• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructures of carbon nanoscrolls characterized by polarized micro-Raman spectroscopy

    2017-01-07 04:18:02CarotenutoLongoCamerlingoDeNicolaPepe
    新型炭材料 2016年6期
    關鍵詞:透射電鏡雙軸卷曲

    G. Carotenuto, A. Longo, C. Camerlingo, S. De Nicola, G.P. Pepe,3

    (1.CNR-IPCB, Inst. for Polymers, Composites and Biomaterials. National Research Council,Viale Kennedy,54. Mostra d’Oltremare Pad.20-80125 Naples, Italy;2.CNR-SPIN, Inst. for Superconductors, oxides and other innovative materials and devices,National Research Council, C. Univ. M.S. Angelo, Via Cinthia,80126 Naples, Italy.3.Dipartimento Scienze Fisiche, University of Naples Federico II, Via Cinthia,80126 Naples, Italy)

    Microstructures of carbon nanoscrolls characterized by polarized micro-Raman spectroscopy

    G. Carotenuto1, A. Longo1, C. Camerlingo2, S. De Nicola2, G.P. Pepe2,3

    (1.CNR-IPCB,Inst.forPolymers,CompositesandBiomaterials.NationalResearchCouncil,VialeKennedy,54.Mostrad’OltremarePad.20-80125Naples,Italy;2.CNR-SPIN,Inst.forSuperconductors,oxidesandotherinnovativematerialsanddevices,NationalResearchCouncil,C.Univ.M.S.Angelo,ViaCinthia,80126Naples,Italy.3.DipartimentoScienzeFisiche,UniversityofNaplesFedericoII,ViaCinthia,80126Naples,Italy)

    Carbon nanoscrolls (CNSs) are produced by rolling up the graphite layer in graphene nanoplatelets on a nanofibrous bi-axially oriented polypropylene surface by a shear-friction mechanism. Microstructures of the CNSs are characterized by optical and scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and micro-Raman spectroscopy. Results indicate that the CNSs have a long tubular and fusiform structure with a hollow core surrounded by few graphene layers. The orientation of the graphite lattice with respect to the scroll axis is accurately determined from the split of the vibrational G mode by polarized micro-Raman spectroscopy. Morphological changes produced by the rolling are also described.

    Carbon nanoscrolls; Shear stress; Bi-axially oriented polypropylene; GNP; Micro-Raman spectroscopy

    1 Introduction

    Carbon nanoscrolls (CNSs) are novel carbon nanomaterials that have many useful graphene properties without the disadvantages of stacking phenomena that are observed with graphene. Already in 1960, Bacon[1]described a graphite whisker in which a graphene sheet is rolled into a scroll. However, the scrolled structures have been available in a high purity and large quantities only recently. These carbon nanostructures are generated by wrapping a graphene sheet into a helical structure[2-9]. Because of the scroll topology their properties differ from those of either single or multi-walled carbon nanotubes. In contrast to carbon nanotubes, CNSs contain interlayer galleries. CNSs offer a number of useful physical characteristics (e.g., very high specific surface area, and electrical-thermal conductivity) adequate for applications in different technological fields like, for examples, biomedical (drug-delivery, image contrast agents, hyperthermie, et al.)[10], electrical (high-porous electrodes) and hydrogen storage applications[11-13]. A variety of synthetic approaches have been widely explored to produce large amounts of carbon nanoscrolls and to realize their applications[14-29]. Lithography had been used to synthesize wide ribbons from graphene sheets, but the quality was limited by the lithographic resolution[14]. Chemical and sonochemical methods have been developed to produce narrow carbon nanoscrolls, but with a low yield[15-22]. Nanoscrolls have also been produced by unzipping carbon nanotubes, but the resultant quality and yield also need to be improved[23-25]. Scrolled structures have been obtained by direct rolling up of the graphene monolayers by ball milling[26]. Little amount and low quality CNSs were obtained at the end of the graphite grinding process, and the diameter of these scrolls was quite large (ca. 400 nm)[27]. Tunable carbon nanoscrolls were produced by using Fe3O4nanoparticles as the catalyst precursor based on a chemical vapor deposition method[28]. Recently, we have developed a simple approach for the production of CNSs[29]. This method is based on the application of shear-friction forces to convert graphite nanoplatelets to carbon nanoscrolls using a biaxially oriented polypropylene (BOPP) surface. An important aspect for the assessment of the technique is the morphological investigation of these produced rolled structures. One of the most commonly used techniques to characterize carbon related materials is Raman spectroscopy. It plays a very important role in acquiring information not only on morphological properties but also on physical, chemical properties of graphene and graphene based structures[30, 31]. Herein we report on a polarized micro-Raman spectroscopic technique, which allows to determine the chirality, hence the crystal orientation of the graphite lattice with respect to the scroll axis of the structures produced by the micromechanical method. The technique allows to obtain both qualitative and quantitative information of the graphite lattice orientation by using the split of the vibrational G mode.

    2 Experimental

    2.1 Methods

    An alcoholic (ethanol, Sigma-Aldrich 99.9%) dispersion of nanographite (graphite nanoplatelets, GNP), was slowly rubbed against on the surface of a BOPP (Manucor S.p.a., film thickness = 40 μm) film using a low-density polyethylene (LDPE) piece. The alcoholic suspension was allowed to dry during the rubbing down process. After drying the concentrated liquid suspension was removed from the BOPP film by pouring pure ethanol on it. The resulting black suspension contained a large amount of nanoscrolls. Nanoscrolls were separated from the un-rolled and/or partially rolled graphene-based material by sedimentation in ethanol since their Stokes coefficient value is significantly higher than that for graphene sheets. The high roughness of the BOPP due to the nano-fibers on BOPP surface is able to induce a rolling up process in the graphene sheet. Indeed, the dimension of the nano-fibers is 4.20 ?[32], which is comparable to the graphite interlayer spacing (3.35 ?), thus leading to enhanced mechanical grip between the two sliding surface. The mechanism involved in the CNS formation is schematically depicted in Fig. 1.

    Fig. 1 Scheme of the micromechanical method used transform GNPs to carbon nanoscrolls.

    The displayed time sequence (from top to bottom) illustrates the formation of a rolled nanostructure. The sliding and separation of graphene sheets take place under the weak shear forces acting along the BOPP surface. GNP and CNSs were morphologically characterized by SEM (a FEI quanta 200 FEg equipped whit an Oxford Inca Energy system 250) and TEM (a FEI Tecnai G2 Spirit TWIN whit LaB6 source). The powder containing CNSs was diluted in ethanol (98.8%) and sonicated for 10 minutes. A drop of the liquid was placed on a microscope glass and left in air until the solvent was completely evaporated. Single CNS was identified by optical microscope and analysed by micro-Raman spectroscopy (μ-RS). For the measurements a Jobin-Yvon system from Horiba ISA was used, with a TriAx 180 monochromator, equipped with a liquid nitrogen-cooled charge-coupled detector. The grating of 1 800 grooves/mm allows a final spectral resolution of 4 cm-1. The spectra were recorded in air at room temperature using a 17 mW He-Ne laser source (wavelength 632.8 nm). The spectrum accumulation time was 300 s. The laser light was focused to a 2 μm spot size on the samples through an Olympus confocal microscope with a 100 × optical objective. The laser light beam was polarized along a fixed direction (Y-axis) by a polarizing polymer filter. The same filter was used for polarize the Raman signal. By rotating the sample under the microscope objective by an angleφabout the optical axis (Z-axis), μ-RS was performed at different incidence anglesφof the polarized light with respect to the CNS orientation. The CNS axis was aligned to the Y-axis forφ= 90°. In order to determine the basic vibrational modes that contribute to the Raman signal, the spectra were analyzed in terms of convoluted Lorentzian functions by using a best-fit peak-fitting routine of a GRAMS/AI (2001, Thermo Electron) program, which is based on the Levenberg-Marquardt nonlinear least-square method. Peaks constituting the spectrum were manually selected in order to define the starting conditions for the best-fit procedure. The best-fit was then performed to determine convolution peaks with an optimized intensity, position and width. Its performance was evaluated by means of the χ2parameter. Fourier Transform Infrared (FT-IR) spectroscopy of the CNS samples was performed in the mid infrared range of energy (4 000- 400 cm-1). A FT/IR-6000 spectrometer from JASCO Inc (USA) has been used in transmission mode. An ethanol solution of CNS was dropped on the surface of a thin (thinner than 1 mm) fresh prepared pellet of KBr and left in dry air until the solvent was completely evaporated. The FT-IR spectrum was acquired in transmission mode on a surface area of about 5 mm2. A 100 scan acquisition process has been used with a spectral resolution of 1 cm-1.

    3 Results and discussion

    The nano-fibrous structure of the BOPP film surface was analyzed by atomic force microscopy (AFM) as shown in Fig. 2a. It can be seen that the BOPP surface is made of nanosized polypropylene fibers capable of inducing the opening of the graphite nanocrystal edges, thus causing a scrolling-up process under the effect of the applied shear stress.

    Fig. 2b shows the morphology of the GNP precursor. Flat graphite nano-platelets with sharp edges can be clearly seen. The average size and thickness of the GNP precursor was of a few microns and ca. 20 nm, respectively. After the mechanical treatment the material morphology was completely modified. SEM and TEM analysis of the scrolled structures are shown in Fig. 3. Fig. 3a shows a large amount of tubular structures produced by the rolling-up of carbon sheets. They appear to be distributed all over the examined surface in presence of nanoplatelets of varying size and orientation. The reaction yield was about 14%. The produced CNSs are structurally made of continuous graphene sheets rolled up into a hollow tubular form of length ranging from 0.5 to 2.5 μm and diameter ca. 100 nm.

    Fig. 2 (a) AFM image of the BOPP film nanoporous surface and (b) SEM micrograph of the GNP precursor.

    The produced CNSs have been characterized by FT-IR and micro-Raman spectroscopy. Fig. 4 shows the typical FT-IR spectrum of the CNSs and assignment of the main modes. The presence of hydroxyl groups is evinced by the weak absorption peak at 1 630 cm-1and 3 360 cm-1. The enlarged spectrum in the 2 700- 3 100 cm-1range, where two prominent absorption peaks are featured at 2 849 cm-1and 2 921 cm-1is given in the inset. These modes are generally associat-ed to CH2vibrational modes and are typically obs-erved in FT-IR spectra of carbon nanotubes[35, 36]. Micro-Raman spectroscopy (μ-RS) is widely used as fast, powerful and nondestructive method for characterizing sp3carbon system and can provide information on defects of the structure. Result of the (μ-RS) scattering measurements carried out on an insulated single CNS fabricated by the shear-friction method is shown in Fig. 5 (plot (a) ).

    Fig. 3 (a,b) SEM micrographs and (c, d) TEM images of CNSs.

    Fig. 4 FT-IR spectrum of CNSs. The inset shows the enlarged spectrum in the 2 700- 3 100 cm-1 range.

    Fig. 5 (a) Raman spectra of a single CNS. Both the excitation light and the Raman signal were polarized along a fixed direction (y-axis) φ=-10° rotated with respect to the strain (x-axis) direction. The spectrum measured from unstrained flat graphene platelets is reported in (b) for comparison. Details of the G mode for both (a) and (b) spectra are reported in the inset, and fitted by Lorentzian functions.

    The spectrum was recorded under ambient conditions using a 632.8 nm laser source. The laser light was focused to a 2 μm spot size on the samples under a low power irradiation to avoid additional heating effect during the measurement. In order to bring out effects related to the lattice orientation of graphene foil in the CNS, both the excitation light and Raman signal were polarized along a fixed direction (y-axis) while the sample was positioned under the microscope objective at an angleφabout the optical axis (z-axis) of the incident light (Y//Y configuration). In the case of Fig. 5, the sample was rotated by an angleφ=-10° with respect to thex-axis, normal to the polarization direction. The CNS axis was aligned to they-axis forφ=90°. The spectrum exhibits sharp features at 1 583 cm-1(Gband), 1 332 cm-1(Dband) and 1 617 cm-1(D′band), typical of disordered graphene[37]and of carbon nanoscrolls[21, 38, 39]. The Raman spectrum of graphene flat platelets has been measured in unpolarized configuration with experimental conditions similar to those used for CNSs and it is reported in Fig. 5 (plot (b)) for comparison. Peak positions are preserved but their relative intensity and shape change significantly. Some similarities occur also in the Raman spectra of CNTs, even if effects of resonantly electronic excited modes affect significantly theGpeak by adding a broad and intense component at 1 550 cm-1strongly dependent on the CNT chirality[40]. In general, theGpeak is assigned to the double degeneratedE2gphonon mode at the Brillouin-zone center while theDpeak is originated by a double resonance process involving phonons near K points and its intensity strongly depends on the disorder degree and on defects[41]. The relatively high intensity of theDandD′modes indicates the presence of disorder that may originate from defects and edges of graphene planes, presumably attributable to the considerable length of rolls. A further broad peak, the 2Dmode, is observed at about 2 650 cm-1. This peak is the second order of theDmode, but, differently from this one, it does not require the presence of disorder for its activation. The center of this mode depends on the graphene layer number, and moves to high wavenumbers when this number increases (blue shift)[42]. In our case, the 2Dmode is centered at about 2 645 cm-1, close to the value expected for graphene monolayer, and it indicates that the sample considered is constituted by a limited number of layers (lower than 5), in good agreement with morphological observations. The 2DRaman peak is expected to follow polarization features ofA1mode because overtone always contains anA1symmetry character[43, 44]. In the polarization configuration used the 2Dsignal is expected to be constant withφ, and its intensity has been used for normalizing the spectra. Similarly, theGmode intensity should not change with polarization because it corresponds to phonons withE2gsymmetry. However, theE2gsymmetry is lowered when graphene is stretched out of equilibrium and strain is induced. This is also the case of CNSs and carbon nanotubes because the curvature of the graphene foil induces a deformation of the C—C bonds that are expected to be lengthened and softened in the direction perpendicular to the axis of curvature. The un-axial strain induces a split of theGmode into two componentsG-andG+with different energies, corresponding to a fixed orientation of the vibration with respect to the strain axis[45]. This energy split is clearly observed in the CNS. When theGpeak is analyzed in terms of convolution of Lorentzian functions, two different components have been evinced (plot (a) in the inset of Fig. 5) centered at 1 573 cm-1and 1 581 cm-1, and assigned to theG-andG+mode respectively. In the case of unstrained graphene platelets (plot (b) in the inset of Fig. 5) theGmode peak can be satisfactorily fitted by a single Lorentzian function. The lower energy subbandG-is generated by phonons directed longitudinally to the strain axis,whileG+is related to phonon mode transverse to the strain axis. In the case of the CNS, the strainx-axis is directed perpendicular to the main axis of the CNS. The intensity of the two subbands depends on the rotation angleφand on the lattice orientation of the graphene sheet with respect to the CNS axis. We assume a reference system with thex-axis directed along the direction of the strain and they-axis along the direction of the CNS and callφSthe angle between they-axis and thex-axis of graphene lattice.

    In the reference system of CNS shown schematically in Fig. 6a, the Raman matrices R+and R-for the two degeneratedE2gmodes can be rewritten as:

    (1)

    (2)

    wheref-andf+are constants depending on the specific Raman scattering cross section. For the considered Y//Y polarization configuration (Fig. 6b), the intensitiesIG-andIG+of theG-andG+modes depend on anglesφandφSaccording to the following simple relations:

    (3)

    (4)

    whereI0G-andI0G+are constants. A set ofμ-RS measurements was performed for different polarization angles on a single CNS, at angles valuesφ= -40°, -20°, 0°, 20°, 40°, 50°, 60°, 80°, 90°. The Raman response in the wavenumber range of 1 525 cm-1and 1 625 cm-1depends on the polarization angleφas shown in Fig. 7. TheGmode peak of the spectra has been analyzed in terms of convolution of Lorentzian functions, by means of a best fitting procedure.G-andG+components have been identified for each angleφ. The peak areas ofG-andG+mode normalized to the peak area of 2Dmode, are reported in Fig. 8. TheGmode intensity measurements of the normalized peak are fitted by the angular intensity distribution given by Eqs. (3) and (4). The fit procedure givesφS=9.6° and it allows to determine the axis orientation of the graphene sheet with respect to the direction normal of the CNS axis.

    Fig. 6 (a) Schematic view of graphene with strain directed along x-axis direction. (b) Coordinate systems adopted: both excitation and signal beams are directed along thez- (Z-) axis direction, and they are polarized in the plane Y-Z.

    Fig. 7 Raman spectra of an insulated CNS in the wavenumber range of G mode. Both the excitation light and the Raman signal were polarized along a fixed direction (y-axis) while the sample was rotated by an angle φ with respect to the X-axis direction.

    Fig. 8 Dependence on the angle φ of the peak area of the Raman mode G- (a) and G+ (b). The data are fitted by Eq.3 and Eq.4 respectively, for the fit parameter value φS=-9.6°.

    4 Conclusions

    Theoretical and experimental investigations have shown that carbon nanoscrolls are nanostructures, which offer a number of advantages compared to planar graphene and are of potential interest in many applications. A convenient method for the massive production of carbon nanoscrolls is based on the shear-friction mechanism using a nanofibrous BOPP surface to transform the graphite nano-platelets to carbon nanoscrolls through rolling up the graphite layer. TEM studies have shown that the fabricated CNSs have a long tubular and fusiform structure with a hollow core surrounded by few layers of graphene. We have used micro-Raman spectroscopy to investigate the morphological changes undergone by the rolled structure. Micro-Raman analysis have allowed an accurate determination of the orientation of the graphite lattice with respect to the scroll axis from the angular distribution of the intensities of the G subbands.

    [1] Bacon R. Growth, structure, and properties of graphite whiskers [J]. Journal of Applied Physics, 1960, 31(2): 283-290.

    [2] Braga S F, Coluci V R, Legoas S B et al. Structure and dynamics of carbon nanoscrolls [J]. Nano Letters, 2004, 4(5): 881-884.

    [3] Shi X, Pugno N M, Gao H. Mechanics of carbon nanoscrolls: A review [J]. Acta Mechanica Solida Sinica, 2010, 23(6): 484-497.

    [4] Xu Z, Buehler M J. Geometry controls conformation of graphene sheets: Membranes, ribbons, and scrolls [J]. ACS Nano, 2010, 4(5): 3869-3876.

    [5] Chuvilin A L, Kuznetsov V L, Obraztsov A N. Chiral carbon nanoscrolls with a polygonal cross-section [J]. Carbon, 2009, 47(13): 3099-3105.

    [6] Chivilikhin S A, Popov I Y. Formation and evolution of nanoscroll ensembles based on layered-structure compounds [J]. Doklady Physics, 2009, 54(11): 491-493.

    [7] Shi X, Pugno N M, Gao H. Constitutive behavior of pressurized carbon nanoscrolls [J]. International Journal of Fracture, 2011, 171: 163-168.

    [8] Xia D, Xue Q, Xie J, et al. Fabrication of carbon nanoscrolls from monolayer graphene [J]. Small, 2010, 6(18): 2010-2019.

    [9] Li T S, Lin M F. Quantum transport in carbon nanoscrolls [J]. Physics Letters A, 2012, 376(4): 515-520.

    [10] Lacerda L, Bianco A, Prato M, et al. Carbon nanotubes as nanomedicines: From toxicology to pharmacology [J]. Advanced Drug Delivery Reviews, 2006, 58(14): 1460-1470.

    [11] Mpourmpakis G, Tylianakis E, Froudakis G E. Carbon nanoscrolls: A promising material for hydrogen storage [J]. Nano Letters, 2007, 7(7): 1893-1897.

    [12] Coluci V R, Braga S F, Baughman R H, et al. Prediction of the hydrogen storage capacity of carbon nanoscrolls [J]. Physical Review B, 2007, 75(12): 125404.

    [13] Braga S F, Coluci V R, Baughman R H, et al. Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study [J]. Chemical Physics Letters, 2007, 441(1-3): 78-82.

    [14] Tapasztó L, Dobrik G, Lambin P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography [J]. Nature Nanotechnology, 2008, 3(7): 397-401.

    [15] Datta S S, Strachan D R, Khamis S M, et al. Crystallographic etching of few-layer graphene [J]. Nano Letters, 2008, 8(7): 1912-1915.

    [16] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, et al. Anisotropic etching and nanoribbon formation in single-layer graphene [J]. Nano Letters, 2009, 9(7): 2600-2604.

    [17] Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J]. Science, 2008, 319(5867): 1229-1232.

    [18] Wu Z S, Ren W, Gao L, et al. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets [J]. Nano Research, 2010, 3(1): 16-22.

    [19] Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls [J]. Science, 2003, 299(5611): 1361.

    [20] Xie X, Ju L, Feng X, et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene [J]. Nano Letters, 2009, 9(7): 2565-2570.

    [21] Zheng J, Liu H, Wu B, et al. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen [J]. Advanced Materials, 2011, 23(21): 2460-2463.

    [22] Savoskin M V, Mochalin V N, Yaroshenko A P, et al. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds [J]. Carbon, 2007, 45(14): 2797-2800.

    [23] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature, 2009, 458(7240): 872876.

    [24] Jiao L, Zhang L, Wang X et al. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature, 2009, 458(7240): 87780.

    [25] Zhang Z, Sun Z, Yao J, et al. Transforming carbon nanotube devices into nanoribbon devices [J]. Journal of the American Chemical Society, 2009, 131(37): 1346013463.

    [26] Li J L, Peng Q , Bai G Z, et al. Carbon scrolls produced by high Energy ball milling of graphite [J]. Carbon, 2005, 43(13): 2830-2833.

    [27] Spreadborough J. The frictional behavior of graphite [J]. Wear, 1962, 5(1): 18-30.

    [28] Chen X L, Li Li, Sun X M et al. A novel synthesis of graphene nanoscrolls with tunable dimension at a large scale [J]. Nanotechnology, 2012, 23(5): 055603.

    [29] Carotenuto G, Longo A, De Nicola S, et al. A simple mechanical technique to obtain carbon nanoscrolls from graphite nanoplatelets [J]. Nanoscale Research Letters, 2013, 8: 403.

    [30] Dresselhaus M S, Eklund P C. Phonons in carbon nanotubes [J]. Advances in Physics, 2000, 49(6): 705-814.

    [31] Reich S, Thomsen C. Raman spectroscopy of graphite [J]. Philosophical Transactions of the Royal Society Ser A, 2004, 362(1824): 2271-2288.

    [32] Nie H Y, Walzak M J, McIntyre N S. Atomic force microscopy study of biaxially-oriented polypropylene films [J]. Journal of Materials Engineering and Performance, 2004, 13(4): 451-460.

    [33] Wang X, Yang D P, Huang G, et al. Rolling up graphene oxide sheets into micro/nanoscrolls by nanoparticle aggregation [J]. Journal of Materials Chemistry, 2012, 22(34): 17441-17444.

    [34] Carotenuto G, De Nicola S, Palomba M, et al. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets [J]. Nanotechnology, 2012, 23(48): 485705.

    [35] Kim U J, Liu X M, Furtado C A, et al. Infrared-active vibrational modes of single-walled carbon nanotubes [J]. Physical Review Letters, 2005, 95(15): 157402.

    [36] Kim U J, Furtado C A, Liu X et al. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes [J]. Journal of the American Chemical Society, 2005, 127(44): 15437-15445.

    [37] Martins Ferreira E H, Moutinho M V O, Stavale F, et al. Evolution of the Raman spectra from single, few, and many-layer graphene with increasing disorder [J]. Physical Review B, 2010, 82(12): 125429.

    [38] Roy D, Angeles-Tactay E, Brown R J C, et al. Synthesis and Raman spectroscopic characterization of carbon nanoscrolls [J]. Chemical Physics Letters, 2008, 465(4-6): 254-257.

    [39] Zhou H Q, Qiu C Y, Yang H C, et al. Raman spectra and temperature-dependent Raman scattering of carbon nanoscrolls [J]. Chemical Physics Letters, 2011, 501(4-6): 475-479.

    [40] Duesberg G S, Loa I, Burghard M, et al. Polarized raman spectroscopy on isolated single-wall carbon nanotubes [J]. Physical Review Letters, 2000, 85(25): 5436.

    [41] Nemanich R J, Solin S A. First- and second-order Raman scattering from finite-size crystal of graphite [J]. Physical Review B, 1979, 20(2): 392-401.

    [42] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers [J]. Physical Review Letters, 2006, 97(18): 187401.

    [43] Yoon D, Moon H, Son Y W et al. Strong polarization dependence of double-resonant Raman intensity in graphene [J]. Nano Letters, 2008, 8(12): 4270-4274.

    [44] Sahoo S, Palai R, Katiyar S. Polarized Raman scattering in monolayer, bilayer, and suspended bilayer graphene [J]. Journal of Applied Physics, 2011, 110(4): 044320.

    [45] Mohiuddin T M G, Lombardo A, Nair R R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation [J]. Physical Review B, 2009, 79(20): 205433.

    1007-8827(2016)06-0621-07

    炭納米卷的極性微-拉曼光譜研究

    G. Carotenuto1, A. Longo1, C. Camerlingo2, S. De Nicola2, G.P. Pepe2,3

    (1.CNR-IPCB,Inst.forPolymers,CompositesandBiomaterials.NationalResearchCouncil,VialeKennedy, 54.Mostrad’OltremarePad. 20-80125Naples,Italy;2.CNR-SPIN,Inst.forSuperconductors,oxidesandotherinnovativematerialsanddevices,NationalResearchCouncil,C.Univ.M.S.Angelo,ViaCinthia,80126Naples,Italy;3.DipartimentoScienzeFisiche,UniversityofNaplesFedericoII,ViaCinthia,80126Naples,Italy)

    采用剪切-摩擦機理,通過卷曲將雙軸取向聚丙烯纖維表面轉變成石墨納米片,從而制備出炭納米卷。通過光學和掃描電鏡、透射電鏡和紅外光譜儀等手段對炭納米卷的形貌進行分析。微-拉曼測試表征了卷曲結構的形貌變化。從振動的G模式分裂可知,石墨片取向度與卷曲軸有關。

    炭納米卷; 剪切應力; 雙軸取向聚丙烯; 石墨納米片; 微-拉曼光譜

    TQ127.1+1

    A

    C. Camerlingo. E-mail: carlo.camerlingo@spin.cnr.it

    C. Camerlingo. E-mail: carlo.camerlingo@spin.cnr.it

    10.1016/S1872-5805(16)60036-7

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    透射電鏡雙軸卷曲
    電子顯微學專業(yè)課的透射電鏡樣品制備實習課
    透射電子顯微鏡在實驗教學研究中的應用
    山東化工(2020年15期)2020-02-16 01:00:12
    基于大數據的透射電鏡開放共享實踐與探索
    汽車冷沖壓U形梁卷曲的控制
    簡易雙軸立銑頭裝置設計與應用
    基于SolidWorks對雙軸攪拌機的靜力學分析
    透射電鏡中正空間—倒空間轉換教學探討
    夜讀
    詩林(2016年5期)2016-10-25 06:24:48
    雙軸太陽能跟蹤與市電互補的路燈控制系統(tǒng)
    DCS550卷曲宏在復卷機退紙輥控制中的應用
    中國造紙(2015年7期)2015-12-16 12:40:50
    亚洲成av人片在线播放无| 亚洲美女黄片视频| 久久久久久久午夜电影| av福利片在线| 亚洲精品av麻豆狂野| 欧美不卡视频在线免费观看 | 桃红色精品国产亚洲av| 欧美大码av| 两性午夜刺激爽爽歪歪视频在线观看 | 久久人妻福利社区极品人妻图片| 亚洲一卡2卡3卡4卡5卡精品中文| 丁香六月欧美| 欧美又色又爽又黄视频| 舔av片在线| 操出白浆在线播放| 波多野结衣巨乳人妻| 夜夜看夜夜爽夜夜摸| 亚洲美女视频黄频| 十八禁人妻一区二区| 欧美成人免费av一区二区三区| 国产亚洲精品av在线| 欧美一区二区精品小视频在线| 日本精品一区二区三区蜜桃| 真人一进一出gif抽搐免费| 中文在线观看免费www的网站 | 午夜精品久久久久久毛片777| 两个人看的免费小视频| 一边摸一边做爽爽视频免费| 久久久久久久久久黄片| 国产av又大| 九色国产91popny在线| 在线a可以看的网站| 亚洲片人在线观看| 老鸭窝网址在线观看| 国产麻豆成人av免费视频| 亚洲avbb在线观看| 欧美另类亚洲清纯唯美| www.精华液| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人看人人澡| 国产乱人伦免费视频| 亚洲欧美精品综合一区二区三区| 亚洲中文字幕日韩| 人妻夜夜爽99麻豆av| 午夜影院日韩av| 国产精品av视频在线免费观看| 男女床上黄色一级片免费看| 99国产综合亚洲精品| 亚洲五月天丁香| 在线观看日韩欧美| 久久精品国产99精品国产亚洲性色| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久久人妻蜜臀av| 亚洲色图av天堂| 老熟妇仑乱视频hdxx| 哪里可以看免费的av片| 欧美日韩一级在线毛片| 91九色精品人成在线观看| 2021天堂中文幕一二区在线观| 嫩草影院精品99| 97超级碰碰碰精品色视频在线观看| 9191精品国产免费久久| 中文字幕人成人乱码亚洲影| 国产精品 国内视频| 欧美一级毛片孕妇| av福利片在线观看| 长腿黑丝高跟| 老司机午夜十八禁免费视频| 中文字幕高清在线视频| 少妇人妻一区二区三区视频| 69av精品久久久久久| 欧美另类亚洲清纯唯美| 久久精品91蜜桃| 91麻豆精品激情在线观看国产| 久久天躁狠狠躁夜夜2o2o| 国产片内射在线| 在线a可以看的网站| 亚洲成人国产一区在线观看| 欧美日韩一级在线毛片| 香蕉久久夜色| 欧美在线黄色| 国产亚洲av嫩草精品影院| 国产成人av激情在线播放| 曰老女人黄片| 国产精品,欧美在线| 青草久久国产| 亚洲午夜理论影院| 国产亚洲精品久久久久5区| e午夜精品久久久久久久| 无限看片的www在线观看| 在线视频色国产色| 中国美女看黄片| www.熟女人妻精品国产| 身体一侧抽搐| 国产精品精品国产色婷婷| 国产视频内射| 搞女人的毛片| 他把我摸到了高潮在线观看| 两性夫妻黄色片| 午夜精品一区二区三区免费看| 精品福利观看| 91麻豆精品激情在线观看国产| 欧美成狂野欧美在线观看| 日本一本二区三区精品| 999久久久国产精品视频| 黄色视频不卡| 久久精品国产99精品国产亚洲性色| 欧美激情久久久久久爽电影| 美女高潮喷水抽搐中文字幕| 午夜老司机福利片| 激情在线观看视频在线高清| 天堂√8在线中文| 三级毛片av免费| 国产熟女xx| av国产免费在线观看| 母亲3免费完整高清在线观看| www.熟女人妻精品国产| 国产一级毛片七仙女欲春2| 国产一区二区在线av高清观看| 很黄的视频免费| 一本大道久久a久久精品| av在线播放免费不卡| 中国美女看黄片| 亚洲欧美日韩高清在线视频| 精华霜和精华液先用哪个| av超薄肉色丝袜交足视频| 国产又黄又爽又无遮挡在线| 欧美+亚洲+日韩+国产| 制服丝袜大香蕉在线| 久久久国产成人精品二区| 欧美高清成人免费视频www| 午夜福利高清视频| 欧美日本视频| 亚洲精品国产一区二区精华液| 曰老女人黄片| 97碰自拍视频| 97人妻精品一区二区三区麻豆| 亚洲狠狠婷婷综合久久图片| 欧美日韩一级在线毛片| 看免费av毛片| 亚洲精品中文字幕在线视频| 91麻豆精品激情在线观看国产| 日韩大码丰满熟妇| 丰满人妻熟妇乱又伦精品不卡| 韩国av一区二区三区四区| 此物有八面人人有两片| 舔av片在线| 在线看三级毛片| 免费在线观看日本一区| 妹子高潮喷水视频| 1024香蕉在线观看| 一本久久中文字幕| 国产精品一区二区免费欧美| 身体一侧抽搐| 久久久水蜜桃国产精品网| 这个男人来自地球电影免费观看| 在线观看日韩欧美| 可以在线观看毛片的网站| 一区二区三区激情视频| 丰满的人妻完整版| 午夜亚洲福利在线播放| 国产成人啪精品午夜网站| 亚洲欧美日韩东京热| 午夜福利在线在线| 国产精品一区二区三区四区久久| 国产熟女午夜一区二区三区| 两个人看的免费小视频| 又紧又爽又黄一区二区| 美女免费视频网站| 色播亚洲综合网| 欧美成人免费av一区二区三区| 日韩国内少妇激情av| av国产免费在线观看| 国产成人精品无人区| 特大巨黑吊av在线直播| 亚洲一区二区三区不卡视频| 99国产极品粉嫩在线观看| videosex国产| 午夜激情福利司机影院| 国产亚洲精品综合一区在线观看 | 久久精品aⅴ一区二区三区四区| 亚洲黑人精品在线| xxxwww97欧美| 不卡av一区二区三区| 中文字幕人成人乱码亚洲影| 久久久久国内视频| 91老司机精品| 亚洲成人免费电影在线观看| 欧美在线黄色| 免费搜索国产男女视频| 欧洲精品卡2卡3卡4卡5卡区| 无限看片的www在线观看| av在线播放免费不卡| 欧美成人一区二区免费高清观看 | 啦啦啦韩国在线观看视频| 亚洲全国av大片| 女生性感内裤真人,穿戴方法视频| 一本一本综合久久| 可以在线观看毛片的网站| 午夜两性在线视频| 在线免费观看的www视频| 男插女下体视频免费在线播放| 一级毛片女人18水好多| 久久久久久人人人人人| 波多野结衣高清作品| 我要搜黄色片| 婷婷丁香在线五月| 国产成人精品久久二区二区免费| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| 高清毛片免费观看视频网站| 国产精品一区二区免费欧美| 女同久久另类99精品国产91| 波多野结衣高清无吗| 黄色视频不卡| 99热6这里只有精品| 中文在线观看免费www的网站 | 亚洲熟妇熟女久久| 成人精品一区二区免费| 人妻夜夜爽99麻豆av| 国产成年人精品一区二区| 俺也久久电影网| 男女那种视频在线观看| 欧美日韩黄片免| 99精品欧美一区二区三区四区| 91国产中文字幕| 啦啦啦观看免费观看视频高清| 黄色 视频免费看| 99在线人妻在线中文字幕| 国产av又大| 日韩大尺度精品在线看网址| ponron亚洲| 久久久国产精品麻豆| 久久久久性生活片| 久久久久免费精品人妻一区二区| 亚洲美女黄片视频| 日韩av在线大香蕉| 国产久久久一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产精华一区二区三区| 激情在线观看视频在线高清| 少妇裸体淫交视频免费看高清 | 久久精品夜夜夜夜夜久久蜜豆 | 亚洲一区二区三区色噜噜| 性色av乱码一区二区三区2| 中文字幕久久专区| 精品乱码久久久久久99久播| 色尼玛亚洲综合影院| 国产精品久久久久久亚洲av鲁大| 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜看夜夜爽夜夜摸| 亚洲精品中文字幕一二三四区| 日日爽夜夜爽网站| 国产高清视频在线观看网站| 色av中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 国产精品亚洲一级av第二区| 日韩av在线大香蕉| 日本熟妇午夜| 国产亚洲精品久久久久5区| 国产激情欧美一区二区| 黄色女人牲交| 亚洲avbb在线观看| www日本黄色视频网| 精品无人区乱码1区二区| 一区二区三区激情视频| 这个男人来自地球电影免费观看| 精品福利观看| 99国产精品一区二区蜜桃av| 欧美乱码精品一区二区三区| www.999成人在线观看| 欧美极品一区二区三区四区| 搡老岳熟女国产| 亚洲人与动物交配视频| 一进一出抽搐gif免费好疼| 又大又爽又粗| 精品少妇一区二区三区视频日本电影| 国产成人精品久久二区二区91| 亚洲国产欧美网| 男女床上黄色一级片免费看| 久久国产精品人妻蜜桃| av欧美777| 夜夜夜夜夜久久久久| 两个人的视频大全免费| 91国产中文字幕| 国产乱人伦免费视频| 免费观看人在逋| 天堂av国产一区二区熟女人妻 | 校园春色视频在线观看| 成人三级黄色视频| 国产单亲对白刺激| 日韩成人在线观看一区二区三区| 国产亚洲欧美98| 日本免费一区二区三区高清不卡| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影 | 精品国产乱码久久久久久男人| 一级毛片女人18水好多| 免费高清视频大片| 一级毛片女人18水好多| 免费高清视频大片| 免费观看精品视频网站| 国产精品一区二区三区四区久久| 淫妇啪啪啪对白视频| 少妇被粗大的猛进出69影院| 亚洲国产中文字幕在线视频| 97人妻精品一区二区三区麻豆| 精品一区二区三区四区五区乱码| 成人国产一区最新在线观看| 99久久国产精品久久久| 国产三级中文精品| 亚洲人成伊人成综合网2020| 午夜福利在线在线| 在线看三级毛片| 天天躁夜夜躁狠狠躁躁| 国产麻豆成人av免费视频| 色哟哟哟哟哟哟| 亚洲精品久久国产高清桃花| 精品不卡国产一区二区三区| 又大又爽又粗| 午夜两性在线视频| 午夜福利视频1000在线观看| 亚洲电影在线观看av| 最近最新免费中文字幕在线| 亚洲专区国产一区二区| 一边摸一边抽搐一进一小说| 久热爱精品视频在线9| av视频在线观看入口| 国产精品亚洲美女久久久| 亚洲无线在线观看| 亚洲av中文字字幕乱码综合| 女生性感内裤真人,穿戴方法视频| 夜夜躁狠狠躁天天躁| 在线免费观看的www视频| 国产av一区在线观看免费| 日韩 欧美 亚洲 中文字幕| 成年女人毛片免费观看观看9| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| 波多野结衣高清无吗| 无人区码免费观看不卡| 午夜福利高清视频| 午夜激情福利司机影院| 人人妻人人澡欧美一区二区| 国产成人欧美在线观看| av国产免费在线观看| 成年女人毛片免费观看观看9| 久久久国产欧美日韩av| 99久久综合精品五月天人人| 亚洲国产看品久久| 法律面前人人平等表现在哪些方面| 一a级毛片在线观看| 欧美成人免费av一区二区三区| 无遮挡黄片免费观看| 两人在一起打扑克的视频| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类 | 久久久久久久午夜电影| 亚洲av成人一区二区三| 日韩欧美免费精品| 日本熟妇午夜| 老鸭窝网址在线观看| 亚洲色图av天堂| 免费搜索国产男女视频| 精品不卡国产一区二区三区| 久久九九热精品免费| 亚洲熟女毛片儿| 午夜免费激情av| 亚洲 欧美 日韩 在线 免费| 最近在线观看免费完整版| 老司机靠b影院| 午夜精品久久久久久毛片777| 亚洲 欧美 日韩 在线 免费| 欧美zozozo另类| 免费一级毛片在线播放高清视频| 久久久久久人人人人人| 国产黄色小视频在线观看| 亚洲 欧美一区二区三区| 18禁黄网站禁片免费观看直播| 成人手机av| 欧美乱码精品一区二区三区| 99久久精品热视频| 欧美色视频一区免费| 757午夜福利合集在线观看| 国产精品九九99| 精品久久久久久久久久久久久| 国产男靠女视频免费网站| 中文字幕最新亚洲高清| 亚洲自拍偷在线| 久久香蕉激情| 国产精品1区2区在线观看.| 中文字幕熟女人妻在线| 久久人妻av系列| 一a级毛片在线观看| 欧美色欧美亚洲另类二区| 亚洲中文字幕一区二区三区有码在线看 | 日本五十路高清| tocl精华| 久久久久久九九精品二区国产 | 亚洲国产看品久久| 天堂影院成人在线观看| 一二三四社区在线视频社区8| 人妻丰满熟妇av一区二区三区| 亚洲熟妇中文字幕五十中出| 中文字幕av在线有码专区| or卡值多少钱| 亚洲av片天天在线观看| 国产精品一区二区三区四区久久| 久久国产精品人妻蜜桃| 亚洲精品国产精品久久久不卡| 天堂影院成人在线观看| 国内揄拍国产精品人妻在线| 欧美中文综合在线视频| 亚洲av美国av| 一区二区三区国产精品乱码| 日本免费a在线| 婷婷亚洲欧美| 日韩高清综合在线| 国产精品综合久久久久久久免费| e午夜精品久久久久久久| 亚洲成人中文字幕在线播放| 国产人伦9x9x在线观看| 久久精品影院6| 国产av麻豆久久久久久久| 嫩草影院精品99| 99国产精品一区二区三区| 免费人成视频x8x8入口观看| 久久香蕉精品热| 欧美人与性动交α欧美精品济南到| 伊人久久大香线蕉亚洲五| 国产亚洲欧美98| 国产不卡一卡二| 高清在线国产一区| 黄色视频不卡| 又黄又粗又硬又大视频| 欧美成人一区二区免费高清观看 | 变态另类丝袜制服| 香蕉久久夜色| 最近最新免费中文字幕在线| 我的老师免费观看完整版| 久久这里只有精品19| 国产在线观看jvid| 亚洲天堂国产精品一区在线| 国产三级黄色录像| 日本熟妇午夜| 午夜免费激情av| 欧美一区二区精品小视频在线| 欧美色欧美亚洲另类二区| 村上凉子中文字幕在线| 99热6这里只有精品| 久热爱精品视频在线9| 熟女电影av网| cao死你这个sao货| 亚洲欧美日韩东京热| 国产欧美日韩精品亚洲av| 正在播放国产对白刺激| 日韩 欧美 亚洲 中文字幕| 97超级碰碰碰精品色视频在线观看| 中文在线观看免费www的网站 | 九九热线精品视视频播放| 精品久久久久久久久久免费视频| 欧美黑人精品巨大| 少妇的丰满在线观看| 又粗又爽又猛毛片免费看| 99精品久久久久人妻精品| 黄色 视频免费看| av片东京热男人的天堂| 久久这里只有精品中国| 高潮久久久久久久久久久不卡| 欧美性猛交黑人性爽| 日本熟妇午夜| 毛片女人毛片| 国产三级在线视频| 国产高清videossex| 国产欧美日韩精品亚洲av| 久久久久免费精品人妻一区二区| 国产精品久久视频播放| 男人舔女人的私密视频| 欧美另类亚洲清纯唯美| 国产av不卡久久| 久久精品亚洲精品国产色婷小说| 99riav亚洲国产免费| ponron亚洲| 91麻豆av在线| 欧美黑人欧美精品刺激| 亚洲一区二区三区不卡视频| 日韩高清综合在线| 午夜福利在线在线| 高清在线国产一区| 欧美性猛交黑人性爽| 久久久久国产精品人妻aⅴ院| 嫁个100分男人电影在线观看| 成人国产一区最新在线观看| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久久久99蜜臀| 亚洲av片天天在线观看| 中亚洲国语对白在线视频| 一区二区三区高清视频在线| 特大巨黑吊av在线直播| 波多野结衣高清作品| 国产成+人综合+亚洲专区| 日韩高清综合在线| 午夜免费成人在线视频| 日韩欧美在线二视频| 五月玫瑰六月丁香| 免费在线观看视频国产中文字幕亚洲| 在线观看免费日韩欧美大片| 久久人人精品亚洲av| 日本三级黄在线观看| 亚洲国产欧美人成| 亚洲av五月六月丁香网| 免费在线观看黄色视频的| www.自偷自拍.com| 97超级碰碰碰精品色视频在线观看| 国产野战对白在线观看| 婷婷六月久久综合丁香| 久99久视频精品免费| 免费在线观看影片大全网站| 欧美成狂野欧美在线观看| 在线观看免费视频日本深夜| 丝袜人妻中文字幕| 老司机在亚洲福利影院| 国产精品 国内视频| 一边摸一边做爽爽视频免费| 麻豆成人午夜福利视频| 精品国产亚洲在线| 国产成人aa在线观看| 国产男靠女视频免费网站| 国产成人欧美在线观看| 久久久国产欧美日韩av| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费观看网址| 久久人妻av系列| 国产一区二区激情短视频| 中文资源天堂在线| 日本a在线网址| 久热爱精品视频在线9| 99riav亚洲国产免费| 欧美三级亚洲精品| 欧美日韩一级在线毛片| 国产一级毛片七仙女欲春2| 一本久久中文字幕| 日本黄大片高清| 精品一区二区三区四区五区乱码| 久久久国产欧美日韩av| 校园春色视频在线观看| 色综合亚洲欧美另类图片| 看免费av毛片| 舔av片在线| 国产黄片美女视频| 真人一进一出gif抽搐免费| 欧美又色又爽又黄视频| 亚洲成a人片在线一区二区| 久久人人精品亚洲av| 久久久久国产一级毛片高清牌| 国产精品久久久久久精品电影| 免费观看精品视频网站| 久久久精品欧美日韩精品| 国产精品一区二区三区四区免费观看 | 国产亚洲精品久久久久5区| 成人永久免费在线观看视频| 国产精品 国内视频| 人妻夜夜爽99麻豆av| 日本撒尿小便嘘嘘汇集6| 国产又色又爽无遮挡免费看| 亚洲真实伦在线观看| 久久久国产成人精品二区| 男女下面进入的视频免费午夜| 国产又黄又爽又无遮挡在线| av有码第一页| 欧美日韩国产亚洲二区| 夜夜爽天天搞| 久久久久久免费高清国产稀缺| 亚洲人成伊人成综合网2020| 啦啦啦免费观看视频1| 亚洲欧美精品综合久久99| 他把我摸到了高潮在线观看| 久久 成人 亚洲| 黄频高清免费视频| 中文亚洲av片在线观看爽| 亚洲人与动物交配视频| av国产免费在线观看| 久久热在线av| 亚洲无线在线观看| 成人永久免费在线观看视频| 最近最新免费中文字幕在线| 欧美日韩黄片免| 国产区一区二久久| 国产主播在线观看一区二区| 精品国内亚洲2022精品成人| 欧美性猛交╳xxx乱大交人| 国产乱人伦免费视频| 亚洲成av人片免费观看| 日韩精品青青久久久久久| 精品欧美一区二区三区在线| 黄片小视频在线播放| 亚洲av片天天在线观看| 欧美黑人巨大hd| 老熟妇仑乱视频hdxx| 国产成人欧美在线观看| 国产蜜桃级精品一区二区三区| 免费在线观看日本一区| 丝袜美腿诱惑在线| 国语自产精品视频在线第100页| 99在线视频只有这里精品首页| 国产男靠女视频免费网站| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 中文字幕高清在线视频| 亚洲一码二码三码区别大吗| 12—13女人毛片做爰片一| 欧美黄色淫秽网站| 免费电影在线观看免费观看| 看片在线看免费视频|