婷综合久久久久久88av| 成人国产av品久久久| 久热这里只有精品99| 汤姆久久久久久久影院中文字幕| 看免费av毛片| 一级爰片在线观看| 亚洲av中文av极速乱| 9色porny在线观看| www.自偷自拍.com| 交换朋友夫妻互换小说| 久久99热这里只频精品6学生| 国产爽快片一区二区三区| 黑丝袜美女国产一区| 国产一区亚洲一区在线观看| 精品少妇一区二区三区视频日本电影 | 一区二区日韩欧美中文字幕| 中文字幕人妻熟女乱码| 日本欧美国产在线视频| 精品少妇黑人巨大在线播放| 国产麻豆69| 在现免费观看毛片| 捣出白浆h1v1| 自拍欧美九色日韩亚洲蝌蚪91| 在线免费观看不下载黄p国产| 一本一本久久a久久精品综合妖精| 精品国产乱码久久久久久小说| 咕卡用的链子| 久久天堂一区二区三区四区| 精品福利永久在线观看| 国产人伦9x9x在线观看| 老熟女久久久| 51午夜福利影视在线观看| 在线观看三级黄色| 中文字幕亚洲精品专区| 国产女主播在线喷水免费视频网站| 制服人妻中文乱码| 男女午夜视频在线观看| 在线看a的网站| 成人影院久久| 亚洲精品一区蜜桃| 久久99精品国语久久久| 伦理电影免费视频| 青春草国产在线视频| 深夜精品福利| 日韩精品有码人妻一区| a 毛片基地| 久久久精品免费免费高清| 成人毛片60女人毛片免费| 亚洲精品国产色婷婷电影| 天堂俺去俺来也www色官网| 亚洲精品美女久久av网站| 国产国语露脸激情在线看| av国产久精品久网站免费入址| 国产野战对白在线观看| 中文天堂在线官网| 人人澡人人妻人| 如何舔出高潮| 欧美日本中文国产一区发布| 亚洲国产av影院在线观看| 日韩免费高清中文字幕av| 在线观看一区二区三区激情| 人成视频在线观看免费观看| 综合色丁香网| 亚洲美女搞黄在线观看| 久久99一区二区三区| 午夜久久久在线观看| a级毛片黄视频| 久久久欧美国产精品| 欧美少妇被猛烈插入视频| 建设人人有责人人尽责人人享有的| 黄片小视频在线播放| 亚洲一区二区三区欧美精品| 久久 成人 亚洲| 欧美精品高潮呻吟av久久| 亚洲国产欧美一区二区综合| 亚洲 欧美一区二区三区| 亚洲伊人色综图| 欧美xxⅹ黑人| 黑人欧美特级aaaaaa片| 老熟女久久久| 亚洲精品aⅴ在线观看| av一本久久久久| 美女视频免费永久观看网站| 欧美日韩综合久久久久久| 大码成人一级视频| 国产一级毛片在线| 不卡视频在线观看欧美| 日韩大片免费观看网站| 如何舔出高潮| 人成视频在线观看免费观看| 精品久久久精品久久久| 日韩,欧美,国产一区二区三区| 各种免费的搞黄视频| 另类精品久久| 亚洲七黄色美女视频| 观看美女的网站| 国产成人系列免费观看| 少妇人妻 视频| 水蜜桃什么品种好| 肉色欧美久久久久久久蜜桃| 国产日韩一区二区三区精品不卡| 男人添女人高潮全过程视频| 免费在线观看黄色视频的| 9热在线视频观看99| 久久鲁丝午夜福利片| 成人三级做爰电影| 黑人巨大精品欧美一区二区蜜桃| 叶爱在线成人免费视频播放| 日韩中文字幕视频在线看片| 亚洲图色成人| 欧美精品一区二区免费开放| 国产精品一区二区精品视频观看| 亚洲第一区二区三区不卡| 久久久久久久久免费视频了| 赤兔流量卡办理| 日本vs欧美在线观看视频| 亚洲欧美日韩另类电影网站| 超碰成人久久| 久久久精品免费免费高清| 亚洲国产av影院在线观看| 韩国av在线不卡| 人体艺术视频欧美日本| 日日爽夜夜爽网站| 欧美黄色片欧美黄色片| 一级片'在线观看视频| 中文字幕制服av| 亚洲国产欧美一区二区综合| 久久精品国产综合久久久| 国产又色又爽无遮挡免| 2018国产大陆天天弄谢| av线在线观看网站| 日本色播在线视频| 少妇 在线观看| 伦理电影大哥的女人| 男女国产视频网站| 成年动漫av网址| 极品人妻少妇av视频| 欧美精品亚洲一区二区| 国产成人精品久久久久久| 啦啦啦中文免费视频观看日本| 午夜免费观看性视频| 国产成人91sexporn| 97人妻天天添夜夜摸| 欧美变态另类bdsm刘玥| 亚洲激情五月婷婷啪啪| 制服人妻中文乱码| 国产一区有黄有色的免费视频| 久久精品亚洲av国产电影网| 亚洲欧美精品综合一区二区三区| 男女免费视频国产| 欧美乱码精品一区二区三区| 美女高潮到喷水免费观看| 男女高潮啪啪啪动态图| 精品一品国产午夜福利视频| 日韩中文字幕视频在线看片| av在线app专区| 男人操女人黄网站| 久久精品久久久久久久性| 亚洲精品aⅴ在线观看| 大片免费播放器 马上看| 国产毛片在线视频| 搡老乐熟女国产| 免费少妇av软件| 亚洲国产av新网站| 亚洲专区中文字幕在线 | 中文字幕亚洲精品专区| 国产 一区精品| 亚洲一区中文字幕在线| 亚洲成av片中文字幕在线观看| 国产97色在线日韩免费| 狂野欧美激情性bbbbbb| 老司机影院毛片| 国产成人av激情在线播放| 欧美精品高潮呻吟av久久| 亚洲人成电影观看| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| 一边摸一边抽搐一进一出视频| 国产成人精品在线电影| 在线观看免费高清a一片| 亚洲第一青青草原| 亚洲精品国产色婷婷电影| 欧美97在线视频| 国产成人免费观看mmmm| 日日啪夜夜爽| 99热国产这里只有精品6| 在线观看www视频免费| 人成视频在线观看免费观看| a级毛片黄视频| 欧美激情高清一区二区三区 | 亚洲一码二码三码区别大吗| av不卡在线播放| 国产免费现黄频在线看| 久久97久久精品| 欧美黄色片欧美黄色片| 精品第一国产精品| 黄片小视频在线播放| 黑人猛操日本美女一级片| 国产色婷婷99| 十分钟在线观看高清视频www| 亚洲国产成人一精品久久久| 午夜福利影视在线免费观看| 青春草亚洲视频在线观看| 久久精品国产亚洲av涩爱| 男女床上黄色一级片免费看| 赤兔流量卡办理| 一区二区三区精品91| 热re99久久国产66热| 1024香蕉在线观看| 亚洲欧美成人综合另类久久久| 亚洲四区av| 一本一本久久a久久精品综合妖精| 精品一区二区三区四区五区乱码 | 欧美精品一区二区大全| 成人漫画全彩无遮挡| 亚洲av在线观看美女高潮| 午夜福利网站1000一区二区三区| 青青草视频在线视频观看| 极品少妇高潮喷水抽搐| 麻豆av在线久日| 丝袜美足系列| 精品人妻在线不人妻| 亚洲欧美成人综合另类久久久| 国产精品蜜桃在线观看| 中文字幕人妻熟女乱码| 亚洲成人一二三区av| 久久精品亚洲av国产电影网| 亚洲精品中文字幕在线视频| 观看av在线不卡| 日韩中文字幕欧美一区二区 | 成人影院久久| 亚洲国产精品999| 成人影院久久| 人人妻人人爽人人添夜夜欢视频| 人人妻人人添人人爽欧美一区卜| 国产探花极品一区二区| 亚洲 欧美一区二区三区| 十八禁网站网址无遮挡| 中文字幕av电影在线播放| 日本黄色日本黄色录像| 卡戴珊不雅视频在线播放| 九草在线视频观看| 91精品国产国语对白视频| 日韩,欧美,国产一区二区三区| 婷婷色综合www| 国产av码专区亚洲av| 王馨瑶露胸无遮挡在线观看| 美女脱内裤让男人舔精品视频| 日韩欧美精品免费久久| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 黑丝袜美女国产一区| 亚洲欧美一区二区三区久久| 男女之事视频高清在线观看 | 美女中出高潮动态图| 精品久久蜜臀av无| 久久狼人影院| 国产成人免费无遮挡视频| av有码第一页| 亚洲成人手机| 99国产综合亚洲精品| av电影中文网址| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| 大香蕉久久成人网| 久久久久久人人人人人| 精品国产一区二区久久| 国产亚洲精品第一综合不卡| av网站在线播放免费| 在线观看免费视频网站a站| 国产激情久久老熟女| 日本欧美视频一区| √禁漫天堂资源中文www| 亚洲国产日韩一区二区| 久久 成人 亚洲| 人人妻人人澡人人爽人人夜夜| av卡一久久| 人人妻人人澡人人爽人人夜夜| netflix在线观看网站| 性高湖久久久久久久久免费观看| av电影中文网址| 精品免费久久久久久久清纯 | 美女中出高潮动态图| 国产男女内射视频| 国产不卡av网站在线观看| 国产日韩一区二区三区精品不卡| 在线天堂中文资源库| 中文字幕高清在线视频| 成年美女黄网站色视频大全免费| 最近2019中文字幕mv第一页| 91国产中文字幕| 美女国产高潮福利片在线看| 99精国产麻豆久久婷婷| 国产免费视频播放在线视频| 91精品三级在线观看| www.精华液| videos熟女内射| 午夜av观看不卡| 美女国产高潮福利片在线看| 免费观看av网站的网址| netflix在线观看网站| 精品少妇黑人巨大在线播放| 久久午夜综合久久蜜桃| 亚洲精品国产av蜜桃| 美女高潮到喷水免费观看| 精品国产乱码久久久久久男人| 啦啦啦在线免费观看视频4| 亚洲熟女毛片儿| 波野结衣二区三区在线| 日本猛色少妇xxxxx猛交久久| 天堂俺去俺来也www色官网| 99国产综合亚洲精品| 国产片内射在线| 久久免费观看电影| 一边亲一边摸免费视频| 热re99久久精品国产66热6| 精品国产一区二区三区久久久樱花| 在线观看三级黄色| 看十八女毛片水多多多| xxx大片免费视频| 亚洲欧美日韩另类电影网站| 久久久国产精品麻豆| 青春草亚洲视频在线观看| 蜜桃在线观看..| 欧美精品av麻豆av| 赤兔流量卡办理| 免费av中文字幕在线| 久久精品熟女亚洲av麻豆精品| 少妇的丰满在线观看| 在线观看免费视频网站a站| 精品午夜福利在线看| 搡老岳熟女国产| 少妇的丰满在线观看| 午夜福利视频在线观看免费| e午夜精品久久久久久久| 汤姆久久久久久久影院中文字幕| 成人三级做爰电影| 中文字幕亚洲精品专区| 亚洲精品久久久久久婷婷小说| 超碰成人久久| 精品酒店卫生间| 丰满乱子伦码专区| 在线观看一区二区三区激情| 一区二区av电影网| 老司机在亚洲福利影院| 久久人妻熟女aⅴ| 精品久久久精品久久久| 成人亚洲欧美一区二区av| 色播在线永久视频| 最近最新中文字幕大全免费视频 | 亚洲三区欧美一区| 久久久精品国产亚洲av高清涩受| 国产黄色视频一区二区在线观看| 十分钟在线观看高清视频www| 日韩精品免费视频一区二区三区| 青青草视频在线视频观看| 国产成人精品在线电影| 9热在线视频观看99| 只有这里有精品99| 人人妻,人人澡人人爽秒播 | 啦啦啦中文免费视频观看日本| 亚洲成人av在线免费| 中文乱码字字幕精品一区二区三区| 亚洲人成电影观看| 老熟女久久久| 国产亚洲午夜精品一区二区久久| 国产在线视频一区二区| 亚洲欧美清纯卡通| 欧美亚洲 丝袜 人妻 在线| 久久久久久人妻| 亚洲av福利一区| 久久av网站| 嫩草影院入口| 国产成人精品无人区| 久久久久人妻精品一区果冻| 看十八女毛片水多多多| 9热在线视频观看99| 一区在线观看完整版| 免费黄频网站在线观看国产| 成人影院久久| 国产男女超爽视频在线观看| 最近2019中文字幕mv第一页| 日本一区二区免费在线视频| 美女中出高潮动态图| 色视频在线一区二区三区| 人体艺术视频欧美日本| 欧美成人午夜精品| 色婷婷av一区二区三区视频| 午夜免费男女啪啪视频观看| 99久久综合免费| 老鸭窝网址在线观看| 女的被弄到高潮叫床怎么办| 国产一区亚洲一区在线观看| 国产成人一区二区在线| 中文字幕高清在线视频| a级毛片在线看网站| 国产欧美日韩一区二区三区在线| 啦啦啦在线观看免费高清www| 人人妻人人爽人人添夜夜欢视频| 国产在视频线精品| 免费人妻精品一区二区三区视频| 十八禁高潮呻吟视频| 伦理电影免费视频| 天天添夜夜摸| 国产乱来视频区| 日本wwww免费看| 成人午夜精彩视频在线观看| 91老司机精品| 欧美日韩一区二区视频在线观看视频在线| 丰满饥渴人妻一区二区三| 色婷婷av一区二区三区视频| 18禁国产床啪视频网站| 一级毛片我不卡| 欧美亚洲 丝袜 人妻 在线| 97在线人人人人妻| 青春草亚洲视频在线观看| 99精国产麻豆久久婷婷| 黄网站色视频无遮挡免费观看| 日日撸夜夜添| 国产毛片在线视频| 老司机深夜福利视频在线观看 | av网站免费在线观看视频| 国产精品蜜桃在线观看| 亚洲国产中文字幕在线视频| 精品酒店卫生间| 欧美精品亚洲一区二区| 国产麻豆69| 热99久久久久精品小说推荐| 咕卡用的链子| 超色免费av| av在线老鸭窝| xxxhd国产人妻xxx| 欧美激情高清一区二区三区 | 国产97色在线日韩免费| 高清视频免费观看一区二区| av不卡在线播放| av免费观看日本| 美女午夜性视频免费| xxxhd国产人妻xxx| 欧美精品一区二区大全| 韩国精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 国产在线免费精品| 九色亚洲精品在线播放| 精品一区二区三区四区五区乱码 | 久久精品人人爽人人爽视色| 亚洲欧美日韩另类电影网站| 女人精品久久久久毛片| 99re6热这里在线精品视频| 老司机影院成人| 别揉我奶头~嗯~啊~动态视频 | 国产乱人偷精品视频| 成人18禁高潮啪啪吃奶动态图| 美女脱内裤让男人舔精品视频| 一区二区三区激情视频| xxx大片免费视频| 国产在线免费精品| 少妇 在线观看| 亚洲免费av在线视频| 人人妻人人爽人人添夜夜欢视频| www日本在线高清视频| 婷婷色综合大香蕉| 在线观看免费视频网站a站| 午夜日韩欧美国产| 汤姆久久久久久久影院中文字幕| 一个人免费看片子| 久久97久久精品| 麻豆av在线久日| 国产日韩欧美亚洲二区| 综合色丁香网| 国产精品久久久久久人妻精品电影 | a级毛片在线看网站| 女人高潮潮喷娇喘18禁视频| 91老司机精品| 精品福利永久在线观看| 97在线人人人人妻| 观看美女的网站| 欧美精品人与动牲交sv欧美| 国产在线一区二区三区精| 黄片播放在线免费| 精品福利永久在线观看| 十八禁高潮呻吟视频| 日韩成人av中文字幕在线观看| 国产成人精品久久二区二区91 | 欧美精品一区二区免费开放| 亚洲国产看品久久| 丝袜美足系列| 亚洲美女黄色视频免费看| 精品视频人人做人人爽| 好男人视频免费观看在线| 日本av免费视频播放| 精品人妻在线不人妻| 亚洲精品国产av成人精品| 欧美日韩福利视频一区二区| 热99久久久久精品小说推荐| 亚洲四区av| 久久这里只有精品19| 国产毛片在线视频|