• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays

    2017-01-07 04:17:59ZHANGJichengTANGYongjianYIYongMAKangfuZHOUMinjieWUWeidongWANGChaoyang
    新型炭材料 2016年6期
    關(guān)鍵詞:中國工程物理研究院螺旋形五環(huán)

    ZHANG Ji-cheng, TANG Yong-jian, YI Yong, MA Kang-fu,ZHOU Min-jie, WU Wei-dong, WANG Chao-yang

    (1.Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang621900, China;2. College of Material Science and Engineering, Southwest University of Science and Technology, Mianyang621010, China)

    Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays

    ZHANG Ji-cheng1, TANG Yong-jian1, YI Yong2, MA Kang-fu1,ZHOU Min-jie1, WU Wei-dong1, WANG Chao-yang1

    (1.ResearchCenterofLaserFusion,ChinaAcademyofEngineeringPhysics,Mianyang621900,China;2.CollegeofMaterialScienceandEngineering,SouthwestUniversityofScienceandTechnology,Mianyang621010,China)

    The large-scale synthesis of vertically-aligned carbon nanotube arrays with different helical pitches and diameters was achieved using the floating catalyst method. Results indicate that they are aligned perpendicular to the substrate surface and have a well-graphitized structure and their growth is accompanied by the production of pentagonal, heptagonal and hexagonal carbon rings. The hexagonal carbon ring is the basic structure unit to form the graphite lattice. When paired pentagon-heptagon atomic rings arrange themselves periodically within the hexagonal carbon network, helical carbon nanotubes are formed. The growth rate of the helical?carbon nanotubes is about 4.5mg/cm2·h.

    Helical carbon nanotube; Helical pitch; Hexagonal carbon ring

    1 Introduction

    As one of the most studied advanced functional materials, carbon nanotubes (CNTs) have potential applications in the fields of display, hydrogen storage, sensors, filler of composite, etc[1-9]. In particular, CNTs with different shapes such as toroid[10], coiled[11], helical and branched[12]other than the straight forms are widely used as high-performance electromagnetic wave absorbers, sensors, resonators, nanoscale mechanical springs, electrical inductors, and generators of magnetic beams, owing to their peculiar morphology and unique electrical, magnetic and mechanical properties[13-22]. The helical CNTs[11, 23-26]are the most promising ones as reinforcement fillers in nano-composites in advanced materials and nano-electronic devices in nano-circuit.

    The production of straight CNTs is generally achieved via electric arc-discharge, laser evaporation, or chemical vapor deposition (CVD). For the coiled structure is believed to have exceptional properties and versatile applications, tremendous theoretical and experimental researches have been devoted to the studies of this intriguing carbon material. The helical carbon nanotubes was first predicted by Ihara and Dunlap in the early nineties[11,23-25]and the experimental observation was reported in 1994 by Zhang et al[26]. The first experimental production of multi-walled coiled carbon nanotubes sample was achieved by catalytic decomposition of acetylene over silica-supported Co catalyst at 700 °C with inner and outer diameter of 15-20 nm. After this, various techniques have been developed for the synthesis of helical CNTs, and helical CNTs can be produced at a high yield by catalytic CVD[27,28]. Vardhan Bajpai had also developed techniques for the synthesis of large-scale perpendicularly aligned helical CNT arrays on the quartz glass substrate using Fe(CO)5and pyridine as the catalyst and precursor, respectively[29].

    Although both nonaligned and aligned helical CNTs have been reported, the synthesis of well aligned helical CNTs with various helical pitches and diameters is challenging and has not been successful until now. In this paper, large-scale perpendicularly aligned helical CNT arrays were synthesized by floating catalyst method using xylene and ferrocene as precursors and catalyst, respectively. The prepared CNTs have novel microstructure, both helical and straight nanotube exist in one CNT and helical CNTs with various helical pitches and diameters along growth direction.

    2 Experimental

    2.1 Sample synthesis

    Similar to the successful preparation of large-scale, perpendicularly aligned straight CNTs, helical CNTs were synthesized in large scale by the floating catalyst (FC) method in a 400 mm horizontal tubular reactor made of quartz with a diameter of 60 mm using ferrocene and xylene as precursor and catalyst, respectively. The reactor was inserted into a furnace that provided controllable heating up to 850 ℃ with a non-gradient temperature zone (reaction zone) of 150 mm in length. The temperature distribution along the reactor was measured by K-type thermocouple. Three layers vertical aligned CNT arrays were grown on SiO2substrate in three times with an interval time between each layer for 10 min without breakdown the vacuum. The thickness of each layer was precisely controlled by the growth time (30 min for first layer, 60 min for the second and 90 min for the third). As a result, we found that three layers of perpendicularly aligned helical CNTs and straight CNTs were prepared onto the whole SiO2substrate surface. The sample area is 4 cm2, which is essentially limited by the size of the furnace diameter only. After synthesis, helical CNTs were cooled in an inert gas (Argon) flow of 500 mL/min.

    2.2 Characterization

    The microstructure was investigated using scanning electron microscopy(SEM; JSM6490, Jeol), high resolution transmission electron microscopy (HR-TEM; JEM3010, Jeol), thermogravimetric analysis (TGA; Labsys EVO TG,Setaram) and Raman spectroscopy (HORIBA, T6400). HR-TEM instruments were operated at an acceleration voltage of 200 kV and SEM instruments at a voltage of 20 kV. TGA was performed under oxygen atmosphere using a heating ramp of 10 ℃/min. Raman spectra were recorded at room temperature with the excitation wavelengths of 532 nm. The helical CNT array samples for SEM, TGA and Raman scattering analysis were as grown without treatment. The as-synthesized samples were dispersed in alcohol with ultrasonic apparatus, and then directly transferred to the TEM grid for HRTEM test operating at 200 kV.

    3 Results and discussion

    In order to examine the microstructures of CNTs, the grown films were peeled off from SiO2substrate. The aligned helical CNTs can be easily removed from substrate, and each layer can be detached from other layers (Fig.1(a) and Fig. 1(b)). An enlarged cross-section view of Fig. 1(a) along carbon nanotubes with various magnification under SEM are shown in Fig.1(c)-(g). It is clearly that the densely packed multilayer CNT films contain a large amount of well aligned helical CNTs with different helical pitches and diameters. One can find that most of the products have a helical structure, the growth rate of the helical CNTs is about 4.5 mg/cm2·h. When the helical pitch increases, the coil diameter decreases (became linear). The very interesting structure, the perpendicularly aligned helical structure at one end while straight at the other end, is also observed in Fig. 1. The periodicity of the coiling also varies along the helical structure, as shown in Fig. 1(e,f,g).

    Fig. 2(a) shows TEM images of the helical CNTs. Fig. 2(b) and Fig. 2(c) show TEM images of individual helical CNT taken from the sample shown in Fig. 1(a) and after having been dispersed on a TEM grid, from which a helical nanotube with a pitch of ca. 150 nm and a hollow structure is clearly evident. Aligned helical CNT arrays with different helical structures have also been produced in synthesized experiment, as shown in Fig. 2(d) and Fig. 2(e) that the helical nanotube with different helical pitches of ca. 1 μm and diameter of ca. 0.4 μm. The helical structure and the coil shape are the two typical structures in the samples. Fig. 2(f) shows HR-TEM image of the clear hollow tube structure. It clearly demonstrates that our carbon products are mainly MWCNTs and well graphitized.

    Fig. 1 (a,b) SEM images of vertically aligned three-layers helical CNT arrays at cross section view and plane view. (c,d,e,f,g) An enlarged cross section view of (a) at different regions, showing well aligned helical CNTs with various helical pitches and diameters.

    TGA was conducted in oxygen atmosphere on a SETARAM TGA EVO instrument from 300 to 970 K at a heating rate of 10 K/min. Thermogravimetric data of the CNTs material is depicted in Fig. 3. The weight loss between 300 K and 735 K is due to the removal of physical absorbed water molecules and oxidation of amorphous carbon. The CNTs show a single monotonous fall in the weight loss of the sample in the range 735-795 K. This is the characteristic of CNT gasification. Above 795 K, it shows a 5% weight residue. This indicates that a small amount of Fe is present (Fig.2(f)) prior the TGA analysis and Fe2O3is formed as the analysis was performed in oxygen atmosphere. This also confirms the thermal stability of Fe2O3.

    Raman spectrum of the helical CNTs is shown in Fig. 4. Raman peaks at 215, 1 325 and 1 590 cm-1, correspond to RBM band,D-band andG-band of CNTs, respectively. We can conclude that the helical CNTs have a well graphitized structure and a small amount of single walled or few walls (typically <5 layers) carbon nanotubes is also existed in the synthesized helical CNT arrays[30, 31]. Few walls carbon nanotubes can be seen from HR-TEM image, as shown in Fig. 5.

    Fig. 2 (a) Low magnification TEM image of the general morphology of the synthesized CNTs. (b) A TEM image of individual helical CNT. (c) An enlarged view of the individual helical CNT shown in (b). (d, e) An enlarged view of the helical nanotubes different from that represented by Fig. 2(b), showing different morphologies, pitches and diameters along the helical nanotube. (f) HR-TEM image of iron particle encapsulated in a CNT.

    Fig. 3 Thermogravimetric plot of the synthesized CNTs performed in an oxygen atmosphere. The heating ramp is 10 K/min.

    From the inspection by SEM and TEM (Fig. 1 and Fig. 2), it is observed that the straight CNTs could be gradually changed to the helical carbon nanotubes. This implies that there is considerable room for tailoring the nanotube structures by controlling the growth conditions. The nucleation and growth of the helical CNTs on the basis of previously reported models are proposed as follows. First, under the Ar atmosphere flow, it is likely that ferrocene [Fe(C5H5)2] first decomposed into atomic iron, hydrocarbon species and carbon, while xylene [C8H10] molecules decomposed into hydrocarbon species of different carbon numbers. The newly produced iron atoms then segregated on the substrate surface to form carbon-surrounded Fe nanoparticles. Once a Fe particle reached its optimal size for carbon nucleation, the surrounding carbon transformed into a graphite tube. A high surface packing density of Fe particles facilitates the growing nanotubes to align along their normal direction, as previously demonstrated for the growth of perpendicularly aligned straight CNTs[32-34]. Second, A further supply of carbon source to the contact region between the Fe particle and the growing nanotube segment allowed a continuous growth of the CNT in the direction normal to the substrate surface. This growth process is accompanied by producing of pentagonal, heptagonal and hexagonal carbon rings. The hexagonal carbon rings are the basic structural units to form the graphite lattice. The pentagonal carbon ring is required to force a hexagonal network to curve inward, forming a surface with a positive curvature. The heptagonal carbon ring, on the other hand, makes the hexagonal network curve outward, forming a negative curvature. Both pentagonal and heptagonal carbon rings are required to accommodate the change of surface curvature, making it possible to form any geometrical surface, such as straight structure and helical structure. The periodicity and the coiling diameter of the helix are determined by the twist angle and the distance between the adjacent pentagonal-hexagonal carbon rings, which can be varies in practice by changing experimental conditions, such as temperature and gas-flow rate, resulting in the change in coiling periodicity and the diameters of the helix. The growth of the helical structure is continuous if the pentagonal-hexagonal carbon rings are continuously produced; otherwise, a straight section of the tube can be grown if the pentagonal-hexagonal carbon rings are absent, in agreement with the result shown in Fig. 1(a) and Fig. 2(a). In practice, the fluctuation in the creation rates of the pentagonal-hexagonal carbon rings can produce a complex shape. This may be the reason that the structures of CNTs are very versatile.

    Fig. 4 Raman spectrum of the as-grown helical CNT arrays taken from its surface. The Raman spectrum of the aligned helical CNTs shows an intense peak at 1 590 cm-1, attributable to the E2g mode of the multi-walled nanotube, with a shoulder centered at 1 325 cm-1 arising from the amorphous carbon, at the same time there is also a peak at 215 cm-1, which is attributed to the RBM mode of the single walled or few walls CNTs.

    Fig. 5 HR-TEM image of few walls CNT with a diameter about 4 nm.

    4 Conclusions

    Large-scale aligned CNT arrays perpendicular to the substrate surface were successfully synthesized through co-pyrolysis of xylene and ferrocene in the furnace at 850C under the flow of Ar. The produced CNT arrays include a large amount of helical CNTs. The growth mechanism of the CNTs was discussed in detail. If the growth process can be further optimized to produce well aligned CNT with a predetermined straight length, helical pitch and helical diameter based on the growth mechanism, the CNT array can be effectively used in electronic devices for practical applications, for examples, in high-performance sensors, resonators, electromagnetic transformers, antennas and inductions at nanoscale.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Granted No. 60908023, 11075143/A050609) and the Key Laboratory of Ultra-Precision Machining Technology Foundation of CAEP(Granted No. ZZ15003). We thank Dr.Jiangfeng WANG, who is now studying at CNRS/CEMS in France, for his interest in our work and help with analysis of CNT Raman spectra.

    [1] Zhang M, Fang S L, Zakhidov A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science, 2005, 309(5738): 1215-1219.

    [2] Michael F L, De Volder, Sameh H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science, 2013, 339: 535-539.

    [3] Pan J Y, Chen C Y, Gao Y L, et al. Improved field emission characteristics of screen-printed CNT-FED cathode by interfusing Fe/Ni nano-grains[J]. Displays, 2009, (30): 114-118.

    [4] XU Yao, ZHAN Liang, WANG Yun, et al. Fluorinated graphene as a cathode material for high performance primary lithium ion batteries[J]. New Carbon Materials, 2015, 30(1): 79-85.

    [5] Phaedon Avouris. Carbon nanotube electronics[J]. Chemical Physics, 2002, 281(2-3): 429-445.

    [6] ZHENG Wei, QI Tao, ZHANG Yong-chao, et al. Fabrication and characterization of a multi-walled carbon nanotube-based counter electrode for dye-sensitized solar cells[J]. New Carbon Materials, 2015, 30(5): 391-396.

    [7] Nicole Grobert. Carbon nanotubes-becoming clean[J]. Materials Today, 2007, 10 (1-2): 28-35.

    [8] Qin Y, Kim Y, Zhang L B. Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates[J], Small, 2010, 6(8): 910-914.

    [9] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, (354): 56-58.

    [10] Sigeo Ihara, Satoshi Itoh, Jun-ichi Kitakami. Toroidal forms of graphitic carbon[J]. Phys ReV B 1993, 47(19): 12908-12911.

    [11] Dunlap B I. Connecting carbon tubules[J]. Phys Rev B, 1992, 46(2): 1933-1936.

    [12] Zhang M, Li J. Carbon nanotube in different shapes[J]. Materials Today, 2009, 12(6): 12-18.

    [13] Ahmed Shaikjee, Neil J Coville. The synthesis, properties and uses of carbon materials with helical morphology[J]. Journal of Advanced Research, 2012, 3: 195-223.

    [14] Szabó A, Fonseca A, Nagy J B . Synthesis, properties and applications of helical carbon nanotubes[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2005, 13(S1): 139-146.

    [15] Tang N J, Wen J F, Zhang Y. Helical carbon nanotubes: Catalytic particle size-dependent growth and magnetic properties[J]. Acs Nano, 2010, 4(1): 241-250.

    [16] Prabhakar R B. Electrical properties and applications of carbon nanotube structures[J]. Journal of Nanoscience and Nanotechnology, 2007, 7: 1-29.

    [17] Wen J F, Zhang Y, Tang N J, et al. Synthesis, photoluminescence, and magnetic properties of nitrogen doping helical carbon nanotubes[J]. J Phys Chem C, 2011, 115: 12329-12334.

    [18] Qi X S, Zhong W, Deng Y, et al. Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe-Cu nanoparticles at 450oC[J]. J Phys Chem C, 2009, 113: 15934-15940.

    [19] R Byron Pipes, Pascal Hubert. Helical carbon nanotube arrays: mechanical properties[J]. Composites Science and Technology, 2002, 62(3): 419-428.

    [20] Philip G C, Phaedon A. Nanotubes for Electronics[J]. Scientific American, 2000: 62-69.

    [21] Kong J, Zhou C, Morpurgo A. Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes[J]. Appl Phys A, 1999, 69: 305-308.

    [22] Moretadha J K, Jaber S A, Fyath R S. Performance investigation of loop and helical carbon nanotube antennas[J]. Journal of Emerging Trends in Computing and Information Sciences, 2012, 3(12): 1606-1613.

    [23] Itoh S, Ihara S, Kitakami J. Toroidal form of carbon C360[J]. Phys ReV B, 1993, 47(3): 1703-1704.

    [24] Itoh S, Ihara S, Kitakami J. Helically coiled cage forms of graphitic carbon[J]. Phys Rev B, 1993, 48(8): 5643-5647.

    [25] Itoh S, Ihara S. Toroidal forms of graphitic carbon II Elongated tori[J]. Phys Rev B, 1993, 48(11): 8323-8328.

    [26] Zhang X B, Zhang X F, Bernaerts D, et al. The texture of catalytically grown coil-shaped carbon nanotubules[J]. Europhys Lett, 1994, 27: 141-146.

    [27] Qin Y H, Zhang Y H, Sun X. Synthesis of helical and straight carbon nanofibers by chemical vapor deposition using alkali chloride catalysts[J]. Microchim Acta, 2009, 164: 425-430.

    [28] Zhang Q, Zhao M Q, Tang D M. Carbon-nanotube-array double helices[J]. Angew Chem Int Ed, 2010, 49: 3642-3645.

    [29] Bajpai V, Dai L M, Ohashi T. Large-scale synthesis of perpendicularly aligned helical carbon nanotubes[J]. J Am Chem Soc, 2004, 126: 5070-5071.

    [30] Rao A M, Richter E, Bandow S, et al. Diameter-selective raman scattering from vibrational modes in carbon nanotubes[J]. Science, 1997, (275): 187-191.

    [31] H Kuzmany, W Plank, M Hulman, et al. Determination of SWCNT diameters from the Raman response of the radial breathing mode[J]. The European Physical Journal B, 2001,22: 307-320.

    [32] Devin Conroy, Anna Moisala, Silvana Cardoso, et al. Carbon nanotube reactor: Ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up[J]. Chemical Engineering Science, 2010, (65): 2965-2977.

    [33] Kalpana Awasthi, Rajesh Kumar, Himanshu Raghubanshi. Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials[J]. Bull Mater Sci, 2011, 34(4): 607-614.

    [34] Li X S, Cao A Y, Jung Y J, et al. Bottom-up growth of carbon nanotube multilayers: unprecedented growth[J]. Nano Lett, 2005, 5(10): 1997- 2000.

    1007-8827(2016)06-0568-06

    垂直定向螺旋碳納米管陣列的大量合成

    張繼成1, 唐永建1, 易 勇2, 馬康夫1, 周民杰1, 吳衛(wèi)東1, 王朝陽1

    (1.中國工程物理研究院 激光聚變研究中心,四川 綿陽621900;2.西南科技大學(xué) 材料科學(xué)與工程學(xué)院,四川 綿陽621010)

    以二甲苯作為碳源、二茂鐵作為催化劑前驅(qū)體,采用催化裂解法大規(guī)模合成了具有不同螺距和螺旋直徑、垂直于基底生長的碳納米管陣列。通過拉曼光譜和高分辨透射電鏡測試分析,結(jié)果表明,所制備的碳納米管陣列分布均勻、石墨化程度高,且沿其長度方向具有不同的螺距和螺旋直徑。由于在碳納米管的生長過程中,會伴隨著碳五環(huán)、碳七環(huán)與碳六環(huán)的生成,而碳六環(huán)是形成石墨晶格的基本結(jié)構(gòu)單元。當(dāng)碳六環(huán)網(wǎng)絡(luò)結(jié)構(gòu)中出現(xiàn)碳五環(huán)和碳七環(huán)時,螺旋形的碳納米管就會形成。實(shí)驗(yàn)中螺旋形碳納米管的產(chǎn)率約為4.5 mg/cm2·h。螺旋形碳納米管在高性能傳感器、諧振器、納米機(jī)械彈簧、電感等納米電子器件中具有潛在的應(yīng)用價值。

    螺旋形碳納米管; 螺距; 碳六環(huán)

    TQ127.1+1

    A

    國家自然科學(xué)基金(60908023, 11075143/A050609);中國工程物理研究院超精密加工技術(shù)重點(diǎn)實(shí)驗(yàn)室基金(ZZ15003).

    張繼成,博士,副研究員.E-mail: zhangjccaep@126.com

    Foundationitem: National Natural Science Foundation of China (60908023, 11075143/A050609); Key Laboratory of Ultra-Precision Machining Technology Foundation of CAEP (ZZ15003).

    ZHANG Ji-cheng, Ph. D. E-mail: zhangjccaep@126.com English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    10.1016/S1872-5805(16)60032-X

    猜你喜歡
    中國工程物理研究院螺旋形五環(huán)
    基于目標(biāo)航跡的引導(dǎo)誤差校正方法研究
    中國工程物理研究院
    軍工文化(2023年3期)2023-04-28 08:39:41
    超臨界LNG在螺旋形微通道中的流動傳熱特性
    CeAuGa3的力學(xué)性質(zhì)及磁性的第一性原理計算
    Gift ideas for the New Year 2021
    基于四傳感器的弱信號源定位方法
    傳感器世界(2019年9期)2019-03-17 18:52:46
    擺成螺旋形
    為什么奧林匹克以五環(huán)為標(biāo)志?
    五環(huán)數(shù)陣
    電子胃鏡引導(dǎo)下放置螺旋形鼻腸管
    成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 淫妇啪啪啪对白视频| 操出白浆在线播放| 青草久久国产| 啪啪无遮挡十八禁网站| 久久中文字幕一级| 国产精品野战在线观看| 日韩欧美国产一区二区入口| 亚洲色图av天堂| 国产亚洲精品综合一区在线观看 | 亚洲色图av天堂| 国产1区2区3区精品| 99久久无色码亚洲精品果冻| 波多野结衣高清无吗| 欧美激情久久久久久爽电影| 国内精品一区二区在线观看| 国产又黄又爽又无遮挡在线| 级片在线观看| 精品久久久久久成人av| 欧美丝袜亚洲另类 | 久久香蕉精品热| 手机成人av网站| 人妻丰满熟妇av一区二区三区| √禁漫天堂资源中文www| 亚洲avbb在线观看| 精品午夜福利视频在线观看一区| 成年女人毛片免费观看观看9| 又爽又黄无遮挡网站| 老熟妇仑乱视频hdxx| 高潮久久久久久久久久久不卡| √禁漫天堂资源中文www| 欧美另类亚洲清纯唯美| 精品欧美一区二区三区在线| 精品欧美一区二区三区在线| 午夜福利成人在线免费观看| 免费看日本二区| 国产单亲对白刺激| 色av中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 精品日产1卡2卡| 日韩欧美在线二视频| 法律面前人人平等表现在哪些方面| 欧美极品一区二区三区四区| 国产精品久久电影中文字幕| 成人三级做爰电影| 久久久国产成人精品二区| 久久久久久亚洲精品国产蜜桃av| 国产精品亚洲av一区麻豆| 少妇的丰满在线观看| 欧美成人免费av一区二区三区| 国产激情久久老熟女| 精品久久久久久成人av| √禁漫天堂资源中文www| 在线播放国产精品三级| 最近最新中文字幕大全电影3| 欧美大码av| 两个人看的免费小视频| 人妻丰满熟妇av一区二区三区| 真人做人爱边吃奶动态| 亚洲自偷自拍图片 自拍| 国产精品乱码一区二三区的特点| 亚洲欧美精品综合一区二区三区| 欧美三级亚洲精品| 999久久久国产精品视频| 国产爱豆传媒在线观看 | 色精品久久人妻99蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品粉嫩美女一区| 国产精品九九99| 亚洲国产精品sss在线观看| 少妇人妻一区二区三区视频| 99国产精品一区二区三区| 国产亚洲精品av在线| av福利片在线观看| 我的老师免费观看完整版| 91字幕亚洲| 国产成人系列免费观看| 国产免费av片在线观看野外av| 黄片小视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 亚洲狠狠婷婷综合久久图片| 日本免费a在线| 亚洲国产欧美一区二区综合| 国产精品1区2区在线观看.| 成年版毛片免费区| 999久久久精品免费观看国产| 日韩免费av在线播放| 免费看a级黄色片| av在线播放免费不卡| 国产精品一及| videosex国产| 国产成人精品无人区| 青草久久国产| 免费在线观看成人毛片| 可以免费在线观看a视频的电影网站| 亚洲av电影不卡..在线观看| 观看免费一级毛片| 可以在线观看毛片的网站| 欧美高清成人免费视频www| 757午夜福利合集在线观看| 精品不卡国产一区二区三区| 身体一侧抽搐| 日韩精品青青久久久久久| 亚洲美女黄片视频| 他把我摸到了高潮在线观看| АⅤ资源中文在线天堂| 国产一区二区激情短视频| 性色av乱码一区二区三区2| 国产成人影院久久av| 非洲黑人性xxxx精品又粗又长| 欧美极品一区二区三区四区| 中文字幕最新亚洲高清| 可以在线观看毛片的网站| 国产亚洲精品综合一区在线观看 | 九九热线精品视视频播放| 日韩欧美免费精品| 色播亚洲综合网| 午夜免费成人在线视频| 国产乱人伦免费视频| 久久婷婷成人综合色麻豆| 国产三级在线视频| 丰满人妻一区二区三区视频av | 国产成人啪精品午夜网站| 91老司机精品| 正在播放国产对白刺激| 正在播放国产对白刺激| 波多野结衣巨乳人妻| 色老头精品视频在线观看| 日本黄大片高清| 五月伊人婷婷丁香| www.999成人在线观看| 亚洲国产欧洲综合997久久,| 国产一区二区三区在线臀色熟女| 这个男人来自地球电影免费观看| 非洲黑人性xxxx精品又粗又长| 成人18禁在线播放| 精品久久久久久久人妻蜜臀av| 香蕉久久夜色| 久久久久久免费高清国产稀缺| 村上凉子中文字幕在线| 岛国视频午夜一区免费看| 成在线人永久免费视频| 男女视频在线观看网站免费 | 我的老师免费观看完整版| av国产免费在线观看| 亚洲精品美女久久久久99蜜臀| 制服丝袜大香蕉在线| 一本一本综合久久| 夜夜夜夜夜久久久久| 精品久久久久久久久久免费视频| 国产精品98久久久久久宅男小说| 一级a爱片免费观看的视频| 国产一区二区在线av高清观看| 黄色女人牲交| 欧美日本亚洲视频在线播放| 在线免费观看的www视频| 一级片免费观看大全| 国产精品久久电影中文字幕| 欧美日韩瑟瑟在线播放| 午夜影院日韩av| 日本免费a在线| 91麻豆av在线| 亚洲专区国产一区二区| 国产精品一区二区三区四区久久| 制服诱惑二区| 黑人欧美特级aaaaaa片| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 美女免费视频网站| 舔av片在线| 免费在线观看亚洲国产| 国产1区2区3区精品| 在线观看www视频免费| 久久天堂一区二区三区四区| 大型av网站在线播放| 欧美中文日本在线观看视频| netflix在线观看网站| 伊人久久大香线蕉亚洲五| 国产欧美日韩精品亚洲av| 日本一二三区视频观看| 在线播放国产精品三级| 激情在线观看视频在线高清| 又黄又粗又硬又大视频| 亚洲精品在线美女| 激情在线观看视频在线高清| 成人18禁在线播放| 一区二区三区国产精品乱码| 男男h啪啪无遮挡| 国产av麻豆久久久久久久| xxxwww97欧美| 50天的宝宝边吃奶边哭怎么回事| 亚洲av成人一区二区三| 动漫黄色视频在线观看| 精华霜和精华液先用哪个| a级毛片a级免费在线| 十八禁人妻一区二区| 校园春色视频在线观看| 亚洲国产欧美网| 亚洲中文字幕日韩| 免费av毛片视频| 免费观看人在逋| 欧美日韩福利视频一区二区| 欧美国产日韩亚洲一区| 在线国产一区二区在线| 欧美日韩黄片免| 少妇被粗大的猛进出69影院| 母亲3免费完整高清在线观看| xxxwww97欧美| 看免费av毛片| 亚洲熟女毛片儿| 国产高清激情床上av| 国产亚洲精品久久久久5区| 久9热在线精品视频| 亚洲欧美日韩高清在线视频| 精品少妇一区二区三区视频日本电影| 色噜噜av男人的天堂激情| 精品国产乱码久久久久久男人| 99在线视频只有这里精品首页| 国产高清videossex| 少妇熟女aⅴ在线视频| 国产男靠女视频免费网站| 国产一区二区在线av高清观看| 国产av又大| 人妻丰满熟妇av一区二区三区| 亚洲电影在线观看av| 国产精品久久久久久精品电影| 亚洲黑人精品在线| 成人三级做爰电影| 欧美 亚洲 国产 日韩一| 久久久久亚洲av毛片大全| 久久久水蜜桃国产精品网| 久久久久九九精品影院| 九色国产91popny在线| 欧美性长视频在线观看| 亚洲乱码一区二区免费版| av有码第一页| 亚洲人成电影免费在线| 精品国内亚洲2022精品成人| 日本黄大片高清| 99热只有精品国产| 国产精品久久视频播放| 成人三级做爰电影| 免费在线观看视频国产中文字幕亚洲| 亚洲美女黄片视频| 日韩欧美免费精品| 国产日本99.免费观看| 亚洲av成人一区二区三| 好男人电影高清在线观看| 亚洲av电影在线进入| 欧美色视频一区免费| 精品久久久久久久久久免费视频| 亚洲欧美精品综合一区二区三区| 欧美精品亚洲一区二区| 男女午夜视频在线观看| 美女午夜性视频免费| 不卡av一区二区三区| 欧美国产日韩亚洲一区| 可以在线观看的亚洲视频| 99久久国产精品久久久| 亚洲一码二码三码区别大吗| 一级a爱片免费观看的视频| 午夜福利成人在线免费观看| 视频区欧美日本亚洲| 免费观看人在逋| 国产精品美女特级片免费视频播放器 | 精品高清国产在线一区| 午夜两性在线视频| 国产在线观看jvid| 亚洲黑人精品在线| 国产97色在线日韩免费| 一级毛片精品| 国产精品综合久久久久久久免费| 日韩欧美三级三区| 国产精品久久视频播放| 一卡2卡三卡四卡精品乱码亚洲| 国产伦一二天堂av在线观看| 免费看a级黄色片| 一个人免费在线观看的高清视频| av福利片在线| 亚洲欧美日韩高清在线视频| 欧美精品亚洲一区二区| 久久亚洲精品不卡| 这个男人来自地球电影免费观看| 怎么达到女性高潮| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区三| a级毛片在线看网站| 精品欧美一区二区三区在线| 国产精品亚洲美女久久久| 日韩精品青青久久久久久| 深夜精品福利| bbb黄色大片| 中文资源天堂在线| 97人妻精品一区二区三区麻豆| 搡老妇女老女人老熟妇| 蜜桃久久精品国产亚洲av| 在线a可以看的网站| 国产私拍福利视频在线观看| 少妇裸体淫交视频免费看高清 | 亚洲av片天天在线观看| 国产三级中文精品| 精品久久久久久久毛片微露脸| 女警被强在线播放| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| tocl精华| 国产成人精品久久二区二区免费| 日韩精品青青久久久久久| 九色成人免费人妻av| 成人av在线播放网站| 精品久久久久久久人妻蜜臀av| 国产精品影院久久| 嫩草影院精品99| 国产精品久久视频播放| 精品熟女少妇八av免费久了| 国产成人欧美在线观看| 亚洲男人的天堂狠狠| 在线国产一区二区在线| 婷婷精品国产亚洲av| 此物有八面人人有两片| 少妇被粗大的猛进出69影院| 久久中文字幕一级| 男插女下体视频免费在线播放| 久久久国产成人精品二区| 久久久精品大字幕| 国产视频一区二区在线看| 亚洲国产精品sss在线观看| 亚洲精品美女久久av网站| 99国产精品一区二区蜜桃av| 欧美久久黑人一区二区| 嫩草影视91久久| 免费看美女性在线毛片视频| 欧美国产日韩亚洲一区| 全区人妻精品视频| 亚洲熟妇中文字幕五十中出| x7x7x7水蜜桃| www日本在线高清视频| 亚洲美女视频黄频| 十八禁人妻一区二区| 真人做人爱边吃奶动态| 欧美在线黄色| 国产亚洲av嫩草精品影院| 窝窝影院91人妻| 精华霜和精华液先用哪个| a在线观看视频网站| 亚洲精品av麻豆狂野| 亚洲成人精品中文字幕电影| 免费搜索国产男女视频| 国产精品一区二区免费欧美| 人人妻,人人澡人人爽秒播| 欧美日韩亚洲综合一区二区三区_| 亚洲国产中文字幕在线视频| 日韩免费av在线播放| 在线免费观看的www视频| 免费在线观看亚洲国产| 亚洲色图av天堂| 免费高清视频大片| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品av在线| 久久精品国产亚洲av香蕉五月| 在线观看免费日韩欧美大片| 看黄色毛片网站| 一进一出好大好爽视频| 欧美人与性动交α欧美精品济南到| 国产精品亚洲美女久久久| 欧美午夜高清在线| 99久久国产精品久久久| 成年版毛片免费区| 一二三四社区在线视频社区8| 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区免费| 国产在线观看jvid| 久久久久国内视频| 久久久久久久久中文| 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲成av人片在线播放无| 少妇被粗大的猛进出69影院| 国产成人一区二区三区免费视频网站| 久久久久国产精品人妻aⅴ院| 美女黄网站色视频| 国产精品美女特级片免费视频播放器 | 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 久久精品国产清高在天天线| 成人国语在线视频| 久久香蕉精品热| 一个人免费在线观看的高清视频| 欧美中文综合在线视频| 亚洲 国产 在线| av超薄肉色丝袜交足视频| 天堂av国产一区二区熟女人妻 | 亚洲中文av在线| 国产成人啪精品午夜网站| 日韩免费av在线播放| 国产亚洲精品久久久久5区| 黑人欧美特级aaaaaa片| 最好的美女福利视频网| 久久精品91无色码中文字幕| 久久精品国产综合久久久| 欧美黑人欧美精品刺激| 欧美黄色淫秽网站| 亚洲成人免费电影在线观看| 听说在线观看完整版免费高清| 级片在线观看| 亚洲真实伦在线观看| 十八禁人妻一区二区| 搞女人的毛片| 免费高清视频大片| 成熟少妇高潮喷水视频| 国产爱豆传媒在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久毛片微露脸| 91大片在线观看| av国产免费在线观看| 可以在线观看的亚洲视频| 国产黄片美女视频| 国产精品av久久久久免费| 两个人看的免费小视频| 日韩成人在线观看一区二区三区| 欧美乱妇无乱码| 国产成+人综合+亚洲专区| 亚洲av成人av| 亚洲精品国产一区二区精华液| 国产三级中文精品| 久久性视频一级片| 欧美 亚洲 国产 日韩一| 国产av不卡久久| 国产成人啪精品午夜网站| 国产精品久久久久久亚洲av鲁大| 夜夜看夜夜爽夜夜摸| 天天躁狠狠躁夜夜躁狠狠躁| 国产av又大| 成人国产综合亚洲| 久久久久久大精品| 久久国产精品人妻蜜桃| 村上凉子中文字幕在线| 在线观看日韩欧美| 免费无遮挡裸体视频| 午夜福利免费观看在线| 午夜久久久久精精品| 2021天堂中文幕一二区在线观| 最近在线观看免费完整版| 看免费av毛片| 亚洲一区二区三区色噜噜| 免费观看人在逋| 精品国产乱子伦一区二区三区| 神马国产精品三级电影在线观看 | 不卡av一区二区三区| 亚洲熟妇熟女久久| 亚洲精品国产一区二区精华液| av天堂在线播放| 欧美乱妇无乱码| 欧美日韩瑟瑟在线播放| 亚洲精品美女久久av网站| √禁漫天堂资源中文www| 亚洲自拍偷在线| 1024手机看黄色片| 又紧又爽又黄一区二区| 少妇裸体淫交视频免费看高清 | 妹子高潮喷水视频| 啪啪无遮挡十八禁网站| 韩国av一区二区三区四区| 久久久久久国产a免费观看| 久久国产精品人妻蜜桃| 亚洲成人精品中文字幕电影| 好男人在线观看高清免费视频| 精品福利观看| 在线观看美女被高潮喷水网站 | 亚洲欧洲精品一区二区精品久久久| 久久久久亚洲av毛片大全| 亚洲欧美日韩高清专用| 777久久人妻少妇嫩草av网站| 一个人免费在线观看电影 | 脱女人内裤的视频| 18禁黄网站禁片免费观看直播| 久久久久性生活片| 色哟哟哟哟哟哟| cao死你这个sao货| 无限看片的www在线观看| a级毛片a级免费在线| 99精品在免费线老司机午夜| 亚洲精品色激情综合| 日本三级黄在线观看| 巨乳人妻的诱惑在线观看| 久久久国产成人免费| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久人妻精品电影| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 男女那种视频在线观看| 亚洲精品久久成人aⅴ小说| 久久久久性生活片| 久久久久久人人人人人| 毛片女人毛片| or卡值多少钱| 国产激情欧美一区二区| 老汉色av国产亚洲站长工具| 国产又黄又爽又无遮挡在线| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 97人妻精品一区二区三区麻豆| 国产区一区二久久| 人人妻人人澡欧美一区二区| bbb黄色大片| 午夜福利高清视频| 亚洲欧美日韩高清专用| 在线a可以看的网站| 99国产精品一区二区蜜桃av| 搞女人的毛片| 国产亚洲精品久久久久5区| 一本大道久久a久久精品| 亚洲人成77777在线视频| 国产1区2区3区精品| 亚洲av成人av| 精品国产乱子伦一区二区三区| 丰满人妻一区二区三区视频av | 日韩欧美国产一区二区入口| 日韩有码中文字幕| 日本黄色视频三级网站网址| 日韩大码丰满熟妇| 国产精品免费视频内射| 夜夜爽天天搞| 亚洲一区中文字幕在线| 国产伦人伦偷精品视频| 欧美乱色亚洲激情| 欧美性猛交╳xxx乱大交人| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 色综合婷婷激情| 淫秽高清视频在线观看| 可以在线观看毛片的网站| 国产一区二区在线av高清观看| 精品国内亚洲2022精品成人| av有码第一页| 麻豆一二三区av精品| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添小说| 老汉色av国产亚洲站长工具| 亚洲精品av麻豆狂野| 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜添小说| 视频区欧美日本亚洲| 真人做人爱边吃奶动态| av在线天堂中文字幕| 搡老熟女国产l中国老女人| 欧美日韩乱码在线| 超碰成人久久| 人成视频在线观看免费观看| 国产乱人伦免费视频| 午夜福利在线观看吧| 精品不卡国产一区二区三区| 十八禁人妻一区二区| 色哟哟哟哟哟哟| 精品欧美国产一区二区三| 亚洲成人久久性| av福利片在线| 国产三级中文精品| 精品无人区乱码1区二区| 日韩欧美精品v在线| 性欧美人与动物交配| 国产精品久久久av美女十八| 欧美黄色淫秽网站| 精华霜和精华液先用哪个| 美女扒开内裤让男人捅视频| 黄色女人牲交| 国产精品一区二区免费欧美| 99在线人妻在线中文字幕| 成人欧美大片| 露出奶头的视频| 国产亚洲精品综合一区在线观看 | 波多野结衣巨乳人妻| 亚洲精品粉嫩美女一区| 一级毛片高清免费大全| 欧美性猛交╳xxx乱大交人| 成人高潮视频无遮挡免费网站| 亚洲黑人精品在线| 一级黄色大片毛片| 真人一进一出gif抽搐免费| 国产精品综合久久久久久久免费| 18禁黄网站禁片午夜丰满| 人人妻人人澡欧美一区二区| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 久久午夜综合久久蜜桃| 亚洲精品美女久久久久99蜜臀| 精品高清国产在线一区| 99国产综合亚洲精品| 757午夜福利合集在线观看| 一边摸一边抽搐一进一小说| 欧美日韩黄片免| 日韩有码中文字幕| 亚洲乱码一区二区免费版| 成人亚洲精品av一区二区| 99久久精品热视频| 午夜精品一区二区三区免费看| 国产三级黄色录像| 国产伦在线观看视频一区| 老鸭窝网址在线观看| 全区人妻精品视频| bbb黄色大片| 美女午夜性视频免费| 久久久精品大字幕| 久久中文字幕人妻熟女| 国产精品1区2区在线观看.| 欧美人与性动交α欧美精品济南到| 村上凉子中文字幕在线| www.精华液| 久久精品影院6| 不卡av一区二区三区| 日本一二三区视频观看| 国产三级中文精品|